Approximating the standard model of analysis

by

H. B. Enderton (Los Angeles, Cal.) and Harvey Friedman (Madison, Wis.)

§ 1. Introduction. The class of β models of analysis has been introduced by Mostowski ([6], [7]). These can be characterized as the models of analysis absolute for one-function-quantifier statements about sets in the model. (A more careful definition is given below.) About 1963 Putnam [8] and Gandy independently proved a conjecture of Cohen, that there is a smallest β model, and that it coincided with the class of ramified analytical sets ([3], p. 60). (In contrast, there is no smallest ω-model of analysis.) This result is helpful in indicating the extent and the boundary of the theory of β models.

Let a β_α model of analysis [10] be one which is absolute for α-function-quantifier statements about its sets. In 1969 J. Shilleto proved that there was a smallest β_α model, and that one could construct it by a procedure similar to the ramified analytical construction, but adding at each stage a segment of the sets A^n_α in sets already obtained [11].

In this paper we first give a simple argument which shows that there is a smallest β_α model. It gives a characterization of this smallest model in terms of the hierarchy of constructible sets. (For comparison, the smallest β model can be characterized as the class of subsets of the natural numbers which are constructible with order less than α, where α is the first ordinal for which this class forms a β model.) Next we give a different construction of the smallest β_α model which is similar to the construction of the ramified analytical sets. It is simpler than Shilleto's construction in that at each stage all sets A^n_α in those already obtained are added. In §3 we extend these results to β_n models for $2 < n < \omega$, assuming that a certain basis property holds.

We now attempt to explain our notation. In this paper a set is always a subset of the set N of natural numbers. An ω model is identified with its class of sets, and so is considered to be a subclass of $\mathcal{F}N$. (See [4] for a discussion of ω models. In particular we demand that a model of analysis satisfy the full comprehension schema.) The standard model of analysis is of course $\mathcal{F}N$ itself. If \mathcal{A} and \mathcal{B} are subclasses of $\mathcal{F}N$, say that $\mathcal{A} \sqsubset^* \mathcal{B}$ if

and only if \(\mathcal{A} \subseteq \mathcal{B} \) and for any \(\Sigma_1^0 \) sentence \(\varphi \) with parameters for members of \(\mathcal{A} \)

\[
\models_\mathcal{A} \varphi \iff \models_\mathcal{B} \varphi .
\]

(This condition, that \(\Sigma_1^0 \) statements relativize downward, is clearly equivalent to saying that \(\Pi_1^1 \) statements relativize downward.) \(\mathcal{A} \) is defined to be a \(\beta_\alpha \) model if and only if \(\mathcal{A} \) satisfies comprehension and \(\mathcal{A} \models \Sigma_1^0 \) \(\mathcal{N} \).

Finally a \(\beta \) model is a \(\beta_\alpha \) model.

By a well-known argument ([11], Theorem 1.10, p. 87) we can also say that \(\mathcal{A} \models \Sigma_1^0 \) \(\mathcal{N} \) if and only if \(\mathcal{A} \) retains for classes which are \(\Sigma_1^0 \) relative to members of \(\mathcal{A} \). In particular an \(\alpha \) model is a \(\beta_\alpha \) model if and only if it is closed under relative \(\Delta^1_1 \)-ness.

Let \(\mathcal{L} \) be the class of constructible sets, and \(\mathcal{L}_\gamma \), those of order less than \(\alpha \). We will use several results from [1]. The standard \(\Sigma_1^1 \) definition of \(\mathcal{L} \) covers over a class \(\mathcal{M} \) of sets the class \(\mathcal{C}^{\mathcal{M}} \). If \(\mathcal{M} \) is a \(\beta \) model, then \(\mathcal{C}^{\mathcal{M}} \models \mathcal{L}_\gamma \), where \(\gamma \) is the least ordinal not represented in \(\mathcal{M} \) \(\mathcal{L} \) is a \(\beta_\alpha \) model. (See [13]; this fact is generalized in the theorem below.) If \(\mathcal{A} \models \mathcal{L} \) (i.e., \(\mathcal{A} \models \mathcal{L}_\gamma \) for all \(\gamma \)) then \(\mathcal{A} \) is also a \(\beta_\alpha \) model. This happens for example if \(\mathcal{A} \) is the class of constructibly analytical sets, and it happens if \(\mathcal{A} \models \mathcal{L}_\gamma \) for certain uncountably many countable ordinals \(\alpha \).

One last preliminary comment: Observe that a set belonging to a \(\beta_\alpha \) model \(\mathcal{M} \) is \(\Delta^1_1 \) in \(\mathcal{M} \) if and only if it is really \(\Delta^1_1 \).

\section{2. \(\beta \) models}

We first have the following result, which is based on Shenfield's absoluteness theorem [13].

\textbf{Theorem 1.} Let \(\mathcal{M} \) be a \(\beta_\alpha \) model of analysis. Then \(\mathcal{C}^{\mathcal{M}} \models \mathcal{L} \cap \mathcal{M} \), \(\mathcal{C}^{\mathcal{M}} \models \Delta^1_1 \mathcal{M} \), and \(\mathcal{C}^{\mathcal{M}} \) is a \(\beta_\alpha \) model.

\textbf{Proof.} Since \(\mathcal{L} \) is a \(\Sigma_1^1 \) class, we have \(\mathcal{C}^{\mathcal{M}} \subseteq \mathcal{L} \cap \mathcal{M} \) for any \(\beta \) model \(\mathcal{M} \) and \(\mathcal{L} \cap \mathcal{M} \subseteq \mathcal{C}^{\mathcal{M}} \) for any \(\beta_\alpha \) model \(\mathcal{M} \). Now consider a \(\Sigma_1^1 \) sentence \(\exists \vartheta \forall \psi \beta \) with parameters for members of \(\mathcal{C}^{\mathcal{M}} \).

\[
\models_{\mathcal{M}} \exists \vartheta \forall \psi \beta \iff \models_{\mathcal{M}} \exists \vartheta \exists \psi \forall \varphi \beta \text{ by [13]}
\]

\[
\models_{\mathcal{M}} \exists \vartheta \exists \psi \forall \varphi \beta \iff \models_{\mathcal{M}} \exists \vartheta \forall \psi \exists \varphi \beta.
\]

Finally \(\mathcal{C}^{\mathcal{M}} \) satisfies comprehension since a set definable over \(\mathcal{C}^{\mathcal{M}} \) is definable also over \(\mathcal{M} \), and so is in \(\mathcal{M} \) as well as being in \(\mathcal{L} \).

Hence any \(\beta_\alpha \) model \(\mathcal{M} \) includes a \(\beta_\alpha \) model \(\mathcal{C}^{\mathcal{M}} \) which equals \(\mathcal{L}_\gamma \) for some \(\gamma \). We get the smallest \(\beta_\alpha \) model by simply choosing \(\gamma \) as small as possible. Thus we have:

\textbf{Corollary 2.} There is a smallest \(\beta_\alpha \) model, namely \(\mathcal{M}_\gamma \) for the first \(\alpha \) for which \(\mathcal{M}_\gamma \) is a \(\beta_\alpha \) model.

The \(\alpha \) referred to in this corollary is of course countable; in fact we can say much more. Carry out the above proof within the constructibles. The class of well-orderings \(\mathcal{W} \) such that \(\mathcal{C}^{\mathcal{W}} \) is a \(\beta_\alpha \) model is \(\Pi_1^1 \) and non-empty, so it contains a \(\Delta^1_1 \) element. Since anything which is constructibly a \(\beta_\alpha \) model is really one (by the last preliminary comment), we conclude that there is a constructively \(\Delta^1_1 \) (and hence really \(\Delta^1_1 \)) ordinal \(\alpha \) such that \(\mathcal{L} \) is a \(\beta_\alpha \) model. Similarly there is a constructively \(\Delta^1_1 \) set which encodes (in a natural way) a \(\beta_\alpha \) model.

A "ramified analytical" style construction of the smallest \(\beta_\alpha \) model can be given as follows: For a class \(\mathcal{A} \) of sets, let \(\mathcal{D} \mathcal{A} \) be the class of sets which are definable over \(\mathcal{A} \) by a formula containing parameters for members of \(\mathcal{A} \). Define by transfinite recursion:

\[
\mathcal{F}_0 = \emptyset,
\]

\[\mathcal{F}_{\alpha + 1} = \text{the class of sets } \mathcal{D} \mathcal{F}_\alpha \text{ relative to members of } \mathcal{D} \mathcal{F}_\alpha,\]

\[\mathcal{F}_\alpha = \bigcup \mathcal{F}_\beta \text{ for limit ordinals } \alpha.\]

This construction stabilizes at some ordinal, say \(\gamma \), at which a \(\beta_\alpha \) model is first obtained. (Clearly \(\mathcal{F}_\gamma = \mathcal{F}_{\alpha + 1} \) iff \(\mathcal{F}_\gamma \) is a \(\beta_\alpha \) model of analysis.) Let \(\mathcal{F} = \mathcal{F}_\gamma \).

\textbf{Theorem 3.} \(\mathcal{F} \) is the smallest \(\beta_\alpha \) model of analysis.

\textbf{Proof.} First we claim that for every \(\alpha \leq \gamma \), \(\mathcal{F}_\alpha \subseteq \mathcal{F}_\gamma \). Any class \(\mathcal{A} \subseteq \mathcal{F} \) which is closed under \(\Delta^1_1 \)-ness must equal \(\mathcal{L}_\gamma \) for some \(\gamma \). Hence \(\mathcal{F}_\gamma = \mathcal{L}_\gamma \) for some function \(f \) and \(f \) is strictly increasing below \(\gamma \). Since \(\mathcal{F}_\gamma = \mathcal{L}_\gamma \), we have the \(\alpha \leq f(\alpha) \) for all \(\alpha \leq \gamma \), thus establishing the claim.

Now let \(\mathcal{M} \) be a \(\beta_\gamma \) model, and \(\mu \) the least ordinal not represented in \(\mathcal{M} \). Then by the above theorem \(\mathcal{C}^{\mathcal{M}} = \mathcal{L}_\mu \) is a \(\beta_\mu \) model. The least ordinal \(\gamma \) not represented in \(\mathcal{C}^{\mathcal{M}} \) may be smaller than \(\mu \), but \(\mathcal{L}_\gamma = \mathcal{L}_\gamma \) as defined within \(\mathcal{C}^{\mathcal{M}} \).

Since \(\Delta^1_1 \)-ness is a property absolute for \(\beta_\alpha \) models, \(\mathcal{F} \) coincides with the result of carrying out the construction of \(\mathcal{F} \) inside \(\mathcal{C}^{\mathcal{M}} \). (This is intuitively clear; the full details are in § 3.) Thus

\[
\mathcal{F} \subseteq \mathcal{F}_\gamma = \mathcal{L}_\gamma .
\]

If \(\gamma < \gamma \) then \(\mathcal{F}_\gamma \subseteq \mathcal{F}_\gamma \), whence equality holds and \(\gamma = \gamma \). Thus in any case \(\gamma < \gamma < \mu \) and \(\mathcal{F}_\gamma \subseteq \gamma \).

These methods do not extend (within ZF) to \(\beta_\alpha \) models for \(\alpha > 2 \).

For if there is a measurable cardinal, then \(\mathcal{L}_\gamma \) is never a \(\beta_\alpha \) model for any \(\alpha \),

\begin{flushright}
Fundamenta Mathematicae, T. LXXII
\end{flushright}
by a result of Solovay [14]. We can instead consider submodels of \(\mathcal{L} \). The above results generalize to \(\beta_n \) models, but in uninteresting ways. Let \(\mathcal{M} \) be a \(\beta_n \) model, \(n \geq 2 \). Then \(\mathcal{M}_\mu = \mathcal{L}_\mu \cap \mathcal{M} \), where \(\mu \) is the least ordinal not represented in \(\mathcal{M} \). The smallest \(\beta_n \) model is \(\mathcal{M}_a \), for the least possible \(a \). Everything in this smallest \(\beta_n \) model is constructibly \(\Delta^1_n \). The \(\mathcal{F}_a \) construction still works, but \(\Delta^1_n \)-ness must be interpreted in the sense of \(\mathcal{L} \). The union (over \(n \)) of the smallest \(\beta_n \) models is the class of constructively analytical sets, and this is the smallest class \(A \) such that \(A \prec \mathcal{L} \).

§ 3. \(\beta_n \) models. Although the methods of the preceding section do not extend to \(\beta_n \) models for \(n > 2 \), there are other methods which, assuming some basis properties, let us generalize the \(\mathcal{F}_a \) construction. These methods are similar to those used in the \(n = 1 \) case by Gandy and Putnam. Throughout this section, \(a \) is a fixed natural number, \(n \geq 2 \). Again we define the class \(\mathcal{F}_a \) by recursion; this time it will be slightly more convenient to begin with \(a = -1 \).

\[\mathcal{F}_{-1} = \emptyset; \]
\[\mathcal{F}_{a+1} = \text{the class of sets } \mathcal{L}_a \text{ relative to members of } \mathcal{DF}_a; \]
\[\mathcal{F}_a = \bigcup_{\lambda \leq a} \mathcal{F}_\lambda, \text{ for limit ordinals } \lambda. \]

Let \(\mathcal{F} = \bigcup_{x \in \mathcal{F}_a} x \). Thus \(\mathcal{F} = \mathcal{G}_\gamma \), where \(\gamma \) is the least ordinal at which \(\mathcal{F}_{\gamma+1} = \mathcal{F}_\gamma \), the ordinal of closure.

Theorem 4. Assume that for any set \(A \), the class of sets \(\mathcal{L}_a \) in \(A \) forms a basis for the classes which are \(\Delta^1_2 \) in \(A \). Then \(\mathcal{F} \) is the smallest \(\beta_n \) model of analysis.

It is clear that in any case \(\mathcal{F} \) is a model of analysis, since \(\mathcal{DF} \subseteq \mathcal{F}_{\gamma+1} \) (where \(\gamma \) is the ordinal of closure). And by the basis assumption, \(\mathcal{F} \prec \mathcal{L} \). It is the minimality that remains to be shown. The idea of the proof is as follows: Let \(\mathcal{M} \) be another \(\beta_n \) model. Then \(\mathcal{F} \mathcal{F}_{\mu} = \mathcal{F}_{\mu} \), where \(\mu \) is the least ordinal not represented in \(\mathcal{M} \). Then inside \(\mathcal{F}_{\mu} \) (indeed inside \(\mathcal{F} \) for any limit ordinal \(\lambda \)) we can define a well-ordering of the class and the construction of the \(\mathcal{F}_{\lambda} \) sets. This would, if comprehension failed in \(\mathcal{F}_{\lambda} \), permit us to define over \(\mathcal{F} \) a well-ordering of type \(\mu \) (see Lemma 6), which would then have to belong to \(\mathcal{M} \). The heart of the proof consists of verifying that the construction is correctly definable within \(\mathcal{F} \).

First we want to show how the construction of the class \(\mathcal{F}_{\mathcal{M}} \) can be described in second-order arithmetic, where \(\mathcal{M} \) is a well-ordering and \(|\mathcal{M}| \) is its order type. We initially set up a language involving ordinals; later the ordinals will be replaced by numbers in the field of \(\mathcal{M} \). The symbols are:

Numerical variables: Denumerably many; in what follows \(x, x_1, x_2, \ldots \) are number variables.

Set variables: Denumerably many; in what follows \(X, X_1, X_2, \ldots \) are set variables.

Function symbols: \(O, S, +, \times \).

Equality: \(= \).

Sentential connectives and numerical quantifiers: As usual.

Set quantifier symbols: \(\forall x \) for an ordinal \(a \).

Operator symbols: \(\land, \lor \).

The numerical terms are defined as usual. The set terms and the formulas are defined simultaneously:

1. Any set variable \(X \) is a set term. All the other set terms will be closed, i.e., no variables will occur free in them.
2. For numerical terms \(t_1, t_2 \) and a set term \(T, t_1 \approx t_2 \) and \(T_0 \) are formulas.
3. The sentential connective symbols and numerical quantifier symbols can be applied to formulas to form new formulas.
4. \(\forall x \varphi \) is a formula, where \(\varphi \) is a formula such that (a) all set quantifier symbols inside set terms occurring in \(\varphi \) are subscripted by ordinals strictly less than \(a \), and (b) all other set quantifier symbols in \(\varphi \) are subscripted \(a \).
5. \(\approx \) is a (closed) set term, where \(\approx \) is a formula in which no variable other than \(x \) occurs free. (This term is read, "the set of all \(x \) such that \(\varphi(x) \)."
6. \(A \varphi x \ldots x \varphi y \) is a (closed) set term, where \(\varphi \) and \(y \) are arithmetical formulas (i.e., formulas without set quantifiers except as may occur inside closed set terms) in which no variables occur free other than \(x, \ldots, x \). (This term is to denote a relatively \(\Delta^1_n \) set if possible, and is to denote \(\emptyset \) otherwise.)

We now proceed to give a (basically syntactical) definition of truth. The essential feature is that the definition is not relative to some universe for the set variables; but instead the set variables range over the denotations of closed set terms.

For a closed numerical term \(t \), let \(\mathcal{F}_t \) be the number it denotes. Truth for sentences is defined by recursion on the maximum subscript of a quantifier symbol, and, within one such maximum subscript \(a \), on the number of places at which \(\forall x, \exists x, \ldots \) occurs.

1. \(t \approx t' \) iff \(t \prec t' \). The sentential connective symbols and numerical quantifier symbols are treated in the natural way.
2. \(\varphi \) is true iff \(\mathcal{F}_t \varphi \), where \(\mathcal{F}_t \varphi \) is the result of replacing \(x \) in \(\varphi \) by the closed term \(t \) whenever \(x \) occurs free.
3. \(\forall x \varphi \) is true iff \(\mathcal{F}_x \varphi \) for every closed set term \(T \) containing only quantifiers subscripted by ordinals strictly smaller than \(a \).
4. Finally we come to the case of $\Delta x_1 \ldots x_n y$. Nothing is lost if we impose, for some large but fixed k, the additional restriction on set terms of this form that the arithmetical formula φ must be of the form

$$\forall y_0 \exists z_0 \ldots \forall y_2 \theta$$

where θ has no quantifiers aside from those inside closed set terms [9]. On ψ we impose the same restriction. Then we define:

$$\models \forall x_1 \ldots x_n y \psi \text{ iff there is a set } A \text{ such that}$$

(i) $t^* \in A$;

(ii) A natural number n belongs to A iff for every B_1 there exists some B_2 such that for every B_3, we have $\forall a \exists b_2 \ldots \forall a_2$

$$\models \forall x_1 \forall z_1 \ldots \forall x_n \varphi$$

when X_{tu} (for a numerical term u) is replaced by $O \bowtie O$ if $u^* \notin B_1$, and by $O \bowtie O$ if $u^* \notin B_1$.

(iii) [The dual to (ii), using Σ^R_0 form and ψ.]

The English-language set theory above has been italicized; we will later need to consider restricting them to classes smaller than \mathbb{N}.

For a closed set term T, define its denotation T^* by

$$T^* = \{n : \models T_n\}$$

We can then correlate set terms with the T_n classes. A set is definable over F_α iff it is of the form

$$(\exists x \varphi)^*$$

where the set quantifier symbols inside set terms occurring in φ are subscripted by ordinals less than α, and all other set quantifier symbols in φ are subscripted α. And

$$\sim \{T_n : T \text{ a closed set term in which all set quantifier symbols are subscripted by ordinals less than } \beta\}$$

These two statements are easily verified (together) by induction.

As things now stand, formulas and terms may involve ordinal numbers. Ordinals themselves are lacking in analysis, but consider a well-ordering W of some subset of the natural numbers. Then W provides notations for the ordinals less than $|W|$. We obtain W-formulas and W-terms by using these notations in place of the ordinals themselves. And now we can assign G"odel numbers to these, or better yet take the W-formulas and W-terms to be themselves natural numbers. The definition of truth applies as well to W-expressions as to the original kind. Let

$$\models W = \text{the set of true } W\text{-sentences}.$$
We now can see the full details necessary to establish the claim made in the proof of Theorem 3. Let \mathcal{M} be a β_n model, and μ the least ordinal not represented in \mathcal{M}. The claim is that $\mathcal{F}^{\leftarrow}_A = \mathcal{F}_\mu$. The definition of \mathcal{F} in analysis is:

- $A \in \mathcal{F}$ if there is a well-ordering W and a truth set V such that $\tau_W(V)$, and for some closed W-term T, a natural number n belongs to A iff $\tau_n \in V$.

When the W quantifier is restricted to \mathcal{M}, we obtain \mathcal{F}_μ, and nothing is lost when the V quantifier is also restricted to \mathcal{M}.

In order to prove the minimality of \mathcal{F}_μ, it will be helpful to know that over \mathcal{F}_μ we can define an ordering of type β, for β less than the ordinal of closure. Our strategy is to take the least ordinal for which this fails, and to show that closure has occurred by that ordinal.

Lemma 6. For each a less than the ordinal of closure, there is a well-ordering of type a in $\mathcal{D} \mathcal{F}_\mu$. For any such well-ordering W in $\mathcal{D} \mathcal{F}_\mu$, we have V_W in $\mathcal{D} \mathcal{F}_{\alpha+1}$. (We assume here that the basis property stated in Theorem 4 holds.)

Proof. Let γ be the least ordinal such that in $\mathcal{D} \mathcal{F}_\mu$, there is no well-ordering of type γ. We will show that \mathcal{F}_μ satisfies comprehension, whence γ is at least as large as the ordinal of closure. (It then follows that equality holds. If \mathcal{F}_μ contains a well-ordering W of order type greater than the ordinal of closure, we could diagonalize to construct a set in $\mathcal{D} \mathcal{F}_\mu$.)

For any $\alpha < \gamma$, then we have some well-ordering W in $\mathcal{D} \mathcal{F}_\alpha$ of type α. We first show that for any ordering W of type α in $\mathcal{F}_{\alpha+1}$, we have V_W in $\mathcal{D} \mathcal{F}_{\alpha+1}$ (where $\alpha < \gamma$).

Case 1. $a = \beta + 1$ and the ordering in question is W^+ where $W \in \mathcal{F}_\alpha$. We first show that for any ordering W of type α in $\mathcal{F}_{\alpha+1}$, we have V_W in $\mathcal{D} \mathcal{F}_{\alpha+1}$. Then by inductive hypothesis $V_W \in \mathcal{D} \mathcal{F}_{\alpha+1}$. Apply Lemma 5 with $\mathcal{F}_\mu = \mathcal{F}_{\alpha+1}$ to obtain $\forall W \in \mathcal{D} \mathcal{F}_{\alpha+1}$. Apply Lemma 5 with $\mathcal{F}_\mu = \mathcal{F}_{\alpha+1}$ to obtain $\forall W \in \mathcal{D} \mathcal{F}_{\alpha+1}$. Then by inductive hypothesis $V_W \in \mathcal{D} \mathcal{F}_{\alpha+1}$. Apply Lemma 5 with $\mathcal{F}_\mu = \mathcal{F}_{\alpha+1}$ to obtain $\forall W \in \mathcal{D} \mathcal{F}_{\alpha+1}$. Then by inductive hypothesis $V_W \in \mathcal{D} \mathcal{F}_{\alpha+1}$. Apply Lemma 5 with $\mathcal{F}_\mu = \mathcal{F}_{\alpha+1}$ to obtain $\forall W \in \mathcal{D} \mathcal{F}_{\alpha+1}$. Then by inductive hypothesis $V_W \in \mathcal{D} \mathcal{F}_{\alpha+1}$.

Case 2. $a = \beta + 1$ and the ordering in question is W^+ in $\mathcal{F}_{\alpha+1}$. We have in $\mathcal{F}_{\alpha+1}$ another ordering U of type β. There is a unique isomorphism between W^+ and U^*. The isomorphism is arithmetic definable from the orderings, and so also belongs to $\mathcal{F}_{\alpha+1}$. And V_W is recursive in V_U and the isomorphism since the isomorphism induces a truth preserving map from W^+-sentences to U^*-sentences. By Case 1, V_W is in $\mathcal{D} \mathcal{F}_{\alpha+1}$, and V_W must also be in this class.

Case 3. a is a limit ordinal. For any segment $W[a]$ of the ordering W in $\mathcal{F}_{\alpha+1}$, there is a well-ordering U in $\mathcal{F}_{\alpha+1}$ with V_U in $\mathcal{F}_{\alpha+1}$. Thus in $\mathcal{F}_{\alpha+1}$ we have: $V[W \mid a, U]$, the isomorphism between $W[a]$ and U, V_U, and hence V_W. Then

$$f \epsilon V_W \iff \exists a \forall V[W \mid a](V) \& f \epsilon V$$

and the V quantifier can be restricted to $\mathcal{F}_{\alpha+1}$. Thus V_W is in $\mathcal{D} \mathcal{F}_{\alpha+1}$.

To prove Lemma 6, it remains to show that \mathcal{F}_μ satisfies comprehension. For that we use Lemma 7, below, with $\delta = \gamma$ and $\mathcal{A}_\mu = \mathcal{F}_\mu$. We must verify that the hypotheses of that lemma are satisfied. Clearly γ is a limit ordinal and hypotheses (1) and (2) are met. Hypothesis (3) holds, since for any a, \mathcal{F}_a is closed under α'-ness. Hypothesis (4) follows at once from the definition of γ.

As for hypothesis (5), recall that a set \mathcal{A} belongs to \mathcal{F}_μ if it is of the form $\{V \mid x \in V \wedge V \in \mathcal{F}_\mu\}$ for some V where $V \in \mathcal{F}_\mu$. Thus we can let $a(i, x, W)$ be: i is a W-term beginning with β and for some V for which $\tau(V)$, the sentence $a(i, x)$ is in V.

Finally for hypothesis (6) we need a definable well-ordering of \mathcal{F}_μ. First well-order the closed set terms, ordering first according to the largest ordinal subscript, then by length, and then lexicographically. (Actually any reasonable well-ordering could be employed here.) Then define:

$$A \subseteq B \iff A \text{ is denoted by some closed term which is smaller than any closed term denoting } B.$$
6. There is a well-ordering of \(\mathcal{A}_\beta \) definable over \(\mathcal{A}_\delta \).

Then \(\mathcal{A}_\delta \) satisfies comprehension.

Proof. We will define, by recursion on the prenex formula \(\varphi \), a function \(f_\delta \) mapping \(\delta \) into \(\delta \) such that:

(i) \(f_\delta \) is non-decreasing and continuous, and \(a \leq f_\delta(a) \) for \(a < \delta \).

(ii) For any \(a < \delta \), any string \(B \) of sets from \(\mathcal{A}_\delta \), and string \(\bar{n} \) of natural numbers,

\[
|A_{1,0,0}| \bar{n}[\bar{n}, B] \iff |A_{1,0,0}| \bar{n}, B] .
\]

(iii) \(f_\delta \) is definable over \(\mathcal{A}_\delta \) in the sense that the relation which holds between \(\mathcal{A} \) and \(B \) iff both are well-orderings in \(\mathcal{A}_\delta \) and \(f_\delta(\mathcal{A}) = |B| \) is definable over \(\mathcal{A}_\delta \).

Once we have such functions, it easy to see that the comprehension axioms are satisfied. For

\[
|A_{1,0,0}| \bar{n}, B] \iff |A_{1,0,0}| \bar{n}, B] .
\]

by using assumption 2.

For arithmetical (i.e., elementary) formulas \(\varphi \) we take \(f_\delta \), to be the identity function on \(\delta \). This is definable over \(\mathcal{A}_\delta \) by assumption 3. For the negation \(\neg \varphi \) of \(\varphi \) we simply take \(f_\varphi(a) = f_\delta(a) \). The only other case is that of the quantified formula \(\exists \mathcal{X} \varphi \). Here we simply take:

\[
f_{\exists \mathcal{X} \varphi}(a) = \text{the least } \beta \geq a \text{ such that for any string } B \\
\text{from } \mathcal{A}_\delta, \text{any } \bar{n},
\]

\[
|A_{1,0,0}| \bar{n}, B] \iff |A_{1,0,0}| \bar{n}, B] .
\]

(*)

There are such \(\beta \)'s, c.g. \(\beta = \delta \). But we will first show that (for fixed \(\bar{n}, B \)), \(\beta \) satisfying (\(\alpha \)) which is definable over \(\mathcal{A}_\delta \) and hence is less than \(\delta \). (Later the dependence on \(\bar{n} \) and \(B \) will be eliminated.)

Case A. Suppose \(|A_{1,0,0}| \bar{n}, B] \). Thus for some \(C \) in \(\mathcal{A}_\delta = \bigcup_{\varphi \in \mathcal{A}_\delta} |A_{1,0,0}| \bar{n}, B] \).

Choose such a \(C \) in some \(\mathcal{A}_\gamma \); by assumption 1 we may suppose \(\gamma \geq \alpha \).

Then we may simply take \(\beta = f_\delta(\gamma) \), for

\[
|A_{1,0,0}| \bar{n}, B] \iff |A_{1,0,0}| \bar{n}, B] .
\]

and hence

\[
|A_{1,0,0}| \bar{n}, B] \iff |A_{1,0,0}| \bar{n}, B] .
\]

Case B. Suppose on the other hand

\[
|A_{1,0,0}| \bar{n}, B] \iff |A_{1,0,0}| \bar{n}, B] .
\]

as in the preceding paragraph. Again we string these orderings together to obtain a definable ordering longer than any one. Its order type is less than \(\delta \) and is the uniform \(\beta \) desired.

Finally we must verify that \(f_{\exists \mathcal{X} \varphi} \) meets conditions (i)-(iii). That \(f_{\exists \mathcal{X} \varphi} \) is non-decreasing follows from its definition and the fact that the classes \(\mathcal{A}_\delta \) are non-decreasing as \(a \) increases. Its continuity similarly follows from the fact that \(\mathcal{A}_\delta \) equals \(\bigcup_{\mathcal{A}} \) for a limit ordinal \(\lambda \). And \(f_{\exists \mathcal{X} \varphi}(a) \geq a \).
by definition. Condition (ii) is obviously satisfied. For condition (iii) we must show that \(f_{\mathcal{X}} \) is definable over \(\mathbb{A} \). We have

\[
\exists A \exists \mathcal{X} \exists \mathcal{Y} f(\mathcal{X}, \mathcal{Y}) \iff [\mathcal{X}] \subseteq [\mathcal{Y}] \text{ for any string } \mathcal{X} \text{ of sets from } \mathcal{A} \text{ and any } \mathcal{Y}.
\]

By using (primarily) assumption 5, this condition on \(\mathcal{A} \) and \(\mathcal{U} \) (in \(\mathbb{A} \)) is definable over \(\mathbb{A} \).

Finally we are able to conclude that \(\mathcal{F} \) is included in any other \(\mathcal{X} \), model \(\mathcal{M} \). Let \(\mu \) be the least ordinal not represented in \(\mathcal{M} \). As explained above, \(\mathcal{F} = \mathcal{F}_\mu \). If \(\mu \) were less than the ordinal of closure, there would be an ordering of type \(\mu \) definable over \(\mathcal{F} \). But since \(\mathcal{F}_\mu \) is a definable class in \(\mathcal{M} \), the ordering would be definable over \(\mathcal{M}_\mu \) and hence in \(\mathcal{M} \). This completes the proof of Theorem 4.

Theorem 5. Continue to assume that for any \(\mathcal{A} \), the class of sets \(\mathcal{A} \) in \(\mathcal{A} \) is a basis for the classes \(\Sigma^1_n \) in \(\mathcal{A} \). Then for any set in \(\mathcal{F} \), there is a formula (without set parameters) which correctly defines that set over any \(\beta_n \) model \(\mathcal{M} \).

Proof. Consider the set \(\mathcal{A} \in \mathcal{F} \). It suffices to show that \(\mathcal{A} \) is definable over \(\mathcal{F} \). For \(\mathcal{F} = \mathcal{F}_\mu \) is a definable class over \(\mathcal{M} \).

The set \(\mathcal{A} \) is definable over \(\mathcal{F} \) from the set \(\mathcal{V}_\mu \) for all sufficiently large well-orderings \(\mathcal{W} \). And \(\mathcal{V}_\mu \) is definable over \(\mathcal{F} \) from \(\mathcal{W} \). So it suffices to show that for every ordinal less than the ordinal of closure, there is a well-ordering of that type definable over \(\mathcal{F} \).

Let \(\lambda \) be the least ordinal not represented by a well-ordering definable in \(\mathcal{F} \). We claim that \(\mathcal{F}_\lambda \subseteq \mathcal{F} \). For suppose \(\mathcal{A}_1, \ldots, \mathcal{A}_n \) are in \(\mathcal{F}_\lambda \) and

\[
\exists \mathcal{X} \exists \mathcal{Y} dp(\mathcal{X}, \mathcal{Y}, \mathcal{A}_1, \ldots, \mathcal{A}_n, \mathcal{B})
\]

Then the least (in our definable ordering of \(\mathcal{F} \)) well-ordering \(\mathcal{W} \) such that for some \(\mathcal{B} \) in \(\mathcal{F}_\mu \),

\[
\exists \mathcal{X} \exists \mathcal{Y} f(\mathcal{X}, \mathcal{Y}, \mathcal{A}_1, \ldots, \mathcal{A}_n, \mathcal{B})
\]

is definable in \(\mathcal{F} \) from \(\mathcal{A}_1, \ldots, \mathcal{A}_n \). But since \(\mathcal{A}_1 \) is in \(\mathcal{F}_\lambda \), \(\mathcal{A}_1 \) is definable; so the \(\mathcal{V} \) above is definable. Hence \(|\mathcal{W}| < \lambda \) and there is some \(\mathcal{B} \) in \(\mathcal{F}_\lambda \) which works. Hence \(\mathcal{F}_\lambda \subseteq \mathcal{F} \).

Consequently \(\mathcal{F}_\lambda \) satisfies comprehension and so equals \(\mathcal{F} \). So \(\lambda \) is the ordinal of closure.

The conclusion of this theorem can also be stated: A set is strongly representable (biosnumerical) in the theory of \(\beta_n \) models if and only if it belongs to \(\mathcal{F} \).

§ 4. Further comments. In the preceding section \(n \) was a fixed number greater than one. If the basis hypothesis used there (that for a set \(\mathcal{A} \), the class \(\mathcal{A} \) of \(\mathcal{A} \) forms a basis for classes \(\Sigma^1_n \) in \(\mathcal{A} \)) holds for infinitely many values of \(n \), then the class \(\mathcal{A} \) of analytical sets is a basis for any analytical class. In this case (in fact equivalently) we have \(\mathcal{A} \subseteq \Delta \) since for analytical \(\mathcal{B} \),

\[
\exists A \exists \mathcal{X} \exists \mathcal{Y} dp(\mathcal{X}, \mathcal{Y}) \iff [\mathcal{X}] \subseteq [\mathcal{Y}] \text{ for } \gamma = \Delta_0 \neg \forall \mathcal{B} \rightarrow \exists \mathcal{A} \neg \forall \mathcal{B} \rightarrow \exists \mathcal{A} \neg \forall \mathcal{B}. \]

And it is clear (without basis assumptions) that \(\mathcal{A} \) must be included in any elementary submodel of \(\Delta \). Thus we have the simple result:

Theorem 6. If the class \(\mathcal{A} \) of analytical sets is a basis for analytical classes, then \(\mathcal{A} \) is the smallest elementary submodel of \(\Delta \).

This is the analog to Theorem 4 for \(n = 0 \), but its proof is vastly simpler. Also it is obvious for this class that if \(\mathcal{A} \subseteq \Delta_0 \) then each element of \(\mathcal{A} \) is definable (without set parameters) over \(\Delta_0 \).

The basis assumption of section 3 is a well-known consequence of the axiom of constructibility [1]. On the other hand, it has been shown that the basis hypothesis implies that for odd values of \(n \), \(\mathcal{A} \) is not a basis for \(\Sigma^1_n \) ([3], [2]). Martin and Solovay have conjectured that the basis hypothesis does hold for even \(n \); see [5], p. 156. In this event our results would at least hold for \(n \) even and \(n = \omega \).

If we turn from truth to consistency, we have the following result by Silver (see [12]; cf. also Martin and Solovay [5]): If \(\mathcal{L} \) there is a measurable cardinal" is consistent, then it remains consistent with the additional axioms:

1. \(\Delta^1_n \) is a basis for \(\Sigma^1_n \) for each set \(\mathcal{A} \subseteq \Delta \).
2. There is a \(\Delta^1_n \) well-ordering of \(\Delta \) in the order type of the least uncountable ordinal.

The second of these implies that our basis hypothesis holds for all \(n > 3 \) (cf. [1], pp. 350–351).

References

