Tree-like matrix rings

by
Vlastimil Dlab (Ottawa)

The main purpose of the present paper is to call attention to a certain
simple module-theoretic method and, as an illustration of its value, to
derive a representation of (left) torsion-free (semi) uniserial rings (with
unity) of finite length and to give a full characterization and a “canonie”
form of them in terms of so-called decorated (finite rooted) trees. These
results (cf. also R. R. Colby and BE. A. Ruther, Jr [1]) generalize Goldie’s
theorem on block-triangular matrix rings in [5] which is, in turn, a generali-
zation of the Wedderburn—~Artin structure theorem. Thus, our approach
otfers also a very lucid proof of the latter classical result. Ancther im-
portant aspect of our method is the fact that its application can easily
be extended to more general classes of torsion-free rings (cf. [3]) to which
the methods of [1] or [5] (restricted by the condition that components
of the rings contain unique minimal ideals) cannot be applied. Moreover,
as a consequence of our results, we get a complete deseription of inde-
composable injective modules over these rings. ‘

1. Preliminaries. Throughout the paper, B always denotes an (as-
sociative) ring with unity &, and M a unital (left) B-module. In particular,
write R to point out the fact that the ring R is considered as an R-module.

A submodule N of M is said to be essential in M if

NA~X=0 for every non-zero submodule X of M .

If every non-zero submodule of I is essential in M, then the R-module
M is called wmiform. In the respective sense, we speak about (left)
essential or uniform ideals of E.

An R-module M is said to be forsion-free if M contains no non-zero
element of an essential order. Thus, a (left) torsion-free ring is just a ring
with zero singular ideal in the terminology of R. B. Johnson [41.

Given an R-module M, define the socle sequence

0=M,CM;C..CM;CM;:C..C M
of M by
Mg/ M; = socle(M/M;)  for i=0,1,2,..
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Tf M = M, for a certain i, then M is said to be of finite length and the
least i with that property is called the length of M. Again, applying the
latter definitions to xR, we get the concept of a socle series of a ring and
the concepts of a ring of finite length and the length of a ring.

An R-module M is said to be uniserial if there is a direet decompo-
sition

M= M,
W€D,

of M such that, for every o ¢, the submodules of M, form a chain
{by inclusion). Notice that, in partieular, all M,’s are uniform. Thus,
a ring R is (left) uniserial if every left principle indecomposable ideal I;
of R has the property that all left ideals of R contained in I; form
a chain (*).

By a tree, we shall understand throughout the paper a finite rooted
tree, i.e. a (partially) ordered finite set (T, <) such that

(i) T possesses the least element 0, called the root;

(ii) for every ' <{t¢", the order < induces in the interval (#',t")
={z|l e T &V <2<} a linear order.

Obviously, a tree is a meet-semilattice; denote by #'At”’ the meet
of the elements ¢ and " of T. Furthermore, for every ¢ ¢ 7, denote by T;
the set of all upper neighbours of ¢, i.e.

Ti= 2] e T&t <o &, 0> = {t, }};
moreover, put
T* = T\{0}.
Now, a decorated tree (T, <, (n, D)) is a system consisting of pairs
(n:, D) indexed by T%, where n: are natural numbers and D; division
rings such that

Dy C Dy for every ¥ <t of T*.

In an obvious manner, two decorated trees (T’, </, (v, D’)) and
(T", <", (n", D”)) are said to be isomorphic if there exists a one-to-one
order-preserving mapping @ of (I', <') onto (77, <) and a system
{W¥il te I'*} of ring isomorphisms ¥;: D;—»Djs such that

- mg=mnjp for all 1e T,

and that
¥y is an extension of Wi - for every ' <t of T'*.

2. Method. Our method consists in three steps belonging, in part,
to the folklore of the module theory.

(*) Consequently, such a ring is necessarily (right) perfect (cf. [4]).

icm

©

Tree-like mairiz rings 157

2.1. A ring R with unity ¢ i8 isomorphic to the R-endomorphism ring
of rR: B =~ Endr(zE).

Evidently, the mapping ®: R->Endz(zR) defined by of — Py
where zp,= y¢ for all yeR, is an isomorphism (notice that, for
@ eEDdR(RR); Q= (8?7) qj) .

2.2. Let a (left) unital R-module M be a finite divect sum
M=©Q M;.
i=1
Then, the endomorphism ring Ende(M) of M is isomorphic to the ring
M(r, Hompg( My, My)) of all X7 matrices (gi) where, for every 1 < i,j<r,
Pij eHomR(M¢, Mj) .

(For a generalized version, see [2].)

Denoting by

g M—M; and g MM, 1<i<r,

the projections and injections associated with the decomposition
r
M= @ M;, we can see easily that the mapping
i=1
®: Endg(M)->M(r, Homg(M;, Mj))

defined by
@ = (pi),

is an isomorphism (notice that, for (yJ{j)EM(T’HomR(Mf’ M;)), vij
=( 2 mypui)®).

I<ijsr

2.3. Let M, and M, be (left) unital R-modules and let
o ¢ Homgp(M,, M,).

where . Pej == iupyrj for 1 < Z,j < ¥,

If M, is uniform and M, torsion-free, then p is either zero or a monomorphism,
i.e. an embedding of M, into M,. If, moreover, there is just one submodule N,
of M, which is R-isomorphic to M,, then Hompg(M,, M,) can be endowed
‘with o ring structure such that

Hompz(M,, M,) =~ BEndz(M,)

is a division ring. If, in addition M, is uniform, then Bndz(3M,) can be
congidered as « subring of Bndg(M). AU ihis happens, in particular,
if M,is a uniserial R-module of finite length, unless Homz(My, M) = 0.

Proof. The first part follows very easily (ef. [2]): If ¢ is not monie,
‘then Kerg == 0 and thus, for every m ¢ M, the left ideal

Bn— {0l ¢ <R &om CKerg}
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of R is essential in R. Now, since

(Bmm)p = En(mp) =0,

we deduce that me =0, i.e. ¢ is a zero morphism.

Assnming that there iz @ unique submodule N, of M, which is
R-isomorphic to M, denote by u: M,~>N, a (fixed) E-isomorphism
and by «: N, —>M, the embedding of N, in M,. Define the mapping

@: Endg(M,) >Hompg (3, M,)
by

¢® = ¢¥: for all ¢ < Bnda(M,).

1t is a matter of routine to verify that @ is & one-to-one mapping onto
Hompz(M,, M) which respects the additive strncture of Homg(M,, M,).
In fact, every a; ¢ Homp(M;, M,) can be written (in a unique way) in

the form
o; = oW with @; e Bndz(M;);

thus, the multiplication
(= @, a,D)

ay x ay = a0, Pt

defined for every o, and a, of Homg{M,, M,) transforms Homg (M, M)
into a ring isomorphic to Endg(2f). Obviously, Endr(M,) is a division
ring. Purthermore, if M, is uniform, then 0: Endg(M,) >Endg(N,)
mapping every ¢ ¢ Endg(3,) into its restriction gy, to N, C M, is evi-
dently an embedding of Endz(M,) into Endg(d,). And since A, o2 N,,
Endg(M,) can be embedded in Endr(M,).

The rest of our assertion follows easily.

Now, a subsequent application of 2.1, 2.2 and 2.3 yields immediately
that a (left) torsion-free umiserial ring of finite length is isomorphic to
a ring of all r X r matrices (pi;), where the entries gy are, for a fixed pair
{#, j), elements of a division ring Di; (which may, possibly, be trivial).
As a matter of fact, on the basis of our simple observations, we can assert
mueh more (cf. [1]). In particular, we obtain in this way a very lucid
proof of the Wedderburn—-Artin strocture theorem. However, here we
want to present an explicite deseription of our.matrix representation
and to give a full characterization of our rings by means of decorated trees.

3. Theorem.

TuEoREM. There is a one-to-one correspondence Dbetween the 10N~
isomorphic (left) torsion-free uniserial rings of finite length and the non-
isomorphic decorated trees. Every such ring of rank r can be represented as
a ring of v X r matrices (wy) such that, for every 1 < ,j <r, the entries Zi
belong to a division ring Dy; (equal, possibly, to 0) and satisfy:
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(i) If Dir # 0 for r >k >1>1, then Dy = Dy for all I<i,j<k
(i) If Dz #0 for 1 <k<I<r, then Dy = Dy for all k <j<l.
(i) If -chzjé 0 for 1<k<I<r, then Dy C Dw for all k<<il.
(iv) If Dre 5= 0 and Dz £ 0 for 1 <k <t<1<r, then Dy = 0.

(v) D £ 0 for all 1 <ir.

This representation is unique up to a certain simulianeous permutation
of the rows and columns of all matrices (and, of course, isomorphic copies
of Dis’s).

Remark. Notice that, as a consequence of our Theorem, we get
the following two statements on the (left) torsion-free uniserial ring B of
finite length:

(a) BfSocE is again (left) torsion-free (and, of course, uniserial of
finite length).

(b) For every (left) minimal ideal ¥ of R, the ring R possesses a (left)
principal indecomposable ideal which is R-isomorphic to V.

Let us also remark that in course of our proof of Theorem; we shall
describe the isomorphism and representation explicitely.

Proof of Theorem will be established in the following three steps:

A. Denote the clags of all (left) torsion-free uniserial rings of finite
length by R and the class of all decorated trees by . Define the mapping
@: R—+T as follows. Given R e R, consider a decomposition

»
R=® L,
=1
of B into the (left) principal indecomposable ideals Li, 1 <4< 7, and
define on the set {Ly|1 <14 <r} a preorder < by
L’[l < Liz Hom_R(Lﬁ’ Liz) #0.
The preorder < defines a partition of the set {L|1 < ¢ < 7} into “equiva-
lence classes” ¢; moreover, < induces an order on the set T* of all these
classes. Adjoin to 7* an element 0 and define 0 < £ for all ¢« T*. Tt is
easy to see that (7T, <), where T = T* v {0}, is a tree.
Now, for each te¢ T* put
== card {Ly|L; e 1} .
Furthermore, for each {,e 7Ty, take
Dy, = Bndg(Ly,)

if and only if

for Lin € to .
induction: Having chosen, for all ¢t < ¢, division rings

And, proceed Dby
) Dy ~ Endr(Ly) with Ly et
sueh that

Dy C Dyr whenever ' < ¢/,
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we can embed, for £, ¢ T7,
Dy =~ Endg(Ls) with Lj ety

into Dz, in view of 2.3:
D, CD3.

As a result, We get a decorated tree
Ro = (T, <, (n, D)} .
B. Denote by M(r, Dy;) the ring of all # X7 matrices (@4;) described
in Theorem and, furthermore, denote by M6 the class of all such matrix
rings (with variable 7, as well). Define the mapping ¥ <« : G4 as

follows.
First, given (T, <, (n, D)) € G, choose, for each t ¢ T, a total order <,

in T:, and subsequently extend < into a full order <€ on T, defining
for t', 1" e It

(1) It ¢ <1, or ' >1t", then ' < ', or ¢ > t”, respectively.

(2) Otherwise, write ¢ = t'A?"/, notice that t' # ¢ # ¢’ and take

#eTin(t,ty and &'elin <, [

if o' < 2", or o' »ia’, then ¥’ €ty or 1/ > 17, respectively.

Tt is easy to see that < is a total order on the set T. Thus, if T
has s elements, we can write

T*= {1l <2< sy With {; <€l for 1<z<<s—1.
Observe also, that for every 2, z and 2 such that
ty<t, and <Lty

we have either 2 <2 <2, OF 2, <2< 2.
Now define the matrix ring M(r, Dy) in the following way: First,

s
r=2mz.
1

Secondly, given a pair (¢, j) with 1 < 4, j <, thereis a unique w, 1 <w<s

such that
w—1 uw w—1
Ent,+1<i<2%t, (for w=1, puthz——“O);
z=1 z=1 z=1
and then put Dy = D, for all j such that
w1 w—1
2 i +1 < J <Z g+ Znt,
Z=1 g=1 =ty

and Di; = 0 otherwise.

©
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It is easy to see that (T, <, (n,D)) ¥ <= M(r, Dy) just defined
s a (matrix) ring and that it satisfies the conditions (i)~(v) of Theorem.
Furthermore, it is easy to see that every such matrix ring satisfying
({i)-(v) is an image under ¥ of a suitable decorated tree. And, more
importantly, that two non-isomorphic decorated trees produce under ¥
two non-isomorphic matrix rings. This follows immediately from the
fact that all the decorated tree “variables” can be read from the socle
series

-

O=M0CM1C...CM:,:_1CM5C...CM1=M1= M(?",Dij)

of the matrix rings: The non-zero elements ¢ of the tree correspond to .
the homogeneous components Py of My/M;_;, the order < relates to
the inclusion of the column ideals of M(r, Dy;) and the numbers #; and
the division rings D: correspond to the ranks of P.; and to the endo-
morphism rings of the minimal direct summands of Py, respectively.

_ G If we re-order the left principal indecomposable ideals Ly, 1 < i < r,
according to the extension <€ of the order < defined on {L;]1 <i<r}
in the section A., and then apply our method deseribed in 2.1, 2.2 and 2.3,
we get immediately

R =~ M(r,Di) = ROV .
This completes the proof of our Theorem.

4, Remarks. Observe that we have not used in our proof the uniqueness
r

of the decomposition R = @ L;; as a matter of fact, this uniqueness is
i=1

a consequence of our considerations.

Algo, we can see readily that the ring M(r, Dy;) considered as a right
module is torsion-free and of finite length. Thus, from our Theorem,
we deduce that a left torsion-free uniserial ring of finite length is right
torsion-free and of finite length (cf. also Lemma below).

Notice that the decorated trees of the type

{n,.0,) fny.,0,) (n:5,)

correspond to the semisimple rings (artinian rings B with RadR = 0).

Fundamenta Mathematicae T. LXXII 11
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The trees of the type

i)

()

correspond to the artinian torsion-free generalized wuniserial rings of
W. A. Goldie [3]. In contrast to this proof, we get the representation
and its uniqueness very easily from the following simple

LemwMA. Let M(r, Di;) be a matriz ring satisfying (1)~(v) of Theorem.
Then

r .
M('r’—D'l]) :k@le,

where Ry, 1 <k < r, is the k-th'row right ideal, i.e.
Ry = {(xyy)] (x15) e M(r, Dyy) and @y;=0 for all i # k} .
AWl Ry are uniserial as right M(r, Dy;)-modules if and only if
(ili)" Diz 5 0 for 1<k <U< 7 implies Dy = Dy for all 5 < i<,
i.e. if and only if M(r, Dyj) is vight torsion-free uniserial ring of finite length.

Proof. In order to show (iii)’ indirectly assume that i, % are the
least indices for which

DilgDik,' ki,
Necessarily, &= i—1 and thus
Diyii=Diy; 2 Dy and Dz =0.
Now, consider D;_;; as a vector space over Dy, take two elements g,, o,
of Di_y; independent over Dy, and denote by B9 p=1, 2, the rxr

matcrix having gy in the ({—1,1) position and 0 elsewhere. It is easy to
verify that the right (principal) ideals

B%.-M(r,Dy), p=1,2,

are contained in B; , and are, with respect to inclusion,. incomparable.

©
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The rest follows immediately from Theorem and the fact that the
conditions (i), (ii), (iil)’, (iv) and (v) are symmetrical.

In conclusion, let us mention yet another application of our Theorem.
Agsume that a (left) torsion-free uniserial ring of finite length is simple,
ie. that B corresponds to a decorated tree with a single neighbour of 0,
say to

It is well known (for a simple proof see [3]) that the injective hull of xR is
the full ring of 7 X r matrices over D. Thus, the (indecomposable) injective
hull Hr(V) of a minimal left ideal V of R (or, for that matter, of a “column”
jdeal of R) can be easily characterized by the tree (): the tree fully
describes its E-submodule structure. In particular, one can see that the

&
length of Hr(V) equals to the maximum of the sums 1-- % (Dg_.: Dg),

where 0 <t < ..<itx=1 are all elements of the interval <0,?) and
(Dy,: Dy) denotes the dimension of Dy, over Dy.
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