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A characterization of paracompactness
by
Hisahiro Tamano{

C. H. Dowker [3] proved that the following condition is equivalent
to the countable paracompactness in a normal space:

(1) For each descending sequence {Fn} of closed sets with empty
interseetion, there is a sequence {G,} of open sets with empty intersection
such that F, C Gy for each n.

F. Ishikawa [4] characterized the countable paracompactness by the
similar condition given below.

(2) For each descending sequence {F,} of closed sefs with empty
intersection, there is a descending sequence {@.} of open sets such that
M {Gp} =0 and Fy C Gy for each n.

Our purpose of the present paper is to characterize the paracom-
pactness in a similar fashion.

A family § = {Fa| a4} of subsets with a well ordered index set A
with no last element will be called a chain provided M {Fa| a < g} # O
for each 3 e A. We shall introduce & relation <, called dominancy, on
the family of chains. If § = {F.] ac 4} and & = {6 aed} are two
descending chains, then F<LG if N {Fa| a< BCInt({Gd a< B}
for each feA. In case of two subsets considered as constant chains,
F <@ if and only if CL(F)CInt(@). Let &(4) be the collection of all
descending chains with the index set 4 and let I'(4) denote the collection
of constant chains, then I'(4)C @(4). Note that the normality is
characterized by the fact that for each pair of constant chains §, ® e I'(4)
such that §~<®, there is a constant chain $elI'(4) such that
F<9<86.

The main theorem is eoncerned with the characterization of para-
compactness in terms of the separation condition on the family of
descending chains @(4). §= {Fa| ae A} is said to be a free chain
provided () {F.] ae 4} = . Let $*(4) denote the collection of all free
descending chains with the index set 4. Theorem 1 states that a space
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is paracompact if and only if the following condition is satisfied for cach
index set A: For cach § e D*(A) and for each ® e D(A) such that F <6,
there is a chain $ e P*(A) such that F< H < 6.

The proof of Theorem 1 is closely related to that of the author’s
earlier result asserting that the normality of X xpX implies the para-
compactuness of X. In this connection, the Stone-Cech compactification
plays an important role in the following argnments. All spaces mentioned
here will be completely regular and T, unless otherwise specified. We
shall depend heavily on the well known theorem due to A. H. Stone [8]
asserting that every pseudo-metric space is paracompact. This is actually
the key lemma for the main theorem, as in the case of former result
mentioned above.

Finally, we shall apply our theorem to obtain & new covering charac-
terization of paracompactness, which is a simultaneous generalization of
the results due to B. Michael [6] and the author [11]. We shall show that
@ space is paracompact if and only if every open covering has a linearly
cushioned open refinement.

1. Chains. A family § = {Fa| ae A} of subsets of X with a well
ordered index set 4 with no last element will be called a chain provided
that [ {Fal a< } #O for each fed. F= {Fd ae A} is a descending
(ascending) chain if Fo D Fp (Fa C Fj) whenever a< f. In the following,
Cl(E), Int(E) and C(E) denote respectively the closure, the interior and
the complement of the set B. For convenience, we shall also use the usual
notation B for CL(E). The chain § = {F.| ae A} (F° = {Int(Fo)| aed})
will be called the closure chain (the interior chain) and §° = {O(F.)| « € 4}
will be called the complementary chain of §. If each F, has a property P,
then we shall say that § is a chain of P-sets or simply a P-chain.
A chain § = {F.] aeA} of P-sets is said to be complete if both
U {F a< B} and (| {Fa a< B} has the property P for each fe 4.
A descending (ascending) chain of closed sets (open sets) is complete.
A chain § = {Fl| a ¢ A} is said o be a free chain if the closure chain has
empty intersection. That is § is free provided N {F.| aed}=@. We
shall call § a chain covering if the interior chain forms an open covering.
The complementary chain of free chain is a covering chain. A chain
% = {F,] aeA} such that F,= F for each a e 4, for a fixed non empty
gubset F, is said to be a constant chain of length A. Let Q(4) denote the
family of all chains of length A (i.e. the chains with the index set A).
I'(4) denotes the family of all constant chains of length A. By ©(4)
(¥(4)), we shall denote the family of all descending (ascending) chains
of length A. The family of all descending free chains of length A will be
denoted by $*(4). Now, we shall define a relation on the family Q(4)
as follows:
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DeFINITION 1. Let § = {Fo| a e A}, & = {G,] aec A} be two chains
of length A. We shall say that § is dominated by & (or ® dominates §)
and write § < ® if the following conditions are satisfied for each f§ e A:

(3) MACL(F.)| a< } CInt() {6 a< B},
(4) OU(U {Fal o< 8}) C U {Int(Ga)] o< B}

If § and ® are constant chains with F,=F and G.= @ for each
aed, then § < ® if and only if C1(F)C Int(@). In case that ¥ is a de-
scending chain, § < ® if and only if (3) is satisfied. Similarly, if & is an
ascending chain, then (4) is equivalent to § < G. Note that the con-
dition (4) is a modification of the condition that the family {F.| a4}
is cushioned [6] in the family {Int(G.)| a e A}, and that (3) is valid for
the pair §. ® e 2(4) if and only if (4) is satisfied for the pair 6% F cQ(4).

A general theory concerning the separation of chains relative to the
dominancy defined above will be given elsewhere. In the present paper,
we shall be mainly concerned with the separation of descending chains.

2. The main theorem.

TamoreEM 1. A space X is paracompact if and only if the following
condition is satisfied

(P) For each descending free chain §e &*(A) and for each chain
G <« Q(4) such that § < ®, there is a descending free chain $H e D*(A) such
that §< 9 <G, for each index set A.

Proof of the necessity. Since § < ® implies that TG, we
may assume that § is a closed chain. We shall show that there is a com-
plete descending open chain $ e *(4) such that § <H<6.

For each point @ ¢ X, choose the least index a(w) such that @ ¢ Fog-
Put F(B) = {F a< B} and G(B)= {6 a<p}, then @ e Fla(2))
and @(a(w)) is a neighborhood of F (a(a)) since § < G. Therefore, there
is an open neighborhood U(z) of x such that

(8) T(@) N Fuy= 0
and
(6) U(z) C Gla(@) .

Consider the open covering {U(#)| # ¢ X} of X and let B = {Vi Aed}
be a locally finite open refinement. Pub Wo= U Vi Vin Fo= 0}, then
W.=J{Vi| 71 nF.=@}, since every subfamily of a locally finite
family is closure preserving. Put Ho= O(W,), then F,C H, for each
aed and § = {H,| aeA}is a descending complete open chain. In fact,
H(8)= N {H.| a< B} is the complementary set of the union of & locally
finite family {7;| V2~ Fo=@ for some a< f}, and is hence open for
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each B« A. Therefore, § < H. To prove < ®, we have to verify that
N{H| a< pyCInt(G(B) for each peAd. We shall show that if

~p ¢ Int(G(B)) then p ¢ {H,| o< B}. Suppose p ¢ Int(G(p)) and let V; be
2 member of B which contains p; then V3 C U(w) for some « « X. Let a()
be the least index for which @ ¢ Fl then we have U(@) m Foy= 0
by (5), and therefore Vs m Fam= 0. It follows that V3 C Waw and hence
Vin Hun=0. Tt a(o)>p, then we have by (6) p e U(x)C G{a(a))
C @(f) which is impossible. Therefore a(z) < § and Vi » Hyn = @ implies
that Vi ~ ({H. e< B}) = @. Thus, we have p ¢[) {Ha| a< B}. Since
the condition (4) is also easily seen to be satisfied by $ and @, it follows
that $ < &. Finally, it is easy to see that ) {H| aeA}C{C(W)]
aed}=C(J{Wd aed})=0, in view of the fact that B is a covering
of X and 7, ~F, =@ for some ae A. The proof is completed.

Remark 1. In the above arguments, we have proved that the para-
compactness implies the following condition which is slightly stronger
than (P).

(P,) For each § eP*(4) and for each & ¢R(4) such that F< 6,
there is a complete open chain § e @*(4) such that F< H < ©.

‘We shall discuss some other modifications of the condition (P) later.
Note that if § = {H.| aeAd}is a descending complete open chain, then
the family {C(H.)| a < B} is a closure preserving collection of closed sets
for each feA.

Proof of the sufficiency. Suppose that (P) is valid and we
shall show by induction that the following statement S(m) is true for
each cardinal number m which will imply that X is paracompact.

S (m): Every open covering {U.| a ¢ A} with Card(4) = m has a locally
finite open refinement. That is, X is m-paracompact [7].

(i) S(1) is obviously true.

(ii) Assuming that S(m’) is true for each cardinal number m’' < m,
where m ig infinite,

we shall verify that S(m) is true in the following five step (I)-(V).

(I) Normality. First of all, let us observe that the space X is normal
if (P) is true. Let F be a closed set and let U be an open set containing F.
Consider an open covering B of X consisting of C(F) and the family
{V(2)| % ¢ F} such that V(z) C U for each V(z). If B has a finite sub-

covering, say Vo= C(¥F), Vi, ..., Vau, then V = CJLV;; is an open set such
<]

that P CV C¥ C U. If B has no finite subcovering then we can construct
a descending chain § = {F.] ae A} of closed sets with #,=F and
N {Fa] aed}=0 in an obvious way. Consider the constant chain
U = {U.| aed} with U= U for each-a e 4, then § < U. There is by (P)
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a chain W= {Wo aeAd} such that § < IW < W. Then W, is a neighbor-
hood of F such that FC W, CW,C U. It follows that X is normal.

The following theorem due to Cech [1] will play the essential role in
the step (IV).

Leanvia 1. 4 space X is normal if and only if Clax(F) ~ Clex(G) = @
fgr each disjoint pair of closed seis F and @, where pX denotes the Stone—
Cech compactification of X.

This lemma will be used in the following form. Let us call open seb
¢ = Cpx(Cle(Gx(U))) a proper extension of an open U'C X. Then T° is
the largest open set of X such that U° ~ X = T (Cf. [10]), and we have.

CoROLLARY. Let X be a normal space and let U be an open neighbor-
hood of a closed subset F. Then ihe proper extension U° of U is an open
neighborhood of Clax(F). That is, F C U implies Clyx(F)C T".

(II) Construction of a descending chain. Let W= {U, ac A}
be an open covering of X with Card(4) = m. It is well known that a set .4
can be well ordered in such a way that Card(4({a)) < Card(4) for each
aed, where A(a)= {yed| y < a}.

Now, let us well order the index set A in this way. Then, we may
assume that the subfamily U, = {U,| y ¢« A(a)} is not a covering of X
because otherwise 1l, has a locally finite open refinement, by induction
hypothesis, since Card (4 (a)} <m. We can construct a deseending free
closed chain § = {Fa| a € A} by letting Fy, = X, Fo = Cx{U{T)l v ¢ A(a)})
for a > 1. Put Clgx(F,) = C. and put € = [} {Cu] a<c 4}, then Cis a com-
pact set contained in BXN\X, where X is the Stone-Cech compactifi-
cation of Y.

(I11) Lemma.

Liexnta 2. Let C be a compact set contained in BXN\X. If there is a continu-
ous function F(z,2) on X X pX such thai

(7) Fz,2)=0 if (x,2)ed
and
(8) F(r,2)=1 if (#,2)eXxC,

then there is a locally finite open covering {0i] Ae A} of X such that
Clpx(0;) » C =G for each AeA.

Proof. Let Fi(z) « C(8X) denote the restriction of F(z, 2) on {z} X pX.
Define a pseudo-metric 4 on X as follows:

(9) d(, y) = |[Fa(2)— Fyf2)]| = Sup {|Falz)— Fy(2)]| 2 € fX} .

Since X is compact, d(z,y) is continuous. That is, the pseudo-metric 4
determines a topology = weaker than the original topology 1, of X. By
a well known theorem due to A. H. Stone [8], the pseudo-metrie space
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(X, ) is paracompact. Consider an open covering W= {W(x)| zeX}
of (X, ), where W(z)= {y eX| d(z,y) < 1), and let O = {0;] 1e 4} be
a locally finite open refinement (with respect to 7) of . We shall show
that Clyx(W (@) ~ ¢ =0 for each « e X, which will imply that Clsx(0;)
~ ¢ =0 for each A It is clear by (9) that

1Foa)] = |Faly)—Foly)] < [Fa(2)—Fy(2) = d(2, y) -

Put U(m)= {y ¢« X| |Fay)] < 3}, then we have W(w)C U(x) for each
zeX. Since Fa(z) is a continuous funection on X and since Fy(z) =1
on O, we have Clx(U(2)) » 0= @, and it follows that Clpx(W(x)) ~ C
— (. Finally O is a locally finite open covering of (X, 7) because it is
a locally finite open covering of (X, 7) and v is weaker than the original
topology 7.

(IV) Construction of F(z,2) on X xpX. We shall define
a continuous function F(z, z) satisfying the condition of Lemma 2, for
the compact set € C pX\X determined at the end of the step (II). Let
% = {Fl] a < 4} be the descending closed chain constructed in (IT). Consider
the constant chain ® = {4 ce A} with G.= X for each ae4d, then
%<2 6. There is by (P) a descending free chain W= {Wa| a e A} such
that §F < W < . Since W< G implies W< &, we may choose W to
be a closed chain. Similarly, by applying (P) to the pair ¥, 2 and ob-
serving that § <8 < I implies F < B°< W, we can see that there
is a free open chain B such that F < B < W.

We now define inductively a descending free open chain B, = {V.(r)]
ae A} and a free closed (descending) chain M, = {Wu(r)| a e A} for each
diadic number r = k2™ [0, 1] so as to satisfy the following condition:

(10) By < B, @, < Wy

Put By=B, W= 6, B,= W, and I, = W. Suppose that both B,
and 93, are defined for each diadic number of the form %/2™ with 0 < &
< 2™, then we can define B, and B, for r= (2k+1)2™"" as follows: Put
7y =%2™ and 7, = (k+1)[2™, then r, < < 1. Since W, < W,,, there is
a descending free closed chain I, = {W,(r)| oA} such that W, < W,
< MW, . Similarly, there is a descending free open chain B, = {Vu(r)| a e 4}
such that By < B < Br,. Thus, B, and W, are defined for each diadic
number 7 [0,1].

Put Ox(Wer) = Wir) and Cax(Clox(Cx(Valr)) = Vi(r), then the
proper extension Vi(r) is a neighborhood of € C gX\X, for each « and
for each 7, by the corollary of Lemma 1. Clearly {Wi(+)| a € A} is an open
covering of X for each r. Therefore -

1) N(r) = U {Walr) xVa(r)] aed}

and whenever r>1#'.
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is an open neighborhood of X x € in X x gX for each r. In view of the
fact that B, = MW, and W, = W, we have V(1) C W,{1) for each ae d
and follows that ¥ (1) n 4 = 0. Next, we shall show that

(12) N{@#)YCXN(r) whenever » <vr.

To this end, we shall verify that if (x, 2) ¢ ¥ (r), then there is a neighbor-
hood of (@, z) which does not meets N (+’). Let 8 be the least index such
that @ ¢ Wa(r). Then, e J{Wor) a<p} and N{Wq(r') a<f} is
a neighborhood of z, since 9B, << W,+. There is a neighborhood U{x) of »
such that
{13) U(x) C Wa(r") a<f.
(If 3 is the first ordinal then define that U{z)= X.) On the other hand,
we have 2 ¢ Vi(r) from (&, 2) ¢ ¥ (r) and 2 ¢ Wy(r). Since B < By, V(r')
CT4(r) and, by the corollary of Lemma 1, we have Clx(Va(r")) C Va(r).
There is a neighborhood U(z) (in fX) of z such that U(z) AT = 0.
Since BV, is a descending chain, we have
(14) U@) nTalr'y=0
It follows from (13) and (14) that U(a) < T (2) » Wer) > Var') = 0 for v
each aed. Thus, we have U(x)xT(2)~ N(#')=O. It follows that
Ny C N {(r).
Now, define a continuous funetion F{z, 2) on X XAX by letting

{1—TInf{r| (z,2) e N (r)} it (x,2) e N(1),
F(z,2) = .

Lo it (z,2) ¢ N(1).

for each

for each a2 §.

(15)

Then, F(z,2) is the desired continumous function on X xpX. In fact,
F(z,2)=1 on X x(, since N(r)DXxC for each r, and F(z,2)=10
on A because N (1) ~ 4 = (. The continuity of F(x, 2) follows from (12).

(V) Construction of locally finite open refinement. There
is by Lemmsa 2 a locally finite open covering {0;] A €A} such that
(Ix(0;) ~ C=0 for each ied. Since C=[1{Ca aeA} and sinee
{0} ae A} is a descending family and since Clpx(0;) is compact, there
is a f e A such that Clax(02) » Cp= @. This means that Clx(0,) is covered
by the subfamily {T,| «eA(B)} of the given covering {Ua| o €A}, where
A(f)={acd| a< ). Consider a covering U(L) of X consisting of
Cx(Clx(0;)) and {U.| a e A(f)}; then, U(2) has alocally finite open refinement
P(4), by the fact that Card(4(p)) <m and the induction hypothesis.
Let {V,| ¢ e X;} be the family consisting of all members of B(L) inter-
secting 0z, and put 0, ~ V= R, for each o ¢ X3. Then R(1) = {R,} 0 23}
is a locally finite family of open sets (locally finite at each point of X)
and | J {Rs] o€ X3} = Oz Construct a locally finite family of open sets
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R(2) for each e in this way, and pub Z=1U{2] Ae4}. Then R
= {R,| o e X} is a locally finite open refinement of the given open covering
U = {Uq aeA} In fact, R is obviously an open refinement, and each
point = ¢ X has a neighborhood U, which meets only a finite number
of 05s, 32y O3, Oy vy Osy- For each 4y, there is an open neighborhood U;

n
of x which intersects only finitely many members of R(4:). Put U = Uy
- i=0

then U is a neighborhood of # such that U n R, = O for all but a finite
number of members of R. Thus S(m) is valid.

It follows by induetion that §(m) is valid for each cardinal number m
and therefore X is paracompact. The proof is completed.

Remark 2. Let P(m) be the statement asserting that the con-
dition (P) in Theorem 1 is true if Card(4)< m. In the step (I) of the
above proof, we have observed that X is normal if P(m) is true for each
cardinal number m. However, the condition P(m) for a fixed m does
not imply the normality of X in general. For example, P (%) is valid in
a countably compact space, but a countably compact space need not be
normal. From the proof of the above theorem, it is not difficult to see
that P(m) is equivalent to S{(m) in case that X is a normal space. (Proof
of the necessity is not trivial.)

Remark 3. In Lemma 2, we can replace X by any compactifi-
cation BX of X. This theorem was originally appeared in [10]. If X x BX
_is normal, then the existence of the continuous function satisfying the
condition of Lemma 2 is a consequence of Urysohn’s lemma. It mway
also be worthwhile to note that F(z, 2) determines a continuous mapping
of X into the Banach space ¢(BX) of continuous function by mapping «
to Fyfz).

In the following, we shall give some other expression of the main
theorem. It is clear that <G if and only if §°S G° and that the
complementary chain §° of a descending free chain is an ascending chain
whose interior chain covers the space X. We call such a chain simply
a chain covering:

THEOREM 1*. 4 space is paracompact if and only if the following con-
dition is satisfied:

(P,) (1) For each chain covering W= {U, ae.A} and for each chain
W = {W,| aed},suchthat W < U, there is a chain covering B = {Vi| aed}
such that W< B <.

Remark 4. Theorem 1* is not exactly the dual statement of
Theorem 1. In fact, the case that U is a finite chain covering is not ex-

() The characterization of paracompactness by this condition was apnounced at
the Topology Symposium held in Prague in 1966.
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cluded in Theorem 1% and the condition (P,) for finite index set 4 is
equivalent to the normality.

In Remark 1, we have mentioned that (P;)=(P). It iz obvious that
(P,) = (P). In view of the proof of Theorem 1, it is also clear that the
following condition is equivalent to the paracompactness:

(P3) (*) For each descending free closed chain §= § o aedl and for
each descending complete open chain ® = {G,] a e A} such that F< G,
there is a descending complete open chain $ = {H, ae A} such that F;,
CH,CH,CG, for each acd (ie. F<H<G).

It is however not known to the author if the following condition,
which is a simultaneous weakning of (P,) and (P), implies the para;
compactness.

(P,) For each desconding free chain § = {F, aedA} and for each
(descending) complete open chain G = {G.| a e 4} such thal F< ®, there
is a descending free chain = {H,| ae A} such that F< $ < G.

By putting G, = X for each ae.d, we can see that (P,) implies the
following condition:

(Ps) For each descending free (closed) chain § = {F.| ae A}, there is
a (descending) free (open) chain $ = {H,| a e A} such that § < 9.

In case that 4 is a countable index set, the condition (P;) is nothing
other than the condition (2) in Ishikawa'’s characterization of the count-
able paracompactness given at the top of this paper. Note that every
countable sequence of open (closed) sets is a complete apen (closed) chain.
In view of this fact, the following problem seems to be of some interest:

ProBreM 1. Is the following condition equivalent to the paracompaciness?

(P*) For each descending free (closed) chain § = {F.| ae A}, there
is a descending free complete open chain § = {H.| a e A} such that F< H.

This problem is concerned with the following problem in the sense
that the affirmative answer to Problem 1 gives the affirmative answer
to Problem 2.

PrOBLEM 2. Suppose that X is the union of a closure preserving family
of compact subsets. Is it true that X is always paracompact?

For each descending chain & = {F,| ae A}, put C(F) = N {Clax({F.);
aeA)} and call C(F) the absolute center of §. Let us call the intersection
TV {Fa aed} the relative center of §. Roughly speaking, a descending
chain is characterized by its center and the mode of diminution of the
members. In case of free descending chains, the relative centers are always

() This characterization of paracompactness was announced at the International
Congress of Mathematicians held in Moscow in 1966, under the additional assumption
that X is a normal space.
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empty. On the other hand, the absolute centers distinguish the locations
of descending chains. Thus, compactifications can be used to visualize
one of the characteristic factors of descending chains. The dominancy
is concerned with the description of the mode of diminution of a deseend-
ing chain.

We shall call ¢ CAX\X a central cocover if € = C(F) for some
descending free chain § = {Fa| e < 4} ( is said to be a central cocover
of weight m, if Card(4)=m. Given an open covering U = {U.| aeAd}
of X, we can construct a compact set C*(U) C AX\X Dby letting C*(II)
=) {Opx{U%)| aeA}. Conversely, for each compact set * CBX\X,
there is an open covering 1 such that C*() = C*. Let C(U) be the central
cocover defined in the step (II) of the proof of Theorem 1. Then, it is
clear-that C*(1) D C() for each open covering U of X. However, C*(U)
is not identical with C(M) in general. Theorem 1¥ shows that the para-
compactness is characterized by the property how central cocover are
embedded in the Stone-Cech compactification SX.

Let B = {V,] ae A} be a descending chain of SX. Let us agree to
call B a free neighborhood chain of O CBIN\X (of weight m) provided
that (Card(4) = m and) [} {Va « < f} is a neighborhood of C for each
Bedand M {V.~ X| ae A} = 0. Then, it is easy to see that the following
condition characterizes the paracompactness:

(P¥) For each central cocover € C fINX, it is true that

(16)  There 48 a free meighborhood chain U of C.

(17T)  Given a free neighborhood chain Y of C, there is a free neighborhood
chain B of C such that B <.

(18)  Given two free neighborhood chains W, B of C such that B <Y,
there is a free neighborhood chain W such that B < W< U.

Here, the weights of I, B and W are identical but they need not eoincide
with the weight of the central cocover C.

We may abbreviate the above condition (P#) as follows: Every central
cocover has a nested system of free neighborhood chains. In fact, we can
construct a system of free neighborhood chains {%8,}, where » run through
‘the set ‘of diadic numbers in the unit interval, by repeated use of the
condition (P#), in the same way as in the step (IV) of the proof of
Theorem 1. Thus, we have the following

TEEOREM 17. 4 space is paracompact if and only if every central
cocover has a nested system of free neighborhood chains.

3. An application. The notion of paracompact spaces was originally
introduced in [2] by the property of covering asserting that

{(19) Every open covering has a locally finite open refinement.
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E. Michael [5] proved that the following condition is equivalent to (19).
(20)  Every open covering has a o-locally finite open refinement,

Two types of weaker conditions which are equivalent to the paracom-
pactness has been obtained by E. Michael [6] and the author [11].

(21)  Every open covering has a linearly locally finiie open refinement.
(22) Hvery open covering has a o-cushioned open refinement.

In the following, we shall give a simultaneous generalization of these
results.

DerFmNITION 2. A family B = {V,| ieA} with a well ordered index
set A is said to be a linearly cushioned refinement of W= {U,| ae 4} if
there is a mapping ¢: A4 satisfying the following condition:
U{Val 2e A*}C U {Ud| aep(d*)} for each bounded subset A* of .1

The mapping @ in the above definition will be called a cushion
mapping of B. It is clear that ¥,C U. for each i € 4 and for a = ¢{2) e 4.

THEOREM 2. (3) A space is paracompact if and only if every open
covering has a linearly cushioned open refinement.

Proof. Let § = {F.| ae A} be a descending free closed chain and
let W= {U. aeA} be a chain such that § < U. Put O.= Int{U{a)
~ O(F,), where U(a)= N{U,] y < a}. Then O = {0,} ae 4} is an open
covering of the space X. Let 8 = {V;! 4 e A} be a linearly cushioned open
refinement of O, and let W = {W,| ¢ e X} be a linearly cushioned open
refinement of B. Let g: A—+4 and y: T-—>A denote the cushion mapping
of B and B respectively. For each % ¢ X, choose an index o(#) € 2 such
that # € Wyg and let A(z) e 4 be the least index for which 2 e V.
If ¢(2) = o, then V2CInt(U(a)) ~ C{Fa). Therefore ¥.C U, for each
y<a It B> a then V; ~Fy= 0 since § is a descending chain. Thus
we have

(23) V.CU, i ol >y

and

(24) VinF=0 if @A)<p.

It follows from (23) and (24) that

(25) Ul ¢ld) <aq, Le A3 CO(F)

for any hounded set A* and that

(26) U W op((0) < e 0 Z3C U A< a} C C(Fa)
for any bounded set *,

() This characterization of paracompactness was announced ab the Topology
Conference at Arisona State University, held in 1967.
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Put
(27)  Wal®)

= W,,(x)\iU 73 2<v(o(@), oA <a} v U{Wol 0 <o(a), p(v(o)) < a}] .
By (25) and (26), Wa#) is a neighborhood of v if 2eF,. Put N,
= | {Wo(x)| #<Fo} and consider- an open chain N = {No| aed). Put

(28)  Wgle)

— WUl 2 <lo(@), o2 < B} w U (Wl ¢ <ola), olp(e) < 4l].
Then, We(x) is a neighborhood of F(B) =) {Fa| a< B} and it is easy
to see that Weg(z) C Wo(z) for each a< f. It follows that § <N. To
prove W2, let y be a point such that y ¢ Int(T(B)), where U(f)
= {Ud a< p}. We shall show that y¢% for some a< f. Since
Ty ~ Wog is a neighborhood of y, there is an a<f such that Ty,
A Wy @ Us, because otherwise Vi) n Way) is a neighborhood of y
contained in U(f) which is contradictory. From (23), we have the following
relations:

(29)
(30)

pli) <,
plple@)) <a-
Put Fy= |z el plo(@) = Ay)}, Fo={weld o(2)=0(y)} and F,
=z eF.| p(o(@) < My), o(@) <o(y)} and put Ne= | {Wo(@)| 5 eF}
for i=1,2 and 3. Then N,= iC}lNi. In view of (27) and (29), we can

see that W.(2) ~ Vigy =@ for each zeF,, and hence we have y ¢ ;.
From (27) and (30), it follows that Wi(z) » Wy = @ for each z T,
and therefore y ¢ N,. In -case that » e Fy,

U Waw| # eFo} C U {Wo| o< aly), p(a) <Ay C UV 2A<i(y)}.

Because of the minimality of A(y), y ¢ ¥, for each A < A(y) and therefore
Y é T {Wom| ®eFs}. Thus, we have y¢N;. Therefore y¢ N, and it

follows that [ {N. a< g} CInt(U(p)). Thus, we have proved that

% < U. It follows that X is paracompact by Theorem 1.
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