Invariant metric properties of maps
by
Benjamin Halpern (Bloomington, Ind.)

Let (X,d) be a precompact connected metric space with at least
two distinet points and f: X —-X a continnous 1-1 onto map. A generalized
diameter on n-tuples is a continuous positive valued function m from
the set of n-tuples (iry, ..., Zn), i € § with 4 = x5 if 4 =% j, such that for
each ¢ > 0 there exists a { > 0 that (,, ..., 2») < { implies diam (zy, ..., x5)
= maxd(xi, 2j) <&, and diam(@y, ..., #s) < I implies m(xy, ..., 2n) < &
Examples of generalized diameters are m(w, ..., 2x) = diam (zy, ..., o),

n—1
M Lyy ooy Tn) = izj.'d(mi, Zj)y M(Lyy eeey Tn) =i2;d(m¢, rir1), and m(xy, ..., an)
= infmaxd(p, ri).
peX i

A generalized diameter is weakly symmetric if m(zy, ., ..., Zn)
= M@y Tn1y -vy Xz, Ty) Tor Al (&4, ..o, 2n) With 25 € X and @ o5 25 i § 7§
We prove that there always exists invariant n-tuples for a weakly sym-
metric generalized diameter m, that is m(f(xy), ..., f(2n)) = M (@1, ..., 2a)
for some (&, ..., &n) With ;e X and @ £ ;7 if ¢ £ j. If X is also locally
connected then there are a continmum (in cardinality) of invariant
n-tuples. If in addition, the local connectivity satisties a certain uniformity
condition (which always holds for locally connected compact metric
spaces) then there is a continuum (in cardinality) of invariant »-tuples
with arbitrarily small diameters.

Section 1. Definitions and examples. Let (X, d) be a metric space. We
will denote by X" the cartesian product of X with itself n times, X" = X x
X X X ... X X n times. Set GD,(X) (@D, if X is understood) = {(zy, ..., Tx)
e X" x; = x; for some i # j}. Let S, represent the group of permutation
of the set {1,2,..,7n}. Set o(@y, ..., Zn) = (Tr1yy vy Toim) for amy
o €8y and (@y, ..., &x) € X If f is a function from X into X and (@4, ..., Tn}
€ X" then set f(@y, ..., @) = (flx1), .., f(@n)). R will denote the real
numbers and R* = { ¢ R| 't > 0}.

(1.1) DeFmviTIoN. We will say that a generalized diameter m is.
symmetric provided mZ = mo% for all Ze X"—GD, and all o e8s. We
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will say m is weakly symmetric provided m(2y, @s, .., Tp—1y Tn) = M(Zn,
F1y eory gy g) FOr all (@, ..., 2n) € X"—GDn.

Now suppose f: X=X and m is a generalized diameter on n-tuples.

(1.2) DEFINITION. An invariant n-tuple for f and m is an n-tuple
% e X"— GD, satisfying m% = mfz.

We recall that a metric space (X, d) is called precompact provided
any one (and thus all) of the following equivalent conditions holds.

(a) The completion of (X, d) is compact.

(b) (X, d) can be isometrically embedded in a compact metric space.

(¢) Every infinite sequence in X has a Cauchy subsequence.

We will say that X is nontriviel provided X has at least two distinet
elements. We also will need some notation from [2] and will refer to
definition from [2] by their numbers.

We say that two point z, y of a topological space ¥ can be separated
in ¥ (notation 2Syy) if there exist disjoint open sets U and V such that
z2eU, yeV and UuV =Y. We write 2S8ry provided xSyy does
not hold.

(1.3) EXAMPLES OF GENERALIZED DIAMETERS.

(8) Xy eery Bn) = diam (1, ..., Tn).

n—1
(0) M@y, ooy ) = 3, (&1, Bis1)+d(@n, ) (the perimeter of the
=1
polygon with vertices @y, ..., &a).

(€) M(Ly; ey w) = X d{as, 7).
77
n—-1
(d) Mm@y, orny Ta) = > (A(2s, B141))" Where p > 0.
&
(&) m(@y, sy By, ) = (A (71, "Tz))s 4 3d (@, 7) + e¥@ T —1,

() Mm@y, .oy ) = inf max d(p, z) (roughly, the radius of the

peX 1<i<n
smallest disk containing the points @y, ..., Zn).

(g) It X= R* and d(z ,y) [z—yll then we can set MLy, ey Tn)
= max |p—i;] where p == Zr,

1<isn

Section 2. There exists invariant #-tuples.

(2.1) THeorEM. Suppose (X,d) is a nontrivial connected precompact
metric space and f: X —~X is a 1-1 onto continuous map from X onto X.
If m is a weakly symmetric generalized diameter on n-tuples then there
ewists an invariant n-tuple for f and m. In fact, if X is also locally connected

icm
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and I is the set of invariant n-tuples for f and m then cardinality of I = cardi-
nality of X = cardinality of the continuum.

The proof will be hased on the following propositions and lemmas
which are of some interest in themselves. Proposition 2.2 is a generali-
zation of a theorem of Freudenthal and Hurewicz [1].

2.2) ProposITION. Let (X, d) be a precompact meiric space and m
a generalized diameter on n-tuples. If f: X—X is a 1-1 function then
mE < mfx for all e X"— @D, implies m% = mfE for all e X"—GD,.

Proof. Assume f is 1-1 and m7 < mfy for all § e X"— GD,. Suppose

= (Zyy oey ) € X*— GDp and mZ < mf‘ Next consider "the sequence
{f T}r-0,1, ...- YWe wish to extract from { i 0a,... 2 Sibsequence {%}i—q,1,..
with the following two properties.

1) For each j, 1 <j < n, either

(a) i =1 implies f*(x;)  f™(ay) or
(b)Y f(a;) = f*Yay) for all i and I

2) {f*@;)}ico,.. i5 & Cauchy sequence for each j=1,2,..,n.

First we will produce a subsequence satisfying 1) and condition 3)
(below).

3) kit1— ki = a constant independent of i.

We do this by induction on the number of j’s for which 1) holds.
Clearly k; = i satisfies 3) and 1) for j < 0. Now assume the inductive
hypothesis that we have a sequence %; which satisfies 3) and 1) for j < N
Tf 1) (a) holds for j = N 41 the sequence k; already satisfies 3) and )
for j < N-+1. So assume the contrary, May;1) = f{zy4) for some i< L.
Set kp = %+ p (ki— k). Then it is easily verified that kj satisfies 3) and 1)
for j < N1 (3) is needed so that %, is a subsequence of k). Thus b}
a finite induction, we obtain a subsequence (f"‘(f))i:u,l,... satisfying 1).

Now that we have a subsequence satisfying 1) we simply envoke the
hypothesis that X is precompact to extract a subsequence which satisfies
both 1) and 2).

Set & = mfZ—m%. Because m is continuous at Z, there is 6 > 0 such
that d(y:, @) <6 for i=1,..,n implies |[M(Y1, .-, Yn)—M(T1; o) La)]
< &/2. Next, from Definition 1 1 we can find a ">0 such that z ¢ X"——GD,,
and mZ < 6’ implies diamZz < 6. Finally, using Definition 1.3 again find

2 8" >0 such that 3 e X"— GD, and diamz < 6’* implies mz < §'-

Sinee {f%(@)}ico,,.. i5 2 Gauchy sequence for each j=1,..,n we
can find a g such that diam¥y < 4§ forj=1,..,7n where y = ( f"‘“ ;)
Foay), o e 7). Let Jia{Jw) be the seb of j's for which condition
1a (1b) above holds. For jedJy, we have my’ < 4'. Since

7= where & = (u, f R ay), TR ), o, T ay)
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we can conclude that

(1) mzl <6 for Jedu.
Hence
(2) diam # <6 for jedin-

Now for j eJmp Wwe have diamyp? = 0 and since fis 1-1 it follows that
diams = 0 for j eJyp. Thus diam# <8 for all j =1, ..., n. Consequently
dloy, frer o (@) <& for j=1, .0 Hence |m&E— mf ™ HHg] < ¢f2,
But on the other hand mfF—mi =& and mf""'%: fmfka = mf*z for
all £ and so mf"”“”""“ﬁ > mE-++e. We have thus reach @ contradiction.
Therefore no such # exists and consequently my = mfg for all 7 ¢ X"—GDy
as we wished to prove. QE.D.

(2.3) CoroLLARY. Let (X, d) be a precompact connected metric space
and m a generalized diwmeter on n-tuplets. If f: X =X is 1-1 and continu-
ous, TeX"—@Dy=Z and Mm% < mfZ then there is @ Fe Z such that
my > mfy and for some N, § cannot be separated from % in Z.

Proof. Assume all the hypotheses and that my < mfg for all yeZ
such that for some N (depending on 7), ¥ cannob be separated from fak
in Z. We may now proceed exactly as in Proposition 2.2 up to but not
including the line marked (1). We will bypass (1) and establish (2) by
_another method. Tn order to obtain (2) under our present hypothesis
we observe that by Lemmsa 3.9 of [2] there exists a oy eS8, such that
0;#85% for each j edy,. Now since f is continuons we have

(3) fo;@ 8y f'F  for all 7>0.
Tt follows then by induction that for 7 = kgis
mogg’ = mofF = mffosE > mf o7 maojE .

But dismoy! = diam7/ < 6 and so mo;77 < ¢'. Thus mo;E < 6’ which
implies diam?’ = diamo;z/ < 6 for jedsw. Thus we have established
line (2) and we can again proceed exactly as in the proof of Proposition
2.2. QED.

Remark. The continuity of f was used only to establish (3). Thus
according to Proposition 2.9 below, we could replace continuity of f by
assuming I~ exists and is 1-1, onto and continuous.

A straight forward connectedness argument gives

{2.4) LevmA. Suppose X is a locally connected Hausdorff space and
F is a finite subset of X. If ¢,y «0=X—F and & cannot be separated
from y in O then there is a closed subset O of X contained in O, C C 0, such
that x,y e G and » cannot be separated from y in O.
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(2.5) NOTATION. Given %= (@y,...,2) ¢ Y and pe ¥ set

i} V@=afori=1,..,mn
2) lfl = {il‘l, ey -Tn},
3) pa® = (@1y vy Tiv1, Py Tig1y ooy Tn),
1) B = (@1 veey Tim1y Biziy ooy Tn),
5) W(i5 Z) = {83 X @} 20 e w0 {in} X T K i} 0 e 20 @0} A

A (X" GDL( X)) .

(2.6) LeMMA. Suppose Y is a locally connected Hausdorff space n> 2
and g2 X"— GDn(Y)—R is continuous. If g(T) < 0 and g(7) > 0 for some
7,7 ¢ Y'—GDy(¥) = Z such that TTF (see proof for definition of T) then
cardinality {Z e Z| g(2)= 0} > cardinality O where O is some nonemply
open subset of Y.

Proof. The relation T7 means that for some j, =77 and
E8ryny. Suppose T = (L1, ..., %) and 7= (¥, ..., ¥n). Clearly the re-
lation Z8wym¥ is equivalent to ;8%_zy;. Since n > 2 we can find a k
such that 1 <% < n and % 5= j. By Lemma 2.4 pick a closed set ¢ such
that j,y;€ 0 C ¥Y—['Z| and #;80y;. Using the continuity of g pick
a neighborhood U of @x = yp such that pe U implies g{,z%) < 0 and
9(p¥) > 0. We now claim that O = U ~ (¥— () satisfies the requirements
of the lemma. Clearly O is nonempty (#x e O) and open. Next, we will
assign to each p e O a distinet 2= Z(p) ¢ Z such that g{z(p)) = 0. Let
p € 0. By the construction of 0 we clearly have @78%_s,,my; and conse-
quently ;1% Siry, padp.c¥- Since g is continuous there must exist a = z(p)
¢ W{j, pi%) such that g(z(p)) = 0. It follows directly from the definitions
that if p # g then W (], piT) N W(j, ¢,4%) = O. Hence p,ge 0 and p # ¢
implies Z(p) # £(g). Therefore cardinality {Z ¢ Z| g(2) = 0} > cardinality O
as we wished to prove. Q.E.D.

(2.7) ProrostioN. Suppose Y is a locally connected Hausdorff space
and g: Y"— GDy(X) >R is continuous. If g(Z) <O and g(7) <0 for some
%, 7 e ¥"—GDu(Y) = Z such that TSzy then cardinality {ZeZ| g(z) = 0}
= cardinality O where O is some non-emply open subset of Y.

Proof. By Theorem 18.2 of [2] there is a sequence Z=72" @, ...
w.,Zn=7 such that FTEH* for (=0, .., m—1. Since g(z*)<0 and
g(@™) > 0 it is easy to see that there must be infegers 4, < jo such thas
g(EFe) < 0, g(@*) =0 for iy<k<j, and g(z)>0. We elaim that if
Go— 1o > 1 then either the eonclusion of the lemma holds or we can reduce
the length of the sequence %%, ..., Z%, that is we can find a sequence
2 %, ..., 3 such that ¥ e Z, 2Tz for i = 0, ..., I—1, (&) < 0, g(79)= 0
for k=0,..,1—1, gE) >0 and 1<l=1—0<jo—7%- Agsoming this
claim for a moment we see that an induction argument leads to either
the desived conclusion or a pair @,7%eZ such that @5, g(#) <0 and

13*
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g(%) > 0. But in the latter case the desired conclusion follows from
Lemma 2.6. Hence it is sufficient to establish the claim.

Assume jo—i, > 1. Since #F'T'Zi*! there is an integer %; such that

gt — Rl and B S, HET If ko= Kip then it follows easily that
FT#+2 and so we could drop ! making the sought after reduction.
So we may now assume ki 7 kit for 4, <4 < jo. Let a be the first inte-
ger § greater than ¢, such that ks = ks, and B < jo if such an integer exists
and otherwise set a = jo. Let ¥ be a neighborhood of 2}&:1 such that for

each p eV
T Tyt
and
p’k‘niiTp,kio—Z_i'*l for 4= 7:0+1, weny a—1
and
p,kiuéaTE“'H. -

Such a neighborhood V exists due to Lemma 2.4 and the local
connectedness of ¥ ab i, = Z, = Zn, - (The last equality comes from
the fact the k;th spot is not altered after the transition zi—szh+1 until
the transition z°—ze+! due to the choice of o). Now either

(2) JlpmZ) =0 forallpeV
or

(b) 9lpi,ZoT) >0 for some p eV
or

{c) glpamFot?) < 0 for some p <V .

Since p,x 7t 5 g1 20+ for p = g we clearly have the desired conclusion
in case (a). In either case (b) or (¢) we have the desired reduction. There-
fore the claim and hence the lemma is established. Q.E.D.

Let X Dbe the space X considered in [2]. See article 12 of [2] for the
definition of w used below.

(2.8) Lemma. Suppose f: XX is a continuous 1-1 map. If X is
noncircular then either

0 2 <y if flo) <f(y) or

(i) =<y iff fly) <f(#).
If X is circular then either

(iil) = <y iff f(2) < fly) where s <"t iff either s <<t< f(u) or f(w)
Ls<tort<flu)<s, or

(iv) z<y iff fly) <" flw) where s<"t iff either s<t<flu) or
fy<s<tort<<flu)<s. i

Proof. Consider the case where X is non-circular first. We claim
that if f(2) < f(y) < f(2) then either z <y <2z or z < y < #. Suppose
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) < fy) < f(2). By considering §= {f(a), (), f(z)} and B, we see
that there are disjoint open sets U and V such that f(z)e U, f(z)eV
and TuV =ZX—{f(¥)} Then f(U) and f V) separate r from z in
X— {y} and so either # < y <z or z < y < z (see Lemma 9.5) of [2]. This
establishes our claim.

Next we will show that if neither 2 < ¥ nor y < # holds then neither
fl@) < fly) nor fly) <f(x) holds. Suppose that either f{a) < f(y) or
fly) < f(x) holds. Without loss of generality we may assume f(z) < f(y).
Then in order not to contradict the connectedness of X there must be
a ' such that f(z) < t' < f(y). And again by the connectedness of X and
continuity of f there must be a ¢ such that f(f) = ¢': then by the first
paragraph either # < i<y or y < i< . Thus if neither x <y nor y<
holds then mneither f(x) < f(y) nor f(y) < f(x) holds as we wished to
show

It follows th‘at either f(§7)C & or f(&7)C 8%, Similarly, either
f(6F)C & or f(67)CE&F. Thus f(8) = (8"« 87)Cf(8). Since f is 1-1
and §is finite we must have f(8) == & and consequently f(M) = f(X—8)
CX—-&= M.

Now pick ,y e M such that z<y. We have two cases, case 1:
flo) < fly) and case 2: f(y)<f(x). Consider case 1, f(@) < f(y). We
claim that if 2 < @ then f(z) < f(z). Since f(z), f(¥) ¢ M and f(=) is distinct
from f(z) and f(y) it follows that f(2) is comparable to f(x) and to f(y).
Hence if f(z) < f(z) fails then either (a) f(z) < f(2) <f(¥) or (b) f(z}
< f(y) < f(2) holds. In case (a) we would have either (i) # < 2 <y or (ii)
y < 2< x. But (i) gives # < # which is a contradiction and (ii) gives y < &
which is also impossible. Case (b) leads in the same way to contradictions.
Thus f(z) < f(z) as claimed. It can be shown in the same case by case
way that if # < 2 < y then f(2) < f(y) < fly) and if y < 2 then f(y) < f(2)
One consequence of this is that f(87)Cé&™ and f(&)C 8*. A second
consequence is that if z < ¢ then by considering {z, v, #, t} three at a time
in various ways one can conclude that f(2) < f(?). These two consequences
prove the lemma for case 1. Case 2 can be handled in a completely analo-
gous way. This establishes the lemma for the non-cireular case.

Now suppose X is ecircular. We can reduce this case to the non-
circular case by considering the map f|X— {uy X—{u}—X—{f(u)}
where « is the initial element in the order < (see Definition 12.1 of [2]).
The orders < and <’ have the same significance in terms ofJcut points
with respect to X— {u} and X— {f(«)} respectively as < does when X is
non-circular, Consequently, either w<y if f(2)<'f(y), or 2 <y iff
fl) <’ f(z) where =,y e« X— {u}. It is now easy to see that in the former
case (iii) holds and in the latter case (iv) holds. This proves the lemma.
Q.E.D.
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(2.9) ProposiTioN. Let ¥ be a connected Ti-space and f: ¥ =Y
o continuous 1-1 map. If §,5 e Y'— GDu(X) = Z then 2857 iff fE8zf7.

Proof. If Z is connected the conclusion is trivial. So assume Z is
not connected. Then the fundamental hypothesis in [2] are satisfied and
Lemma 2.8 above applies. Keeping in mind Lemmas 3.3, 9.5 and 12.7
and paragraph 3.5 all of [2] the conclusion of Proposition 2.9 is quite
apparent. The details are left to the reader. Q.E.D. )

(2.10) Notation. aCrb will mean that a and b are in the sam
component of Y.

(2.11) Lmmwa. Let X be the space considered im [2] and suppose
f: X=X 4s 1-1 and continuous. Assume further that T = (&1, ..., &a)
¢ X* — GDy(X) = Z such that @, < @, < .. <@ andz e M for i=1,...,n
if X is non-circular. Then if § e Z and §Szf"% for some m, — oo < m < oo,
then either §CzE or 150z% where T e8y 15 given by t(i) = n+1—1 for
i=1,..,MN

Proof. It follows easily from Lemmas 9.5, 12.7 and 3.3 and para-
graph 3.5 of [2] and Lemma 2.8 above that either 78z% or 77 8%%. Since Z
has only & finite number of components (see Lemmas 11.2 and 12.8 of [2])
it follows that either 7 Cz% or 7§ 0z% as we wished to show. Q.E.D.

The following lemma is proven in the same manner as Lemma 2.11.

(2.12) Levva. Under the hypothesis of Lemma 2.11 5f it s also assumed
that f= h® or f = (k™) for some continuous 1-1 (redundant) map h: X -X
then the final conclusion can read §0z%.

The following lemma is easily established.

(2.13) Lmmwma. If O is a non-empty open subset of a connected mon-
trivial (card ¥ > 2) precompact metric space’ Y then cardinality O = cardi-
nality of R.

(2.14) Proof of Theorem 2.1. First consider the case where
Z = X"—@Dy(X) is connected. If mfF = m% for all T eZ then clearly
the theorem follows from Lemma 2.13. So assumeé mf# = m% for some
% e Z. Hence mhi > m¥ for some h e {f, f'}. Pfoposi‘bion 2.2 now implies
that mh¥ < m7 for some ¥ ¢ Z. Thus we have mff < mzZ and mfy > my
for some %, ¥ such that {&, g} = {7, 7}. Set g(z) = mfz—mz for all Z¢ Z.
Since Z is connected g(z) = 0 for some ZeZ and this proves the first
assertion of the theorem (in this case). Now suppose X is locally connected.
Proposition 2.7 now yields

cardinality {Z ¢ Z| ¢g(Z) = 0} = cardinality O
where O is some non-empty open subset of X. The second assertion of
the theorem now follows from Lemma 2.13.

Next consider the case where Z is disconnected. The fundamental
Thypothesis of [2] now apply to our space X and consequently we assume
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that it is the space considered in [2]. If mfZ = mT for all T ¢ Z such that
< T < T and xse M for i =1,..,n [Set M = X if X is circular]
then clearly the theorem follows from Lemma 2.13. So assume mfd = miA
for some %e Z such that & <@y < ... < Ts and Fye M for i=1, .., n.
Hence mhu > mu for some ke {f, F. Now by Corollary 2.3 and the
remark that follows it we know that there is a 7 e Z such that mh? < m?
and for some X, 8. Next, it follows from Lemma 2.11 that either
78,7 or to8z% where 7 e 8y is given by (i} =a-rl—ifori=1,..,%
But since m is weakly symmetric we have mt¥ = m¥ and mhaT = mTho
— mh#. Thus by replacing » by 7v if necessary we can assume 58z 4.
Hence we have mff < mz and mfg >my for some %, 7€ Z such that
&, 7) = {w, 7). Note also thab 785%. The proof of this case can now be
completed exactly as in the first case. Hence, the theorem has been
established in all cases. Q.E.D.

(2.13) COROLLARY. Theorem 2.1 holds with the hypothesis “m is weakly
symmetric” replaced by “f = B for some continuous function l: X —>X".

Proof. Using Lemma 212 in place of Lemma 211 the proof of
Theorem 2.1 goes through in essentially the same way. Q.E.D.

The first case considered in 2.14 is actually & proof of the following
corollary.

(2.16) CoROLLARY. Theorem 9.1 holds with the hypothesis “m is weakly
symmetric” replaced by “Z = X"—QDn(X) is connected”.

Tn light of Corollary 2.16 it is of interest to know conditions under
which Z must be connected. The following two lemmas and two pro-
positions provide a large class of spaces such that Z is connected.

(2.17) Lmvma. If ¥'—GDa(Y) (n > 2), is connected and Y is a non-
wrivial connected subspace of a connected T, space X then X"— GDu(X) is
also connected.

Proof. Let &, 7 e X"— GDu(X) = Z. We will show that #Sz7. Since
Y is non-trivial and connected there exists & Ze Y—GDY)=Z'CZ.
From Z' C Z it follows that %, 7 e Z’ and 782D implies 7 875. Now using
the connectedness of Z’ and Lemma 3.9 of [2] we have Z8%0Z, gRz1E
for some o, 7 € Sp and oz 8z 7z Thus %857 as claimed. Since ¥ and 7 were
arbitrary elements of Z, Z must be connected. Q.E.D.

(2.18) Lmmwa. The space T = {(z,y) < R?| either y=0 and —1 <z
<1, or =0 and —1 <y <0} is such that T™—GDn(T) is connected
for all n = 2. )

Proof. We claim that T"—GDu(T) is pathwise connected. This
means that given two ordered n-tuples #, 7 of n distinet poi_n.ts of X we
can move the points of % = (g, «..; &n) around, never allowing ?wo.to
coincide, until they coincide with ¥, .., ¥n in that order. Considering
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the way three lines of 7' meet at (0,0) the above claim is intuitively
obvious. YWe leave the details of a analytic proof to the reader. Q.E.D.

Combining Lemmas 2.17 and 2.18 we have

(2.19) PROPOSITION. 4 cmmected T,-space X is such that X"— GDy(X)
is connected provided T can be embedded in X.

The converse to Proposition 2.19 holds if we restrict X to be either
a compact polyhedron or a compact manifold and require cardinality
X > n > 3. This is seen by noting that if X"— GDy(X) is connected then
X is connected, and if 7' could not be embedded in X then X is 1-di-
mensional. Furthermore in the case where X is a polyhedron (and hence
a graph) there cannot be any vertices of X which are faces (ends) of more
than two edges. Thus in both cases, manifold and polyhedronm, X is
homeomorphic to either the closed interval [0,1] or the circle {(z,y)
¢ RY #*-+9°=1}. But in both of these eventualities X" — GDy(X) is not
connected.

(2.20) ProrosITION. If X is a non-trivial connecied and locally
connected Hausdorff space and X*— @Dy(X) is connected then X"— GDy(X)
is connected for all n = 3.

Proof. Suppose X"— GD,(X) is not connected for some #n > 3. Then
by Lemmas 11.2, 12.8, and 14.2 of [2] we conclude that X*-— GD,(X)
has either 3! or (3—1)! components and is thus not connected a contra-
dietion. Thus X"— @D,(X) is connected for all » > 3. Q.E.D.

The following example shows that the hypothesis of weak symmetry
for m cannot just be dropped from Theorem 2.1.

(2.21) CoUNTER EXAMPLE. Set X =[—1,1] and let f: T >X be
given by f(#) = —& for all # e[—1,1]. Define m: X*— GDy(X)—-R" by:
for (x,y) e X*— GD,(X)

_ | le—yl H z<y,
m{ ’y)_{2lx—y| it z>y.

Then m(x, y) # m(f(z), f(y)) for all (z,y) ¢ X— GDy(X).

Section 3. There exist many small invariant n-tuples. In this section
we will extend Theorem 2.1 to conclude under additional hypothesis
on the space X that there are a continuum (in cardinality) of arbitrarily
small invariant #n-tuples. The additional hypothesis on X needed (to
prove the theorem) is contained in the following definition.

(3.1) DermvTION. Leb (X, d) be a metric, space. We say that (X, d)
is uniformly locally connected provided for each £ > 0 there exists a 6 > 0
such that for each p e X there is a connected set ¥V, such that

{ge X d(g,p) < 8} CV;C{ge X| dig, p) < s}.
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(3.2) THEOREAM. Suppose (X,d) is a non-rivial connected, uniformly
locally connecled, precompact metric space and f: X—X is 1-1, onto and
continuous and & is a positive number. If m is a weakly symmetric generalized
diameter on n-tuples (n > 2) then cardinality I° = cardinality X = cardi-

nality of the continuum where I* is the set of all invariant n-tuples % for f
and m such thai diamz < e.

(8.3) ProrosITION. Let (X, d) be a precompact metric space, & a posi-
tive number, m a generalized diameter on n-tuples and g: X —X an onto
function. Suppose F e X"~ GDW(X)=Z and mx < g 4implies that either
9% € GDn(X) or mgZ < mx. Then weZ and m%E <& implies that either
g% € @Du(X) or myT = M=,

Proof. Assume the hypothesis and suppose @ e Z, g € Z, m% < £,
and mgw < m&. Set F= (T, ..., Tn) = (g(%1), ..., g(2n)) = g(F) where
T = (wy, ..., Wn). Since g is onto we can find a function f: X X such
that g(f()) =t for all ¢« X and f(w) = w; for i =1, .., n. This f must
then Le 1-1 and satisfy

(4) & > MfE > mz
and
(5) mfz = min(e,, mz) for all 2eZ.

These facts follow directly from the assumptions on g.

Now the argument used in Proposition 2.2 ean be applied with only
a couple minor adjustments. First we change the definition of ¢ in the
proof of Proposition 2.2 to & = min(mff— m%, e,— mZ). Secondly we now
pick ¢ so that diam%’ < min(6"”, ;). With these changes the argument
in Proposition 2.2 goes through and the desired contradiction is
reached. Thus no such % exists and the present proposition is proved.
Q.E.D. :

(3.4) DEFINITION. Let (X, d) be a metric space and n> 2. Set
7 =7Zp=X"—Q@Dy(X) and Z;, = Z° = {Z ¢ Z| diamZ < ¢} for each &> 0.
Now define a relation 7° on Z° as follows: for %,7 Z° 1%y iff there
exists an 7 such that = 7 and ZS8y7 where H = W (i, &) n Z". (See
Notation 2.5.) We write %77 provided there is a sequence 2, Z, ..., Zx
taken from Z° such that &= z,, z;—:T"z; for 1< 1< N, and Zy= 7.

(3.5) PropPoSITION. Suppose (X,d) s a mnon-trivial connected and
uniformly locally connected metric space and & > 0. Then there is a & such
that for every &, 7 e Z5 there is a o € Sy such that xT°o7.

Proof. Since (X, d) is uniformly locally connected we can find
a 6> 0 such that for each p ¢ X there is a connected set V, such that
{geX| d(g,p) < 8} CV,C{geX] d(g,p) < 3e}. Set &= 4.
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Suppose 2,2 « X and d(z, 2') < ¢'. We will show that if 7,7 e 4y,
=2 and %= o then #T oD for some o ¢ S,. Consider the - connected
set V., given by the first paragraph. Clearly |u| CV, and |7|CV, and
thus %, B e Vi— GDu(V2). It now follows from Lemmas 3.9 and 18.2 of [2]
that @Tp,07 for some o e 8y where Ty, = T defined with respect to the
space 7 instead of X. Note the simple fact that 4 C B and x84y imply
85y, Now recalling the definitions of Ty, and T° @_1_1(1 the inclugon
V.C{ge X} dig, ) < 3e} we. see that uTy.00 implies % T* 0. Thus %1%
as claimed.

Now suppose %,7 e Zy. Consider the set U= {z¢X]| UeZ) and
7, = =z implies @ I"cE for some o € Sp}. It follows from the preceding para-
graph that 7, ¢ U, U is open and X — U is also open. Since X is connected we
conclude that U = X. Thus #T°cy for some o ¢ S, a5 we wished 'to prove.
Q.E.D.

A straight forward compactness argument gives

(3.6) ProvostTION: If (X, d) is a locally conmected compact melrie
space then (X, d) is uniformly locally connected. ‘

(3.7) Lignwa. Let (X, d) be a non-trivial connected, uniformly locally
connected meiric space, n an integer greater than one, and ¢ > 0. Let 6 >0
and {Vylpex be the number and sets given by Definition 3.1 satisfying

(a) Vp is a connected neighborhood of p for each p e X and

(b) for each p e X, {ge XI dlg,p) <8} CV5Clge X| dlg,p) < e}

If Vi— GDu(Vp) is connected for some p e X then wT°0 for all @, 7 e 7%
= Z2P(X).

Proof. Assume p ¢ X, and Vy— GDa(V,) connected. By Lemma 2.13
we can find a7 € Z° such that @, = p. Let @, 7 « 2”°. By Proposition 3.5
we have &low and 50w for some o,7ely. Clearly o, % eVy—
— GDu(Vy). Now by Theorem 18.2 of [2] we have owTy,7& and hence
o T°7W (see proof of Proposition 3.3). Using the symmetry and transi-
tivity of 7% we have ZTT as we wished to show. Q.E.D.

We will need to know what happens when all the Vz— GDy(V ;) are
disconnected. Lemma 3.10 gives the answer and Lemma 3.9 provides
the essential tool in investigating this question.

(3.8) CoxvenTION. If < is & linear order on a set S then we will
say that —oo< # < co holds for all x e 8.

(3.9) LEvws. Suppose U and V are non-empty open connected subsets
of a Hausdorff space X and <u, <v are linear orders on U and V re-
spectively inducing their respective topologies (i.e., their relative topologies

induced from X). (Recall that the topology induced by a linear order < has

as e subbase all sets of the form {x| < p} and {x| x> p}) Assume
O~V 0.

Invariant meiric properties of maps 215

Casel. V—U # O and U—V = @. Then for somep, ge U v {—o0, oo},
7,8 eV u {—o0, 0o}, <;e{<y,v>} and <ze{<y,y>} we have p <4,
1<y 8, and if

A, ={xelUlv<,p}, Ay={@elfg< 2},
Bi={yeV]y<,r}, Ba={yeV]|s<,y}

then A, =B, and Ay=B;, UnV=4,0v4,=B uB, and <;= <,
on A; and <;= <, on 4,. -

Case 2. VC U or U CV; without loss of generality assume VC U dn
this case. Then V= {xe Ul p<yz <vgq} for some p,qe U v {—ooc, o<}
and either <y= <y or <p=yg> on V.

Proof. We recall some easily verified facts about connected linearly
ordered spaces. First, if p, ¢ e U and p <p g then there is an r e U such
that p <ur <v ¢. Secondly, if § is a non-empty subset of U bounded
from abové (below) in U then the least upper bound (greatest lower
pound) of 8, lubs (glb8), exists.

Consider Case 1. Assume VA U %20, V—-U #0 and U7 =0.
Pick an o e U—V and fix it throughout this proof. Also set <= <v.
Consider the set U' = {xe U] a < z}. We claim that U' nV = {xe U]
¢ < o} for some ¢e U v {co}. There are two cases.

Case 1A. There is no b e U—V such that {ze Ul a<x < b} nV #0.

Case 1B. There is a be U—V such that {ze U] a<2z <}~V #0.

Consider Case 1A. Xf U~V =0 then U nV=1{zeT] o<}
and the claim holds. So we may assume U~V =@ T 7V is bounded
from below in U by the point @ and consequently ¢ = glb U~V exists.
Since ¢ is a lower bound for U’ ~ V we immediately have {x € Ul a < z< ¢}
C T'—V. Next we will show that {z ¢ U] ¢ < 2z} C V. Suppose the contrary,
that is assume b e U—V and ¢ < b for some b. Since ¢ = glb U’ nV there
must be an e e U’ ~ V such that ¢ < e < b. But then e e {z e Uja< z< b}
~T which contradicts the fundamental assumption of Case 1A. Thus
{#e U] e< )} CV. In order to establish U' AV ={zel| ¢< a} in this
case, Case 14, we only have left to show that ¢ ¢ U ~ V. Suppose
cel' ~T. Since T’ ~V is an open subset of U and U has the order
topology we can find an fe U’ ~ T such that f< ¢ (unless ¢ is an initial
point of T; but in, this case is ruled oub because it would imply U—V =0
a contradiction). But f< U ~V and f<e contradiets ¢e= glbT'n V.
Thus c¢ U' AV and U nV={xeU] e<a} a8 claimed.

Consider Case 1B. Thereis a b ¢ U—V such that felUla<ow<bhn
AV %@, Pick an ee{ze Ul a<z<bn V. Consider the sets S
= {&pe U {yeUlz<y< e}CV}andSz={meU1{ye Ule<y<m}CV}.
Both 8, and 8, are non-empty (¢ € 8, ~ 8,), @ isalower bound for S, and b
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is an upper bound for 8. Therefore p = glbS; and ¢ = lubs, exists,
TUsing the fact that ¥ is open it is easily seen as above that p, ¢¢V and
A={zecU| p<z<g}CV. The set 4 is open and connected and thus
A={meV| r<yva<y s} for some 7, s eV U {— o0, oo}, (See Lemma 10.1
of [2].) The possibilities where {r, §} C {— o0, oo} are Tuled oub because
ecA O and V—T % @. For definiteness we will assume s e V. Now by
TLemmsa 2.8 (or more precisely by the proof of Lemma 2.8) we have
<p= <y or <y= y> on 4. For definiteness assume <y= <y on A,
Now (4, <ul4) is o directed set and the inclusion map A C X is then
a net in U eonverging to ¢. But this net also converges to s since <pid
= <yp)4.Since X is Hausdortf we must have g = § « V. But this contradicts
q ¢ V. Consequently Case 1B is vacuous.

This establishes the claim that U’ ~nV = {we U| ¢ < s} for some
¢e U U {oo}. Similarly we must have U nV = {ze U| < d} for some
de T uw {—oco} where U= {we Ul v <a}. Remembering that a e U—V
we see that UnV=1{zelU| s<djvirelU|l c<z} withd<a<e. Set

A ={x el z<yd} and 4,= {ze U] ¢<ya} Similarly, there is an

r,8 eV u{—oo, cc} such that r<s and UnV= B, v B, where B,
=f{weV|a<yrr} and By= {weV]| s <y z}. Since A4; and A, are con-
nected (see Lemma 10.1 of [2]) disjoint open subsets of U~V they are
obviously the components of U~V provided they are non-empty. Thus
{Ay, A}—{@) and {B,, B,}— {0} are each the set of components of U~V
and are thus equal. By adjusting the definitions of A4, A,, B, and B,
if necessary we may assume A; = B, # @. It follows that A,=B;. We
must show that <; = <, on 4; and <; = <, on 4,.

TWe first show that <, = <, on 4;. We may assume A; # @ for the
case 4, = O is trivial. By the proof of Lemma 2.8 we know that <, = <,
0r <3 =,> on 4;. Suppose <; =,> on 4;. Then (4;, <) = (B;,,>)
is a directed set and the inclusion map 4, C X is a net which clearly con-
verges to both p and s (we are assuming that the definitions of 4,, 4,, B,
and B, as they appear in the statement of the lemma). Thus, because X is
Hausdorff p=s But pe U—V and se¢V—U a contradiction. Thus
<, = <, on 4, as desired.

The same reasoning shows that <, = <, on 4,. This completes the
proof of Case 1.

Consider now Case 2. This case follows directly from Lemma 10.1
of [2] or more precigely its proof and the proof of Lemma 2.8. Q.E.D.

Let (X, d), n, & 6, and {Vp}pex be as in Lemma 3.7 with the further
assumption that Vy— GDu(Vy) is disconnected for all p e X. Then by
Theorem 14.4 of [2] we have a linear order <, on ¥V, such that the topology
of Vp= <k or <5 (See §14 of [2] for definitions). Tf the topology of
¥p= <jp then it is easy to see that the removal of one point of V, other
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than p gives a connected neighborhood V5 C ¥, of p such that <) (the
order analogous to <p but for <) has the property that <;§= the
topologly of Vp. Thus by replacing ¥, by T if necessary we may assume
that <, = the topology of ¥, for all p ¢ X. Let 7 be the topology of X.

(3.10) LemmA. Under the above assumptions either Case 1 or Case 2
below holds.

Case 1. There is a point a € X and a linear order < on X with a as
an initial point such that <°= v. Furthermore, X is eircular as in [2] and

< is as in [2].

Case 2. There is a linear order < on X such that <!= . Furthermore,
in this case X is mon-circular as in [2] and < is as in [2].

Proof. Pick a p ¢ X and consider the collection ¢ of ordered pairs
(4, <) such that A is an open connected subset of X containing p,
peACX,and < i$ a linear order on A such that <'= the topology of 4
(relative topology induced by X). We say (4, <)< (B, <') provided
ACB and <= <’ on A. This makes ¢ a partially ordered set and we
wish to infer a maximal element from Zorn’s lemma. In order to do this
we mneed to establish that each totally ordered non-empty subset
{(Aay <a)}aeq of € has an upper bound. We claim that (4, <) is an upper
bound for {(Aq, <a)}eeo Where 4 = {_ 4, and the order < is defined on A

by requiring < = <., on 4, for a]lgaeQ, Since {(Aa, <o)laeo is totally
ordered under < it is easy to see that < is a well defined linear order
on A. Tt remains to show that <!= the topology of A. Let ¢ be the
topology of A. Given a point qe A we will show that a subset UC A4
is a <! neighborhood of ¢ if and only f it is & ¢ neighborhood of g. We
distinguish two cases. Case A: ¢ is not an end point of 4. Case B: ¢ is
an end point of A.

Consider Case A. Then there exists points r, 5 ¢ 4 such that r < g < s.
Let A,, a e, be such that r, g, s d..

Claim {wed| r < ©< s} C A, Suppose not, i.e., suppose te A—-A,
and r < ¢ < s for some £. Let § < be such that A, C 4, and e 4,. Then
Ay {Bedy <t} and A, ~ {ze gl t< 2} are disjoint open sets whose
union is 4, and such that they separate » from s in 4,. This contradicts
the connectedness of A, and thus establishes the claim.

Now suppose U is a <! neighborhood of . Then there exists a,bed
such that ge{med| a<o<b}CU and r<a<b<s. Then {2 e Aq|
a< 3<bl={wed| a<w<b}CU which shows that U is a = neighbor-
hood and thus a ¢ neighborhood of g.

Now suppose U is a o neighborhood of g. Then U n 4q is a neighbor-
hood of ¢ in A, and since <.= topology of 4, we have ge{redd a <2
< b}C U for some a,beds, r<a<g<b<s It now follows from the
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claim that {Fedd a<z<b}= {ed| a <z<Db}and hence U is a <!
neighborhood of ¢. This completes the proof in case A. Case B is just
o one-sided version of case A and can be handled very analogously. We
leave these details to the reader.

Thus we have established <?= the topology of 4, and so (4, <)e(.
Clearly (4, <) is an upper bound for {(4., <o)}seo. Therefore Zorn’s
lemma applies and there is a maximal element (4, <) in C.

Tf 4 = X then Case 2 holds. To see that X is non-circular as in [2]
and < is as in [2] note that X®*—@GDy(X) is disconnected because

{(z,9) e I’— GDy(X)| <y} and {(,y) e X"~ GDy(X)| y < @} are open. -

Also < determines the R.s of [2] in the same manner as in lemma 9.5
of [2] and the R.'s determine the < of [2] through definitions 8.7 and 8.12
of [2]. From these definitions it is not hard to see that < here is the same
as < in [2].

We now assume 4 # X. H V,n A= 0 for all a e X— A then X— 4
would be open and consequently X would be disconnected, a confra-
diction. Thus Vi~ A # @ for some a ¢ X—A. Lemma 3.9 with U= 4
and V =V, analyses the present situation so clearly that it is obvious
that {a} = V,— 4 and « is not an extreme point of ¥, for otherwise (4, <)
would not be maximal in €. Set 4 =4 UV,=4 v {a} and extend <
to A by setting a < @ for all « e A. It is then clear that <¢= the topology
of 4 and a is an initial element of A.

Assume for a moment that X = 4.

The fact that X i3 circular as in [2] and < is as in [2] can be seen
as follows. X°— GDy(X) is disconnected because {(z, ¥, 2) ¢ X°— GDy(X)]
r<y<zory<z<sorz<z<yland{(z,y,2) e X’—@Dy(X)|y<z<2
or a<g<y Or 2<y <o} are open. Also < determines the R;'s of [2]
in the same manner as in lemma 12.7 of [2] and the R,’s determine the <
of [2] through definition 12.1 of [2]. From this it is not hard to see that <
here i3 the same as < in [2]. ALl that remains to be shown is that 4 = X.

In order to show 4 = X we first note that a is the limit of the net
(4, <, 7) where i: 4 C X is the inclusion map. It follows that if b e X— 4
and Vp n 4 # @ then b also would be the limit of (4, <, ) and since
X is Hausdortf b would equal . Hence for each b e X— 4 = X— (4 v {a})
we have ¥y n 4 =0 and thus X— 4 is open. But £ = 4 v 7, is also
npen_and non-empty and so because X is connected we must have
X—A =0 as we wished to show. This completes the proof. Q.E.D.

Continue to assume the hypothesis of Lemma 3.10. We would like
to clear up the relation between the order < of Lemmsa 3.10 and the
orders <p. Consider first Case 2 of Lemma 8.10, ie., <!= 7. Tt follows
hfon_l Lemma 2.8 that for some choice of <p (<p OT p>) we have < = <p
on V. We will call this choice (in this case) the choice compactible with <.
Now consider Case 1 of Lemma 3.10, ie., there is a point @ ¢ X which
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is an initial point of X under < and <= v and X iz circular as in 21
Consider a Vy. If a ¢V, then it is clear from the definitions involved
that the topology of V, is the same as (<]V,,)' where <lp, is < restricted
to ¥y Thus by Lemma 2.8 there is a choice of <, such that < — <p
on Vyp. This choice of <, will be ealled compatible with <. Finally
suppose aeVp. Vp—{p} i3 disconnected whereas X— {p} is connected
(see lemma 12.5 of [2]) we conclude ¥, 5= X. Then because ¥, is open
and connected and a eV, there must be ¢, e X such that a < a< B
and Vp= {2| # < aor § < &} (see lemma 12.5 and the proof of lemma 14.1
of [2]). It now follows from the definitions that <! is the topology of Fp
where z <,y iff either s<y<aor f<az<y or y<a< g< z. Thus
again by Lemma 2.8 <;= <, for some choice of <, and this choice
will be said to be compatible with <.

In all cases it is- easy to see that if <, and <, are both compatible
with < then <= <¢ on each component of V, ~V, (there can be at
most two components). Recall that V, C {ge X| d(g, ») < e}. ITf we insist
that 4¢ < diameter X = sup d(z,y) then we can show that V, ~ 1y

z,yeX
can have at most one component. Indeed, it is clear from the form that
both 7, and Vg, must have (see lemmas 10.1 and 12.5 of [2]) that if Vi » Vg
had two components then X is circular and X =7V, v V,, and conse-
quently diameter X < 4¢ < diameter X, a contradiction. We assume from
now on that 4s < diameter X. It follows that if Vp ~ ¥y # O then <p = <4
on ¥p ~ Vg in all possible cases.
We may now state and prove the following lemma.

(3.11) Lmyvs. Assume the hypothesis of Lemma 3.10 and let < be as
in Lemma 3.10, either case. Suppose Z= (2, ..., %)y ¥ = (Wyy .ocr Wn)y
5, W e B, <, and <w, are compatible with <, 2 <z 2 <z, oo <z 20 and
Wy oy Wo gy e <y Wn. Then ET.

Proof. Consider the set Q= {t € X| 1= (ty, ..., 1n) € 27, 1 € {tr, ooy a),y
<, compatible with <, and # <§ &<y - <nols then i7T°z.} We will
show that both @ and X—@ are open.

Tirst note that for each ¢e X there exists a I= (t, ..., ) € Z% and
a <, compatible with < such thab £ e {t, .., tn} and t; <g T <ty oo <ty Tne
To see this recall that X is connected and nontrivial so ¥ is also con-
nected and nontrivial and so there must be infinitely many points arbi-
trarily close to t. The observation now follows readily.

Next consider a ¢ and ¢’ e X such that d(f, ') < 6/2. Let T=(fyy -y tn)
De as in the above paragraph and let ¥’ = (&1, ..., tn) De in the same re-
lation to #. Clearly fi, ...,IneVy and as noted immediately’ pre;eedmg
the lemma <g=<; on Vin V. Thus #f <g 15 <t - <t tn. NOW 28
in Proposition 2.9 Ty, I’ and thus iT%(. Beeause 7" is transitive it follows.
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easily that both @ and X—@Q are open. Since e@) #0 and X is con-
nected Q = X and the lemma is proved. Q.E.D.

Our next task is to formulate a result analogous to Corollary 2.3
and the Remark which follows it in the present context. Making use
of Temmas 2.8, 3.7, 3.10 and 3.11 the proof of this result is essentially
the same as the proof of Corollary 2.3 and so it will be left to the reader,

(3.12) Lmuwma. Assume the hypothesis of Lemma 3.10 and lef < be
as in Lemma 3.10, either case. Also assume X is precompact and m is
a generalized diameter on n-tuples. If f: X —X ds 1-1 and continuous (or
alternately {2 ewists and is 1-1, onto and continuous), & = (@1, ..., &) € 27,
Ly gy By gy oo <o Tmy WHeTEe <g 18 compatible with < and mE > mfz
then there ewists a ¥ € Z°® such that my < mfy and either yT°F or GT4%
where T e 8y is given by ©(f) = n+1—1i for =1, ..., n.

Next we have the analogous result to Proposition 2.7.

(3.13) Limarta. Assume X is a uniformly locally connected metric space.
Suppose g: X'— GDy(X) >R is continuous, g(%) <0 and g(7)>0 for
some &, § e Z°°, ZT°°F. Then 3k {2 e Z°| g(z) = 0} > ™0 for some non-empty
open subset of X (4 Q = cardinality Q).

Proof. It is not hard to see that the proof of Proposition 2.7 works
here provided we first use F7°°F to obtain a chain & = °, &, ..., EF" =7
with small links, #°T°°%z"" and second we work through the sets ¥,
where Lemma 2.6 can be applied directly, and there we choose the neighbor-
hood V which appears in the proof of Proposition 2.7 sufficiently smaill,
ie. diameter ¥ < §/2.

We now gather the preceding lemmas together to prove Theorem 3.2.

(3.14) Proof of Theorem 3.2. Assume the hypothesis. Obtain the
sets {Vp} as in Lemma 3.7 and consider two cases. Case 1: Vo— GDu(V,)
is connected for some p ¢ X. Case 2: V;— GD4(V,) is disconnected for
all peX.

Consider Case 1. Let ¢ be as in the hypothesis of Theorem 3.2 and
let the “¢” of Lemma 3.7 be called &'. Let § = (&) as in Definition 3.1
and set & = 6/2. Finally set ¢’ = §(¢’) as in Definition 3.1. We may as-
sume &' <& <6< e Now, if mfT—mz for continuum many Ze 2"
then Lemma 2.13 would give the desired conclusion. So assume that
this fails. We claim that mh@ < m@ for some he{f,f '} and %< Z2°™
I mf < m% for some @ e Z"™ the claim is established. So assume mfu
=mi all @e2™ Pick any point p e X. Since X is connected each
neighborhood of » contains continuum many points. Using the continuity
of f at p we may thus find continnum many 7 e Z"" gueh that fie AL
We cannot have 1;1]27 = mu for all of these % and hence mfi > mu for
some 7 with fir e 2°”. Setting @ = fu and h = ' we see that the claim
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holds. Proposition 3.3 now implies that mhT > mT for some TeZ "
Thus we have mff < mZ and mfy > my for some %,y such that {Z.7}
= {@, 7). Set g(z) = mfz—mz for all z e Z. According to Lemma 3.7 aTT
and thus by Lemma 3.13 #{Z<Z°] g(z) = 0} > #0 for some non-empty
open subset of X. The conclusion of the theorem now follows from
Lemmsa 2.13. This proves Case 1.

Consider Case 2. Vy— GDy(T) is disconnected for all p e X. Let &,
5, ¢ and &' be as above with the added easily satisfiable requirement
that 4¢ < diameter, X. Hence Lemmas 3.10, 3.11 and 3.12 apply. If
mfi=m& for continuum many &= (zy,.., &) € 2" with & <z, 2,
Ly oo Loy By WhHETE <o is compatible with < then the theorem follows
from Lemma 2.13. So assume not. Proceeding as in Case 1 and by ap-
plying Lemma 3.12 to the appropriate element of {f,f'} we obtain
aye 2%P such that either 77°% or 7% <% and g{7) is positive (negative)
it g(%) is negative (positive) where g is as in Case 1. Since m is weakly
symmetric g(=%) = ¢(%) and so the theorem now follows from Lemmas 3.13
and 2.13 as in Case 1. Q.E.D.
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