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b) If X is deformable into A relative to @, then Q"4 and Q"X x
><Q“‘+1(_X',A) are homotopy equivalent for n=1 and H-isomorphic for
n>=2.

TezoREM 9. (a) The fiber structures (Q*(X,A4),0,04) and (QA4x
X QX , m,, QA) are homotopy equivalent if and only if QA is contractible
in RX.

(b) If A is contractible in X rvelative to &, then O"NX, A) and
Q™A X Q"X are homotopy equivalent for n 2> 1 and H -isomorphic for n > 2.

TEBOREM 10. () The fiber structures (@X,4, (X, A)) and (2(X, A)x
X DA, 7y, (X, A)) are homotopy equivalent if and only if &: 2(X, 4) >4
is aull-homotopic.

(b) If 4 is a retract of X, then Q"X and Q"X , A) x Q"4 are homotopy
equivalent for n =1 and H-isomorphic for n = 2.
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Topologies for probabilisﬁc metric spaces

by
R. Fritsche (Monroe, La.)

1. Introduction. The purpose of the present paper is fo generalize
some of the topological notions for probabilistic metric spaces introduced
by Schweizer and Sklar [4], and by Thorp [5]. The fundamental tool for
this task is the “profile function” a monotone non-decreasing function
defined on the non-negative half of the real line and having its values
in the closed unit interval. It will be shown that such & function gives
rise to a generalized topology [3] on any PM-space (8, F).

A condition sufficient to strengthen these ¢-topologies to topologies
is established but its non-necessity is shown by several examples which
are of some interest in their own right, with a view, perhaps, towards
possible applications. '

Finally, this approach to generalized topologies for PM-spaces is’
compared with that of Thorp [5] and a rather mild condition for the
equivalence of these two is demonstrated.

The only concepts required for an understanding of these results
are those of PM-space, triangular norm (f-norm) and Menger space.
These may be found in Schweizer and Sklar [4], among others.

The author wishes to thank Prof. Berthold Schweizer for his many
helpful suggestions in the preparation of this material.

2.

DEFINITION 2.1. A function @ is a profile function if Domg = [0, oo),
@ is non-decreasing and 0 < p(z) <1 for all # in [0, co).

DEFINITION 2.2. Let (8, &) be a PM-space, let ¢ be a profile function,
let p e, let AC S, and let &, 1> 0 be given. Then:

“a. The set Np(p; e, 1) = {ge8: Fpye) > @le)—A} is called the
(@; e, A)-neighborhood of p;

b. p is a @-accumulation point of A if (Nolgs &, y—{p}) " A+ O
for every s, 1> 0;

c. A is g-closed it g(4) C A, where p(A4) is the set of @-accumulation
points of 4.
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z
TBEOR.EM 2.1. Let (8, F) be a PM-space, let' ¢ be a profile function
and let 4, be a g-dosed set for each a in some index set A. Then

A= {4 acd}

Proof. Observe first that, if 4 C B, then ¢(4) C @(B). For,if p e p(4),
then for every &, 4> 0, there exists ge<A such that Fule) > p(e)— A
Bubt ge A implies that geB and, hence, p e @p(B). Next, ACAE, for
all a e, implies that ¢(A4) C p(4s), for all a, so that p(A gotp

CM da= A.

It should also be noted that ¢(@) =@

Definition 2.1 is not as restrictive as it appears. It is not hard to
show that for any one-place funetion ¢ on [0, co) there is a function
satisfying the conditions of Definition 2.1, and such that @(A) = ¢(4),
for every subset A of the PM-space.

The property of g-closed sets established in Theorem 2.1 has been
used [1, 3] as the defining property of what has come to be called
a “generalized topology”, distinguished from “topology” by the additional
property, that, in a topology a finite union of closed sets is also a closed
set. Often, the definition is given in neighborhood terminology as follows.

DerFmvTION 2.3. If, with each point p of a set § is associated a family
of sets N°p = {Ny}, called neighborhoods of p, having the property that
each member of the family contains p, then the collection {Np: p e 8} is
called a gemeralized topology (g-topology) for §.

Thus, since Fpy(e) = 1 > @(e)—4, for any &,'4 > 0, implies p ¢ Ny(p;
¢, 1), we may, given a PM-space (8, ) and a profile function ¢, refer
to the ¢- g- -topology on 8.

A more detailed analysis of the topological structures oenerated by
profile functions is made possible by determining which of the so-called
“neighborhood axioms” are satisfied. For convenience, these axioms are
listed here:

Ny: Por each neighborhood, Vy, of p,p eVp.

Ny: For each point p and each pair of neighborhoods U, and Vyp of p,
there 18- @ neighborhood Wy of p such that Wy C Uy A V.

Ny: For each point p and each neighborhood V., of p there is a neighbor-
hood Uy of p such that for each q € U, there exists a neighborhood Vo of ¢ such
that V4 CVyp.

Ny: For each point p and each pomt q in a neighborhood Vp of p there
exists a neighborhood V, of q such that V,C Vp.

Ng: If p + g, there emist meighborhoods V, of d
» of p and Vy of q such that
PV, a8V, g€ Vy, piv,. '

is @-closed.

©
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Ne: If p# ¢, p and g have disjoint neighborhoods V, and V, such
that peVyp and qeV,.

THEOREM 2.2. Let (8, F) be a PM-space, let ¢ be a profile function
and let

Np= {Nplp; 6,4): 6>0,4>0,pe8}.

Then, for the family Np,

(i) Ny is always satisfied.

(i) N, is satisfied if Fpo—q is non-decreasing for every pair P, q of
distinct points in S.

(iil) N 4s satisfied if for every pair of distinct points p, q in 8, there
is a number xy > 0 such that @(my) > Fye(,). )

(iv) N is satisfied if (8, F) is a Menger space under a t-norm, T, having
the property that, for every pair of distinct points p, g in 8, sup T(x, x)

z<(0+)

> Fipg(0+).

Proof. (i) For every &, A> 0, we have Fpp(e) =
gince @(¢) <1. Hence always p € Np(p; £, 1).

(i) Let Np(p; €1, A), and Ny(p; &, 4,) be two p-neighborhoods of p
and let &= Min[e, &), A= Min[4;,2,]. For geNyp;e, 1) we have
Fogle) > @p(e)—24 from which (Fpg—e)(e) > —Ai.  Now, for i=1,2
(Fog—@)(&1) = (Fpg—@)(e) > —A > —24;. But this is the statement that
g€ Np(g; €1y Ao) for =1, 2. Thus, Np(p; &, 4) C Nplg; &1, A1) © Nplp; eay Ao)-

(iil) Since (z,) > Fpe(@,), there is a 1, such that o(wy)— Ay > Fpe(a,)-
Thus, Np(p; %4, 4) is a neighborhood of p which does not contain ¢; and,
by symmetry, Ny(p; @4, 4o) is a neighborhood of ¢ which does not contain p.

(iv) Let sup T(m 2) = a; and note that from T'(0,0)=0 and

< (0
Tlp! 0—[—),zp(0+)] a > Fp(0+) = 0, it follows that ¢(0-4)> 0. Now
suppose p # g and let &> 0 be given. Choose 1,0 < A < ¢(0+), so that
T{p(0+)—4, p(0+)— 1) > a—e.

Choose & so that Fpd) < a, and consider the mneighborhoods

Nylp; 62, A), Nylp; 6/2,1). It e Np n Ny then
Fp(8) > T[Fpr(8]2), Far(8/2)] = Tl (82)— 4, 9(8/2)— 4]
= Tlp(0+)—2,p(0+)— A >a—¢.
Hence, since § is independent of &, we have Fp(6) > a
But this is a contradiction, in view of which, Np ~ Ng = @.
Several remarks should be made concerning these conditions. First,

(iii) is always satisfied in the “strong topology” of Schweizer and Sklar
(i.e., in which ¢(x) =1 for all #> 0). Note that (i) is also satistied in

1>1—-2>=@(e)—A4,
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this case. Also in the strong topology, (iv) reduces to the already-known
requirement that the Hausdorff axiom be satisfied.

Condition (ii) also turns oub to be a condition which insures that
g-closed sets be closed under finite unions and is, thus, a condition that
converts g-topologies into topologies. It is a rather stringent condition
but one which is satisfied in At least one other special case of interest,
in addition to the strong case. :

3. Special cases. In this gection we study the structures generated
by the family of profile functions

(8.1) p(a) = (1— i) H(®—2)

where 6,20, 0 <1, <1 and H is the unit step function with step at
the origin.

For the choice = 0= 4,, one obtains the previously mentioned
“strong topology”, which was the first topological structure on PM-spaces
to be investigated in any depth. The choice & 7 0,0< 4 <1 gives rise
to the (g, 4o)-topology; the (0, 4)-topology is called the A-topology; and
the (&, 0)-topology is called the ep-topology. It will be noticed that these
structures have been referred to as topologies rather than as ¢-topologies.
That this usage is not unfounded will be shown shortly.

Lmwmua 3.1. Let (8, F) be a PM-space, let ¢ be a profile function of
the form (3.1) and let p e 8. Then for any >0 and 2> 0

B,e<e or 1—2<4A,

(3.2) Nylp; &, 4 ={
w25 & A =\ 0 Fgle) > 1—Jo— ), 6> 8 and 0 < A<L—ly.

Proof. A straightforward ecalculation, keeping in mind the non-
negativity of each Fyp,, yields the stated result.
If we let 6 = A+ in (3.2), we obtain

8,e<<g  or §>1,

N( s g, 0— ) =
A% e ,0) {{q: Foygle) >1—38}, e> ¢

and l,<d<1.

From this and from the definition of g-accumulation point, we have
at once '

Lieava 3.2. Let (8, F) be a PM-space, let ¢ be a profile function of
the form (3.1), let ACS and let p e S. Then p e p(A) iff for every e> g
and every &> 1, there exists qe A such that

Fpgle) >1—6.

Lewma 3.3, Let (8, F) be a PM-space and let ¢ be a profile funciion
of l:he form (3.1). Then the union of a finite number of g-closed subsets of
8 is a @-closed set.

Topologies for probabilistic meiric spaces 11

Proof. Let. A and B be ¢-closed sets. The assumption that p@p«(A) v
o ¢(B) leads to the existence of Np(@; &1, ,— 4) = Ny anid No(g; e, 65— )
=N, such that (N;—{p})nA=0 and (N,—{p})nB=0. Then,
(N3~{P}‘_) (4 v B)=0, where N;= NP(‘P§ min (&, &), min (4, 62)—‘}‘0)'
Thus, pép(4 v B). Hence, p(4 v B)Cop(d)ve(B)CAv B and 4v B
iy @-closed.

TamoREM 3.1. Let (8, ) be o PM-space and let ¢ be a profile function
of the form (3.1). Then the p-g-topology for 8 is a topology in the usual sense.

Proof. Lemmsa 3.3 and Theorem 2.1 provide for closure of ¢-closed
sets under finite unions and arbitrary intersections, respectively.

At this point, a word is in order regarding the reasons for investigating
these special cases. One reason, of course, is the fact that topologies
rather than g-topologies are obtained from profile functions of the
form (3.1). Another reason is the probabilistic interpretations in these
cages. Consider, e.g., the case in which &= 0 and 1> 0. This yields
2 model intuitively equivalent to a situation in which statements about
distances cannot have a probability greater than 1—1,, i.e., there is
an “upper limit” on the degree of certainty with which statements about
distances can be made. Similarly, restricting & so that £ > & yields a model
intuitively equivalent to a sitnation in which statements cannot be made
about distances smaller than . The foregoing reflect situations_in which
arbitrarily great confidence regarding arbitrarily small distances is not
possible.

For g-topologies generated by profile functions, a straightforward
proof shows that ¢ < @ implies that the @.-g-topology is coarser than
the g,-g-topology, in the sense that every g, -closed set is @,-closed. The
following example, then, serves two purposes: it shows that the converse
of the preceding statement is false and it also provides an example in
which the (e, A)-, &- and Jo-topologies are all distinet. ’

Bxawerir 3.1. Let 8= {p, ¢, 7} and let

z, 0<2<1, 5/8, 0<u<5[8,

Fodw) = Forl) = {1, s>1, Forl) = {1, > 58

It is easy to verify that (8, F ) is a PM-space and easy, al’ghough
somewhat tedious, to verify that the (5, A)-topology f(?r 8§ is indiscrete,
the &-topology is discrete and the A,-topology for § is the one whose

proper closed sets are {g} and {p, 7}
Thus, although the 4,- topology is strictly coarser than the &,-topology,

their profile functions are incomparable.
Following are several theorems which indicate that somewhat stronger

results are obtainable in these special cases.
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TrgorEM 3.2. Let (8,5, T) be a Menger space under a t-norm T
satisfying '

{3.3) sup T(z,2)=1—1,

x<l-d
where 0 < 4y << 1. Then:
(i) the A,-topology for 8 satisfies the meighborhood amiom Ni;
(ii) the Ao-topology for 8 is pseudo-metrizable;

(iii) 4f, in the presence of (3.3), there ewists, for each pair of distinct
points p,qe B, an v> 2e such that Fpy (@) <1—ky, the (&, Ay)-topology

or 8 satisfies the neighborhood awiom Ng.

Proof. (i) Let Np{ps; €, 6—4) be a given neighborhood of p. (Note
that @, and @, are used to denote the profile functions for the - and
{20, Ao)-topologies, respectively.) Choose 8’ > 4, such that T'(1—4’,1—¢')
> 1—4. Such a &' exists in view of (3.3). Choose a 80 that 0 < a < e. Let
€ Nolgr; @, 0'—45) and 7 ¢ Nolpa; e—a; 8 —2)-

Then

Forle) = T[Fpgla), Fole—a)l > T[1—6,1—67>1—46.

Thus, 7 € Np(ga,; &,0—24) ana the theorem is proved.

(i) This result is due to E. Thorp [5; Theorem 3.13, Part (2) and
Theorem 3.14]. Thorp’s proof uses generalized uniformities [1]. An alter-
nate proof, nsing the Alexandroff-Urysohn metrization theorem [2] can
also be constructed.

) (iii) In outline, the proof of this part consists of choosing, for p # ¢
in §, an > 2¢, such that Fyz) = a < 1—1; and a J such that 4, < 6 < 1

and for which T(1—4,1—68)=a. Then Np(ge,x; /2,0—3) and

Nel@er, 205 /2, 6—2,) are disjoint neighborhoods of p and ¢ respectively.
THROREM 3.3. If (8, F) 45 a PM-space such that, for each pair of

distinet points p, q € 8, there emisis @, > &,, such that Fpy(m) < 1= 4y, then
the (&, A)-topology for § satisfies the neighborhood axiom Nj.

Proof. This follows at once from Theorem 2.2, (iii).

Setting &, = .0 in Theorem 3.3, gives the condition that the A,-topol-
f)gy :for 8 satisfies Ny which, in turn, together with Theorem 3.2, (ii),
implies that the 4,-topology is' metrizable.

) T@oEEM 3.4 Let (8,5, T) be a Menger space under a t-norm, T
satisfying

4

ziiln_aMT(a,ac)z a,

ae0,1—2].

Then the Z-topology for § satisfies the meighborhood amiom N,.

Topologiés for probabilistic metric spaces 13

Proof. Let pe8, let 6> 0, let 6> 1, and let e Nylgn; &, 6—A)
so that Fpee) > 1—6. By the left-continuity of Fy,, there exists & < &
and &', g < 6’ < 4, such that ;

Fpy(e) >1—8">1-6.

Tet ¢’ satisfy 0 < &¢” < e—¢" and choose 8" such that 4, < 6" < &' and
T(1—8,1—8")>1—5.

Let 7 € Ny(pa; €y 6" —24). Then,

Fopr(s) (Fpgle), Farle—e')] 2 T[1— 8", Forle")]

>T
>T1—-6,1-87>1-6.
Thus, 7 € Np(pa; &, 0—A4) and Nyl(g; ", 6'—4) is a subset of Ny(g;

&, 6—J4), proving the theorem.

4, Comparison. In this section we compare the foregoing study of
g-topologies for PM-spaces with an analysis by E. Thorp [5]. It will be
seen that, although there is some divergence, a relatively simple
requirement will render the two points of view virtually identical. Thorp’s
study begins in a seemingly more general setting:

DEFINITION 4.1. Let (8, F) be a PM-space and let X be a subset
of the positive quadrant. For any p in § and any (u, v) in X, the X- (v, v)-
neighborhood of p is the set:

Np(u,v) = {g in 8: Fpglu) > 1—2}.

For p in 8 and (w,v) in X, the sets Ny(u,v) are called X-neighbor-
hoods of p.

It is easily shown that these neighborhoods induce & g-topology
for §, called the X-g-topology, and denoted by 1(X). Further, one can
show that X, C X, implies that =(X,) is coarser than z(X,), in the sense
that every X,-neighborhood of a point contains an X,-neighborhood

of that point.
Tmvowa 4.1. Let (S, F) be a PM-space and let X be a subset of the
positive quadrant. Define

(41)  X*= X v {(u*, v"): w* > u, o* >0 for some (u, v) in X}
U {(u,v): w>0,0>1}).

Then ©(X*) = v(X).
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Proof. Sinece X C X*, v(X) is coarser than 7(X*). In the other di-
rection, let p « § and suppose that Np(u,v) is an X*-neighborhood of p.
Then (u, )¢ X* which implies that

a. (#,v) e X;

b. w > u’,v = for some (u',v)e X; or

c. u>0, v>1

In ease a, Nyu,?) is itself an X-neighborhood of p. In case ¢,
Ny(u, v) = {q: Fplu)>1—0v}=28, since 1—-v< 0 and %> 0. 8 is also
an X-neighborhood of p. In case b, consider ¢ ¢ Ny(u',v'), an X-neighbor-
hood of p. We have

Fpglu) > Fpgu)>1—v" 21—v,

so that geNp(u, v).
Thus, in each case, Np(u, v) contains an X-neighborhood of p, and,
accordingly, 7(X*) is coarser than 7(X) and the lemma is proved.
The import of Lemma 4.1 is that, when considering topologies
genérated by subsets of the positive quadrant, we may as well restrict
ourselves to sets of the form (4.1) which we shall do in the sequel. Such
sets will be called determining sets.

Levua 4.2. Let X be o determining set and let
1, =20,

(4.2) ox) = {ini{y: (@,9) e X}, @>0.

Then Doma = [0, o), Rana C [0, 1] and a is non-increasing.

Proof. The first two properties are obvious'and the third is established
by noting that a determining set contains every point of the positive
quadrant which is above andfor to the right of one of its points.

If X and o, called the boundary function of X, are ag in Lemma 4.2,
then the function ¢, defined by ¢(z) = 1—a(x), is a profile function,
called the associated profile function. ‘

The following theorem illuminates the ‘connection between X-g-to-
pologies and g-g-topologies. :

THEOREM 4.1. Let X be a determining sel with boundary function o and
associated profile function @. Then:

(i) the @-g-topology is coarser than the X-g-topology;

{ii) if (=, a(a:)) 8X for any x> 0, the @-g-topology and the X-g-topology
-are equivalent.

Proof. (i) For p e 8 and Ny(p; €, 4) a (p; ¢, 4)-neighborhood of p,
choose 4 = ¢ and » so that 7

ale) <v < ale)4-A.
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Then, (%,v) € X and ¢ € Np(u,v) implies g e Ny(g; &, 4), i.e., 7(X) is finer
than the ¢-g-topology.

(if) Part (i) is half of the desired equivalence. In the other direction,
let Np(u,v) be an X-neighborhood of peS. Sinee (u, a(x))EX, there
exists a A satisfying

0< A< v—alu).

Choosing ¢ = u yields a point (e, a(e)+4) e X. Then Ny(p; £,4) is
a @-neighborhood of p and is a subset of Ny(u, v). This is the other half
of the equivalence.

The condition in Theorem 4.1, (i), is the “relatively simple require-
ment”, mentioned in the introduction to this section, which yields equiva-
lent topological structures from these different points of view.

TamoREM 4.2. Let X be a determining set and @ the associated
profile function. If p is any other profile function such that p(xe) > p(x0)
for some m,el0, c0), then there is a PM-space (S, F) for which the
X-g-topology is strictly coarser than the v-g-topology.

Proof. Let 8 = {p, q}, where

Lo () + ¢ (20)1/2 5
1, B>y,

< ;
Fp) = { P

Here, the X-g-topology is indiscrete, whereas the y-g-topology is
discrete.

The preceding theorem shows that the results of Theorem 4.1 are
“best-possible” in the sense that, for all possible PM-spaces, the as-
sociated @-g-topology is the finest g-topology coarser than the given
X-g-topology.

Theorem 4.1 elucidates the transition from X-g-topologies to.p-g-
topologies. In the other direction, we have

TasoreM 4.3. Let (8, F) be a PM-space and ¢ a profile function.
Let X = {(=,9): y > 1—gq(x)}. Then the X-g-topology and the @-g-topology
are equivalent.

Proof. This follows at once from Theorem 4.1, (ii). For X is a deter-
mining set, with associated profile funetion @, which does not contain
the graph of its boundary function, 1—g.

This relationship between X-g- and ¢-g-topologies is not one-to-one,
in that more than one -X-¢-topology can give rise to the same g-g-topology
or, more accurately, more than one X can give rise to the same @, whereas
a given @-g-topology determines an X-g-topology uniquely. It seems
that this disadvantage is overridden, however, by the advantages of
being able to deal with a convenient analytic tool, in the person of
a profile function, rather than with arbitrary subsets of the positive
quadrant.
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Consistency statements in formal theories*
by .
R. G. Jeroslow (Minneapolis, Minn.)

In this paper, we establish several results regarding the behavior
of consistency statements in formal theories in the language of arithmetic;
extensions to other “larger” langnages are usually straightforward. The
paper continues work begun by S. Feferman in [1], employing as its
chief device self-referential statements or processes, as in [1], [4], [5], [6].

In particular, we will find that a very weak theory may be able
to prove its own (RE) consistency (see Theorem 1.5); that any reflexive
theory containing Peano arithmetic arises from adding to some theory
the (RE) statement of its own consistency (see Theorem 1.4); that the
addition of a consistency statement to a theory can substantially alter
the Lindenbaum algebras of the theory, and in fact render impossible
homomorphisms of these algebras which commute with a finite (and
specified) number of gquantifiers (see Theorem 4.1). We also explore the
degrees of relative interpretability between that of a theory and the
theory plus its consistency (Theorems 3.1, 3.2).

We assume that the reader is familiar with the paper of Feferman [1];
when we do not specify a convention that we use, it is to be found in that
reference, which we shall call “Feferman’s paper”.

1. Let a theory £ be given possessing 4 as an axiomatization (i.e.,
A is a set of Gddel numbers of formnlas which axiomatize A); let a(w)
be a formula in the language of arithmetic which designates 4 in the
following sense:

a(m) if and only if med.

Then the construction of Feferman ([1], Def. 4.1) assigns to this
designator a(w) the formula Prf,(y,x) in the two, free variables x,7,
and this formula intuitively “says” that x is a (Godel number of a) proof

* Theorems 1.4, 1.5, 2.1, 2.2 (with Lemma 2.1) and 4.1 are results from the
author'’s doctoral dissertation at Cormell (September 1969), which was written nnder
the guidance of Professor Anil Nerode and was supported by a National Science Foun-
dation Fellowship. All other resultw obtained at the University of Minnesota.
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