Approximating continua from within
C. A. Eberhart and J. B. Fugate (Lexington, Ky.)

Introduction. It is known that the product of continua with the
fixed point property (fpp) need not have fpp and also that the cone over
a continuum with fpp need not have fpp [10]. However for certain kinds
of continua, the fixed point property is preserved under products and
cones. In this paper we introduce the notion of approximation from within
and use it to exhibit a large class of continua with the above property.
This class is shown to contain among others all smooth metric dendroids
and all fans. In addition we exhibit a class of tree chainable continua
with fpp.

1. Approximation from within. Let X be a continuum (= compact,
connected Hausdorff space) and let W be an open set in X x X = X
containing the diagonal of X*, AX® = {(x,x)| # ¢ X}. A subcontinuum ¥
of X is called a AU-subcontinuum of X provided there is a continuous
funetion f from X onto Y such that (e, f(#)) ¢ W for all v X. Now
let P be a topological property and suppose that for each open set U
in X* containing A4 X* there is a Us-subcontinuum ¥ of X with property P.
Then we shall say that X can be approzimated from within by subcontinua
with property P, or more briefly we shall say that X is approwimaiely P.
Clearly the property of being approximately P is a topological property.

If X is also metric then it is easy to see that X is approximately P if
and only if for each positive number & there is a continuous function f
from X into X such that f(X) has property P and f moves no point of X
more than e. ‘

. . . .1
As an example of what we have in mind, consider the ‘sin Ecurve’:

X= {(w,sini—){ o<w<1}u{(o,y)1 —1<y<1}.

Tt can be seen that for each positive integer n, there is a retraction of X
onto a subare of X which moves no point of X more than 1f/n. Conse-
quently X is an approximate arc; that is X is approximately an are.

U
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One readily sees that if a continuum has property P then it is ap-
proximately P. The converse however depends on the property P. For

example the sin %eurve shows that the converse is false for the properties

of being an arc, being an absolute retract (AR) or being locally connected.
Other examples show that many topological properties do not coincide
with their approximations. We mention only that there is an indecom-
posable continuum which is approximately an arc.

Ve shall see that several properties do agree with their approximations.

1.1. THEOREM. Let X be a continuwum which can be approzimated from
within by continua with fpp. Then X has fpp.

Proof. Suppose f: X —+X is a continnous function such that f(z) % o
for all z e X. Choose a finite cover of X by open sets Uy, Us, ..., Un 80

kg 9 .
that f(T:) » Ug= O for all . Let W= {JU; and note that U is open
i=1
in X* containing 4X2 Let ¥ be a A-subcontinuum of X with fpp and
leb g: X 0y be a continuous function such that (w, g(z)) € U for all
2 ¢X, Now consider the continuous function g o (f|¥), where f|Y de-
notes the restriction of f to Y. Since ¥ has fpp, there is a point z ¢ ¥
so that g(f(z,)) = ,. Hence (f (@) 5 ) = (f(x‘,), g(f(xo))) €W, and from
the symmetry of U we get that (wu, f (wo)) ¢ U? for some 4. This contradicts
the choice of the Uy's, so X has fpp.
The above result can be applied to many continua to show thab

they have fpp. For example, the sin%veurve has fpp by 1.1. As another

example consider the ‘sin%disk’:
x={@,n 0<e<1, -2 <y <singf o (0,9)] —2<y <1}

Ags with the sin%curve there are retractions of X onto subdisks of X

which are close to the identity map on X. So X is an approximate disk
and hence by 1.1 has fpp. More generally, we have:

1.2. COROLLARY. Hach continuwm which can be appromimated from
within by AR’s has fpp.

Proof. This follows immediately from 1.1 since AR’s have fpp.

We use the term 1-dendroid to denote a continuum (not necessarily
metrie) which is hereditarily unicoherent and hereditarily decomposable.
A dendroid is an arcwise connected 1-dendroid and a #ree is a locally con-
nected dendroid. Many 2-dendroids are known to have fpp. Thus in [1],
Borsuk generalized the well-known fact that metric trees have fpp to
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mesric dendroids. In [12], Ward removed the metric condition on Borsuk’s
result and showed that dendroids have even the strong fpp (a continuum
X hag the strong fpp provided each continuous function f from X into
the space of closed subsets of X with the finite topology, there is a point
x ¢ X such that o ¢ f(x)). Some fixed point theorems for A-dendroids have
beep. obtained by Ward [14] and Charatonik [2], however, the question
of whether every A-dendroid has fpp remains open even in the metric case.

The next corollary follows immediately from 1.1 and Ward’s
results [12].

1.3. COROLLARY. Fach 1-dendroid which can be approzimated from
within by dendroids has fpp.

We remark that 1.1 can also be used to show that certain A- dendroids
which are not approximate dendroids have fpp. For example, the 1-den-
droid constructed by Charatonik in [3] as an example of a 1-dendroid
which admits no nontrivial monotone mapping into a dendroid can be
shown to have fpp using 1.1 and the fact that a wedge of two continna
with fpp has fpp. (A continuum X is called a wedge of two subcontinua
X, and X, if X = X, v X, and X; ~ X, is a point.)

A chainable (tree-chainable) continuum is a continnum for which
any open cover has a finite open refinement whose nerve is an arc (tree).
Metric chainable continua are known to have fpp, but it is unkmnown
for tree-chainable continua. Recently Cook [5] has shown that metric
J-dendroids ave tree-chainable.

1.4. TEEOREM. Let X be an approxzimately tree-chainable contimuuwm.
Then X 14s tree-chainable.

Proof. Let W be an open cover of X and let U; and U, be open
covers of X such that O, is star refinement of VU, and U, is a star-refine-
ment of W; that is, for each V ey, the star of ¥, [ {V'| V' eV and "
¥ ATV’ @} is contained in some member of W. We can do this since
X is fully normal. Let W= {J {V?| V «“V,} and note that U is an open
set in X® and contains AX% Let ¥ be a tree-chainable Ub-subcontinuum

of X and let g: X 2 ¥ be a continnous function such that (z, g(a)) ¢ W
for each © e X. Let U’ be the open cover of ¥ obtained by intersecting
the elements of U, with ¥, and consider the open eover V" of X whose
members are of the form g—Y(V) for ¥ e V", To see that U refines W,
first fix y ¢ ¥. Now for each @ <g~Y(y), we have (@, y) e so ¢ and ¥
Doth lie in some member of <U,. But this implies that g y) v {y} 8
contained in some member of ;. Consequently for each V e v, g V)V
= U {g~y) v {y}| ¥ eV}is contained in some member of W, and hence U”’
refines W. Now since Y is tree chainable there is a finite open cover
0= {0, ..., Oy} of ¥ which refines V" and whose nerve is a tree. Let O’

be the finite open cover of X whose elements are of the form 0;= _1]'1(0¢?a
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for i=1,...,n Then the nerve of O’ is also a tree and O’ refines .
We conclude that X is tree-chainable.

From 1.4 and Cook’s result we immediately obtain

1.5. CoROLLARY. Hach continuum which cen be approwimated from
within by metric A-dendroids is tree-chainable.

The fact that dendroids have fpp ogether with 1.4 combine to tell
us that many tree-chainable continua have fpp.

1.6. COROLLARY. Bach approzimaie meiric dendroid is a tree-chainable
continuwm with £pp.

As mentioned previously, Ward has shown that dendroids have
the strong fpp. In 1.8 below we extend this result to approximate dendroids.

1.7. TaEOREM. Let X be a continuwum with the appromimate strong fpp.
Then X has the strong fpp.

Proof. Suppose, to the contrary, that there is & continuous function
F: XK (X), the space of closed subsets of X under the finite topology,
such that for each zeX, 2 ¢F(s). Fix s¢X. Since {#} and F(x) are
disjoint closed sets there are open sets S and T’ such that x ¢ 8, F(2)C T
and §~n T =0.

Let {T}’ denote the collection of all closed subsets of X contained
in T. Then {T} is an open subset of K (X) and F(2) ¢ {T}". Hence there
ig a set V open in X such that # ¢V and F[V]C {T}. Let Us=8nV,
and note that x e Uzy. Also if y e Uz, then F(y) e {T}; that is, F(y) n U,
— @. Therefore for each 2 € X, there is an open set Uy such that Uy ~ {F(y):
9 ¢ U} = @. By the compactness of X, we can find a finite subset N
of X such that {Uz}zen covers X. Let W= [ UZ. Then AL is open in X*

and contains AX%. Let g: XX be a cgﬁﬁnuous function such that
(z, g(®)) € W for each zeX and g(X) has the strong fpp. It follows
from [11], p. 165 that the function H: g(X)-K (g(X)) defined by H ()
= g(F(m)) is continuous. Hence there is an x, € g(X) such that z, ¢ H(x,),
and thus g(y) =g, for some yeF(a). But (y, %)= (v, 9(%)) ¢ Uy 50
that (y,g() e U; for some xeXN. This contradicts the fact that
Uz JF(2): ze U= 0. We conclude that X has the strong fpp.

1.8. COROLLARY. Bach approwimate dendroid has the strong fpp.

The last three results in this section give additional information
a,bout-when a property P coincides with its approximation. In particular
1.9 will prove useful in the next section. :

. 19 THEOREM. Let P be a topological property, then appromimately P
coincides with its approvimation.

) .Proof. Lef; X be a continunm which can be approximated from
within by continua which are approximately P.

icm
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Let W be an open set containing AX>. It follows from [9], p. 197
that there is an open set U2 AX* so that U . UC U, Wher’e CUOCL;
= {(w,y) ¢ X*| for some zeX, (z,2) and (2,%) €U} Now let ¥ be
a U -gubeontinuum of X which is approximately P and lef f be a continu-
ous function from X onto Y so that (v, f(z)) eV for each x e X. Now
AY:C U ~ X% which is open in ¥ hence there is a U ~ ¥*-subcon-
ginuum Z of ¥ with property. P. Let g be a continuous funetion from ¥
onto Z so that (y, g(y)) € U ~ I* for each y e ¥. Then the function fg is
a continuous function from X onto Z. For each = ¢ X (2, f(z)) ¢ U and
(fle), gf(@) eV~ TPCU 50 (o, gf(#) € VoV C U Consequently Z is
2 Ab-subcontinuum of X with property P, and the theorem is proved.

1.10 TurorEM. Let X be a continuum which is approximately P.
Then X can be embedded in a product of continua each of which has pro'-
perty P.

Proof. Let 4 denote a collection of continua with property P such
that for each open U in X® containing 4X* some member of £ is a Us-sub-
continuum of X. Then X can be embedded in the product of the col-
lection 4 by the embedding lemma in [9], p. 116.

A property P is called (finitely) productive if whenever {Xulsea is
a (finite) collection of spaces having property P, then I]1 X, has property P.
P is called hereditary provided it is inherited by snbspaces.

1.11. CorOLLARY. If P is a productive and hereditary property, then P
and approzimately P coincide.

2. Products and cones. Throughout this section P will denote an.
arbitrary topological property. First we ‘establish a condition for ap-
proximately P to be preserved under products.

Let {X,}ees be a collection of continua and let X denote the product
continunm ]Z X,. Define h: X2—>H/1 X by

aE€ ne

(h(m, y))a = (Tay Yo) »

where (h(w, y))u ig thée ath coordinate of h(z,y) and &, Y. are the ath
coordinates of # and y respectively.
9.1. Lemma. The function b is a homeomorphism of X onto ];L Xa

taking AX* onto [| AXs. Further, if VW is an open set in X containing AX%,
acd

then there is a finite set F C A and open seis U, in X% containing AX; for

each acF such that b [] Uax [] X C .
ael aeA\F )
Proof. The proof of the first assertion is straightforward. To see

the second assertion, let () = W. Then W is open inafl X and con-
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1 4X%. Let B be the collection of all sets of the form

aed
[1v.x [] =,

ael aeA\F

tains

where F is a finite subset of 4, U. is open in X and cont.ains AXZ, a.nd

U, is the closure in X2of U,. Now it is easily shown that 5B 1s2 a descending

family of closed subsets of ]—_L X2 such that &= I; !1 AXZEC W. Conse-
a€ a

quently, from the compactness of [ X2 we can find a member B of &
aed

— o -y =1 2 -1
Iying in W, say B= [] Uux [[ Xo. Thush {I] U.x “L]\an)c;b (W)

aeF agA\F aeF
= ql, and the lemma i8 proved.
9.9, TEEOREM. If {Xalaea is @ collection of continua such ﬂ?at for each
finite set FC A, [; X, is approzimately P, then X =.{Ie_ !1 X, is approxi-
a€

mately P.

Proof. Let U be an open sef econtaining AX'Z By 2.1, there ii a finite
set FC A and for each a e F an open set U.in X? containing AX; so that

i [T vax [] xEjcw.
aeF ceA\F

Fix a point #° in X and define
X ={weX| go=as for ceA\F}.
Define f: XX by
% it ael,
Fol=12 # aear.

Then f is clearly a continuous retraction from X onto XT. Also

if zeX, then
2y Fe if el,
(e, f(@)), = (7o, (F@)],) = {(“ ) ;

(%, w0) i ac A\F,
and 8o hiz,f(®) e [] Uax I—[\FXf,. Thus (2, f(#)) e W for each & e X and
ael a4 .

so X7 is a U-subcontinnum of X which is approximately P. By 1.9,
it follows that X is approximately P.

The next corollary is immediate.

2.3. COROLIARY. If P or approzimately P is finitely productive, then
approximately P is productive.

2.4. COROLIARY. The product of a collection of appromimate AR’s is
an approximate AR and hence has fpp.
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Proof. Follows from 1.2, 2.2, 2.3, and the fact that .
- : ‘hat th
of AR’S is an AR. T e product

In [7], J. B. Fugate has announced the following result, which will
appear in print later: let X be a smooth metric dendroid [4] or a fan [41.
Then for each & > 0 there is a retraction f: X —+X such that d (&, o) < e
tor all #e X and f(X) is a dendrite. It follows immediately from this
result that X can be approximated from within by AR’s; that is each
smooth metric dendroid and each fan is an approximate AR, Hence
using 1.9, we conclude: ’

2.5. COROLLARY. Let {Xuleea be a collection of approximate smooth
metric dendrotds and approximate fans. Then X = [] X, has fpp.
aed

If X is a continuum, then the cone over X, (X}, is defined to be
the quotient space Ix X[{0}x X.

2.6. THEOREM. Let X be a continuum which can be approximated from
within by subcontinua whose cones are approzimately P. Then C(X) is
approzimately P.

Proof. Let U be an open set in O(X)* containing AG(X)® Let
U = (4% 7)"(W) where n: Ix X0 (X) is the natural map. Then V is
an open set in (I x X)® containing A (I x X)% Define h: (Ix X)?-I*x X?
bY b{(t1, 21), (fas %)) = (91, 1), (1, @3)). Then by 2.1 h is & homeomorphism
taking A(Ix X)* onto AI*x AX% So h(V) is an open set I*X X* con-
taining AI* x 4X* and hence we can pick an open at W in X* containing
AX? such that A% x W C A(VU) and hence

1) WTHAR X W) CU.

Now let ¥ be a AW-subecontinuum of X such that C(X) is

approximately P and let g: X e Y De a continuous function such that
(@, g(@) € W for » e X. Consider the following diagram:

ox) = 01 2 0(X)

IXX ——IxY—IxX
] i
idrxg inclusion

Tt follows from the induced function theorem [6], p. 126, that the
continuous functions &* and ¢* making the squares commute exists uni-
quely. Further ¢* is 1-1. Let Z = ¢*(C(¥)). Then Z is approximately P
since ¢(¥) is. All that remains to be shown is that Z is & Us-subcontinnum
of 0(X). Let g* = ¢*k*, and let z ¢ C(X). We wish to show that (e, g*()}
<. Let (f,9)eyXx). Then g*(a)=rnik(l,y)= 7l g(y). Hence to
show that (s, g*(®)) e« W it suffices to show that ((t,y), (t,g(y)))e‘u.
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But A((t, ), (£ g@)) = (¢ s (v, g())) € AT* x W and this together with (1)
yields the desired vesult. The theorem now follows from 1.9.

Tf P is such that whenever a continuum X has P then C(X) has
property P, then we shall call P a cone-invariant Property.

2.7. CoroLLARY. If P is a cone invariant property, then so is ap-
proximately P.

Proof. Let X be a continuum which is approximately P. Let U be
an open set in C(X)* containing AC(X)®. By repeating essentially the
same construction as in 2.6, we can construct a U-subeontinuum of ¢(X)
which is homeomorphic with a cone C(Y) where ¥ is a W-subcontinuum
(W chosen appropriately) of X with property P.

We have not seen the following theorem in the literature although
it is probably well-known.

2.8. THEOREM. The cone over an AR is an AR.

Proof. Let X be an AR. We can assume X lies in a Tychonoff cube
T* for an appropriate indexing set A. Consider the product space I x I*
and the set K C Ix I* defined by

K= {(t,t) tel,zeX}.
Now it is easily shown that the continmous funetion f: Ix X—I xI*
defined Dby f(¢, ) = (¢, t) induces a homeomorphism from C(X) onto
flIx X)= K. To show that C(X) is an AR, we need only show that K is
retract of I xI* For each n=1,2, ..., let
K.;=Kf\[——1—,£]x1", Xp= anl}xl‘ii.
n+1'n \n
Note that K, and X, are AR’s, since K, is homeomorphic with Ix X

and X, is homeomorphic with X. Let #,: {%}XIA—‘,X,L be a retraction
and let %,: [ l ({71_?,} b IA) = Ty

1
n+1'n
1 .
({n —Ll} » I") = fp+1. NOow the function %: Ix I*= K defined by

]x I* — K, be a refraction such that %y

and kn

R 1 1
Fealt f —— L=
aft, y) 1 eSS
(0,0) if t=0
is a retraction, as is easily checked. This concludes the proof of the
-‘theorem.
From 2.7 and 2.8, we immediately obtain

k(t,y) =

2.9. ComroLLARY. The cone over an approzimate AR is an approvimate
AR and hence has fpp. In particular, then, the cone over an appromimate
smooth wmeiric dendroid or an approwimate fan has fpp.
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Let D be a class of continua. Let prod D denote the class of all con-
tinna ¥ such that ¥ is homeomorphic with 1 X. for some collection
ae.1 .

{Xolnea of members of D, and let cone D denote the class of continua ¥
such that ¥ e D or Y is homeomorphic with ¢ (X) for some X ¢9D. In-
ductively, let us define prod"D = prod(prod™ D) and cone™D — cone
(cone”'D). Note that prod™D =prodD. Now let (D denote the class
of continua ¥ such that for some sequence of positive inbegers 4y, iy, ..., iny

Y e cone 'prodcone ... cone 2prod D. We shall call {D> the class
of continua generated by D using products and cones.

2.10. COROLLARY. Let @ denote the class of appromimaie AR’s. Then
@ =a.
Proof. Follows from 2.4 and 2.9.

2.11. CorOXLARY. Let 8§ and ¥ denote the class of approximate smooth
metric dendroids and approwimate fans respectively. Then each member of
(8§ v F) has fpp.

Proof. Follows from 1.2, 2.4, and 2.9.
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