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identity by an isotopy which is fixed on the complement of Interior(4,)
and such that for each i = 1, ..., 4, g(a:) intersects at most one of P, v P,
and Py v P,. By the second of the above definitions and Lemma 2,
L cannot be greater than zero since if I is any integer greater than zero
and F is a homeomorphism satisfying the requirements of the second
of the above definitions, there is a homeomorphism A such that L—1
and h also satisfy the requirements of the second of the above definitions.
The contradiction that L is not zero nor greater than zero completes the
proof of Theorem 8.
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Some characterizations of paracompactness in k-spaces *

by
James R. Boone (Texas)

1. Introduction. Paracompact spaces and k-spaces both have the
distinetion of being simultaneous generalizations of metric and compact
spaces. The purpose of this paper is to present some of the interactions
between these seemingly unrelated notions. Throughout this paper the
underlying topological structures will be the k-spaces (e.g. first countable,
TFréchet, sequential, locally compact, %'-space, and %-space). Specifically,
for spaces within the class of k-spaces, those with the paracompact
property are characterized. For this purpose, four generalizations of
paracompactness are introduced. These generalizations are defined in
terms of refinements which have some finiteness condition on the elements
of a given collection of subsets. With the additional structure of the
k-spaces these refinements have the properties required for the charac-
terizations. These characterizations are given in § 3 and are summarized
in the implication diagram which appears in Figure 3.2.

The fundamental notions used in this study are developed in § 2.
Applications of these concepts to metrizability of spaces are given in § 4.
Some examples are presented in § 5. The term “space” will mean a Haus-
dorff topological space and the term “family” will mean a family of subsets.

2. Preliminaries. The fundamental notions involved in this work will
be developed in the general setting of F'-hereditary collections and weak
topology in the sense of Whitehead. A family % = {K.: a< 4} in a space
X is said to be an F-hereditary collection provided: (i) X is a covering
of X and (i) for each closed set J'C X, F ~ K, « X for each a < 4. Some
mapping properties of collections with property (ii) were investigated
by Renmow [11]. For all '~ hereditary collections of interest, the singletons
are in X, and (i) is satistied. For instance, the collection of all compact

* This paper represents part of the author’s dissertation which was written under
the guidance of Professor Hisahiro Tamano at Texas Christian University. The author
would like to acknowledge the National Aeronautics and Space Administration for
financial support during the research and the Society of Sigma Xi for assistance in the
Preparation of the dissertation.
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gets and the collection of all sets which are the closure of images of con-
vergent sequences are .F'-heredifary collections. If ¥ = {K,: aed} iy
an F-hereditary collection in a space X, then a family ¥ = {Fj: B e B
is said to be X-finite if for each a e d, K, n Fg 3 @ for at mogt finitely
many feB. If X is the F-hereditary collection of all compact setg
(closures of convergent sequences) then F is called a compaci-finite
{¢s-finite) family. A space X i3 said to have the W-weak topology with
respect to a family J& provided: ¢ C X is open if and only if @ ~ H ig
open in H for each H < . A space X is a k-space if and only if X has the
W-weak topology with respect to the F-hereditary collection of all
compact sets in X. Also, a space X is a sequential space (Franklin [5])
if and only if X has the W-weak topology with respect to the F -hereditary
collection of closures of convergent sequences in X. The first step in the
characterization of paracompactness in k-spaces is given in the following
fundamental lemma.

Lewwa 2.1. If a space X has the W-weak topology with respect to an
F-hereditary collection X = {Kq: a <A}, then every J-finite closed Samily
F = {Fp: BeB} in X is locally finite.

Proof. ¥ is a closure preserving family. To prove this, let B’ C B,
and let a be any element of 4. Since ¥ is J-finite there exists g1, B2, ..,
frneB’ such that (U{Fp: feBY) nHo= (U{Fs: 1 <i<n})~EK,.
Hence, since Fj; ~ K, is closed in K, and the finite union of closed sets
is closed, (| J{Fp: B eB'}) " K, is closed in K,. Thus U {Fg: BB} is
closed in X, because X has the W-weak topology with respect to X.
Hence, ¥ is a closure preserving family. Accordingly, for each p ¢ X,
G= X— [ {Fp: p¢Fy} is an open neighborhood of P which intersects
only those Fye & such that p e Fs. Thus, sinee F is point-finite, @ is the
required neighborhood. Hence & is locally finite.

From the preceeding lemma, from Michael’s [7] characterization of
paracompactness by means of locally finite closed refinements and from
the shrinkability of point-finite open coverings of a normal space, the
validity of the following theorem is immediate.

THEOREM 2.2. If a reqular (normal) space X has the W-weak topology
with respect to an - hereditary collection % and if every open covering of X
has a X-finite closed (open) refinement, then X is paracompact.

An interesting relationship, which depends heavily on the notion
of F'-hereditary collection, exists between the W-weak topology and the
weak topology in the sense of Morita, [10]. A space X is said to have the
M-weak topology with respect to a closed covering § = {Fs: pe B} if
(i) ¥ is a closure preserving family and (ii) for each subset B’ C B, if
HC J{Fy: BB} and H~Fy is open (closed) in Fy for each f B,
then H is open (closed) in the subspace | J{¥5: < B’}. This relationship
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is displayed in the following theorem which is a consequence of Lemma 2.1
and a lemma by Morita [10, Lemma 1].

THEOREM 2.3. If a space X has the W-weak topology with respect to
an F-hereditary collection X, then X has the M-weak topology with respect
to every ¥o-finite closed covering of X. )

CoROLLARY 2.4. A k-space (sequential space) has the M-weak topology
with respect to every closed compact-finite (os-finite) covering.

3. Main results. A family 5= {Fp: B} will be called sirongly
compaci-finite (strongly cs-finite) if {Ol(Fp): peB} is compact-finite
les-finite). A space X is said to be (strongly) mesocompact if every open
covering of X has a (strongly) compact-finite open refinement. Also,
a space X is called (strongly) sequentially mesocompact if every open cover-
ing of X has a (strongly) cs-finite open refinement. The relationships
between these concepts are presented in the following implication diagram.

metacompact
(point-finite)
f
mesocompact sequentially mesocompach
(compact-finite) = (cs-finite)
f oo i
strongly mesocompact strongly sequentially mesocompact
(strongly compact-finite) (strongly es-finite)
ft
paracompact
(locally finite)
Figq_t-e 3.1

Sinece every point-finite open covering of a normal space is shrinkable,
every normal mesocompact (sequentially mesocompact) space is strongly
mesocompact (sequentially mesocompact). Hence, from Theorem 2.2 the
following theorems can be stated. )

THEOREM 3.1. A sequential space X is paracompact if and only if X is
strongly sequentially mesocompact.

THEOREM 3.2. 4 k-space X is paracompact if and only if X is strongly
mesocompact. -

Arhangelgkil [1, Theorem 11] originally stated Theorem 3.2 in
a slightly different form. B

To this point, it has been necessary to consider only closed fanr}ﬂ}es
because non-closed, compact-finite families may not be locally finite
ina k-sp;i'ce. In fact, as will be shown in Example 5.3, a non—c_losed com-
pact-finite family may fail to be clogure preserving even in & Space
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belonging to the narrower class of sequential spaces. This restriction to
closed families may be removed by requiring the space to be a k'-space
(Fréchet) instead of a k-space (sequential). Arhangel§kil introduced both
the %'-spaces [1] and the Fréchet spaces [2]. A space X is a k'-space it
for each non-closed set H C X and for each point p e X such that
p e Cl{H)— H there exists a compact seb K C X such that p e Cl(H ~ K).
Also, a space X is a Fréchet space provided; for each set H C X and for
each point p ¢ Cl(H) there exists a sequence {pi} CH such that {p;}
converges to p.

LumMa 3.3. Bvery compaci-finite family F = {Fo: a e A} in a k'-space
X is closure preserving.

Proof. Let A’ be any subset of A. It is sufficient to show that
CUU{Fa: ae A’} CUJ{CL(F): ac A’} Let p be any element of
CUU{Fa: acd'}). If pe J{Fa: aed’}, then the condition is satistied.
Thus, consider the case where p ¢ | J{Fa: ae A'}. Since X is a k'-space,
there exists a compact set K C X such that p ¢ CI(K A (U{Fa: aedY).
Since ¥ is compact-finite, there exists a finite subset A (K)C A’ such
that (|_{Fe: aed'}) n K = (U{Fa: ac A(K)}) ~ K. Hence, p ¢ CL{{{F.:
ae A(K)}). Thus there exists an a < A’ such that p e C1(F.). Accordingly,
pe | J{Cl(F.): ae A}, and this completes the proof.

By substituting a convergent sequence for the compact set in the
preceeding proof the following lemma is proved.

LEMMA 3.4. Bvery cs-finite family in a Fréchet space is closure preserving.

From Lemmas 3.3, 3.4 and Michael’s [8] characterization of para-
compactness by means of a closure preserving refinement, the next
theorem follows.

THEOREM 3.5. A regular Fréchet. space (k'-space) is paracompact if
and only if every open covering has a cs-finite (compact-finite) refinement.

CoroLLARY 3.6. 4 regular Fréchet space (k'-space) is paracompact if
and only if it is sequentially mesocompact (mesocompact).

In Example 5.4 it is shown that a compact-finite family in a Fréchet
space, which is stronger than a k'-space, need not be locally finite. Further,
strengthening of k'-spaces and Fréchet spaces will yield the local finiteness
of the compact-finite and the cs-finite families.

Clearly, the strengthening of %’-space to locally compact space is
sufficient to assure the local finiteness of a compact-finite family. Thus
‘the following theorem is immediate.

THEOREM 3.7. 4 locally compact space is paracompact if and only if
it i mesocompact. )

This may be stated in a stronger form. From Bourbaki [4, Theorem 5,
p. 96] the following theorem may be stated.
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TrEoREM 3.8. A locally compact space X is mesocompact if and only
if X is the sum of a family of locally compact, o-compact spaces.

It is clear that the star finite property holds in a locally compact
mesocompact space (i.e. a locally compact mesocompact space is strongly
paracompact). Thus, a connected locally compact mesocompact space
is Lindeldf.

The strengthening of Frechét space to first countable space is snfficient
to assure the local finiteness of a cs-finite family.

Lmvma 8.9. In a first countadle space X a family F = {Fg: e B} is
locally finite if and only <f it is cs-finite.

Proof. The necessity is clear. To prove the sufficiency, note that
g point-finite, closure preserving, closed family is locally finite. Hence,
since & is closure preserving, it is sufficient to show {Cl(Fy): § e B} is
point-finite. Let p be any point of X, and let {Us;: i< N} be any count-
able base at p ordered in the natural way by set inclusion. Since & is

" ¢s-finite, thus point-finite, it is sufficient to show B’ = {8 ¢ B: p ¢ Cl{(F5)—

—Fy} is finite. Assume B’ is infinite. Then let {#(i): ¢ N} be any count-
ably infinite subset of B’. Then for each ¢ e N, U; ~ Fyy # O. For each
ieN choose a point p; from U; ~ Fayy. Then {p;} converges to p. Butb
this is a contradiction, because p; e gy, for each ¢ ¢ N implies F is not
es-finite. Thus B’ is finite, and this establishes that {Cl{Fs): § ¢ B} is
point-finite. Hence, § is locally finite.

From this lemma the next theorem follows immediately.

THEOREM 3.10. A first countable space is paracompact if and only <f it
is sequentially mesocompact.

The preceeding characterizations of paracompactness in %-spaces
are summarized in the following implication diagram. Since each of the
structures indicated is a paracompact space, it is the additional structure
of the k-spaces which require the implication arrows to assume the di-
rections indicated.

{ paracompact !
t
k-space regular, k'-space locally compact
+ <« + < +
strongly mesocompact mesocompact mesocompact
i . "
sequential regular, Fréchet first co_tntable
+ + .
strongly sequentially = sequentially <« gequentially
mesocompact megocompact “mesocompach B

Figure 3.2
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4. Applications. Some of the most important applications of para-
compact spaces and locally finite families have been in the! ares of
metrizability. The natural relationship between the metric property of
first countability and the es-finite families indicates that there should
be some interesting applications of sequential mesocompactness to
metrizability. For instance, it is well known that a paracompact, locally
metrizable space is metrizable. Since a locally metrizable space is first
countable, it can be seen that a locally metrizable space is metrizable
if and only if it is sequentially mesocompact.

A translation of the Nagata—Smirnov Metrization Theorem, into the
natural setting of a base with a particular property on the convergent
sequences may be stated as follows.

TEEOREM 4.1. A space X is metrizable if and only if X is regular and
has a oc-es-finite base.

. The truth of this statement is clear, because the existence of a o-cs-
finite base implies the first countability of the space.

The metrizability of developable spaces has been an important
motivation to research in topology sinee F. B. Jones inquired whether
a normal developable (Moore) space is metrizable. R. W. Heath has
supplied an important negative result in an example of a regular meta-
compact developable space which is not metrizable. The most important
atfirmative answer to this question has been supplied by Bing [3]. Bing
has shown that a colleetionwise normal, developable space is metrizable.
By utilizing the important first countability of a developable space, an
affirmative answer in the direction of the metacompact spaces is
obtained.

THEOREM 4.2. 4 developable space X is meirizable if and only if X is
sequentially mesocompact.

The validity of this statement follows from the paracompactness
of a sequentially mesocompact developable space. Note that the first
countability of the space and not the normality plays the essential role
in this theorem.

5. Examples. In this section some examples are presented which
clarify and sharpen the preceeding results.

EXAMPLE 5.1. 4 noimal mesocompact space which is not paracom-
pack.

As the space with the desired properties, consider the subspace &,
defined by Michael [9], of Bing’s space ¥ [3, Example G]. The reader
is referred to the cited papers for the definition of these spaces. Bing
proved that F iy normal and not collectionwise normal (¥ is not para-
compact). For the purpose of this paper it is necessary to characterize
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the compact subsets of F. Let C be the collection of all infinite closed
subsets of F. For each p < P, define the subcollection, Cp, of C as

Cp={Hyp«C: fp is the only cluster point of H,, f, ¢ Hy if t 2 p} .
For each p e P, let

Kp = {Kp € Cp: for each geQ, {fe K, fl) # folg)} is iinite} .

Finally, let 5* be the collection of all finite subsets of F,and let X = F* o
U (U{Kp: peP)).

It can be shown that for each p € P, X, is the collection of all infinite
compact sets in F' which contain only f, as a cluster point. The existence
of infinite compact sets can be established by considering the following
subset D(p) of F. Let p be an arbitrary but fixed point in P. Consider
the subset D(p) of F defined by,

D(p)={fia e T ¢ <@, fra(®) # fol@), fralg) = folg’). for each ¢’ +# ¢}.

For each g @, there exists a unique fi; e D(p) defined by,
[Ifslg) 1], it ¢=¢,
' Wl ifg#q.
To see this, consider ¢, ge@ snch that ¢ % g. Then fin(q') # fold')
= fu(¢). Since @ is infinite, D(p) is infinite. The point f, is the ideal
point of a one point compactification of the diserete space D(p). Also,
it can be established that every compact set in F is a finite union of
sets in X.

Michael has defined the subspace @ of F as follows: G = Fp, | J{f ¢ F:
flg) = 0 except for finitely many ¢ < @}. Since @ is a closed subspace of F
G is normal. Michael has shown that & is a metacompact space which,
is not collectionwise normal (i.e. & is not paracompact). Since @ is meta-
compact, to establish the mesocompactness of & it will suffice to show
that every compact set in & is finite. To this end, let K be any compact
set in . From the characterization of the compact sets in F, K is the
finite union of sets in J. Recall that X is the union of the collection of
all finite sets in # and the collection of all infinite compact sets having
one and only one fp as a cluster point. Thus to show K is finite, it is
sufficient to show that if K; is any infinite compact set in F having only f:
as a cluster point, then K; ~ @ is finite. To this end, we assume that for
some te P, K; ~ @ is infinite. Let {fi: 1 < I} be any countable collection
of distinct elements of K;~ G. Since {fi: 1¢I}C K; and f: is the only
cluster point of K, {fi: 4 € I} ~ {f¢} is a closed subset of a compact set Kq.
Now for each 4 ¢ I, let Q; = {q € Q: fi(g) = 1}. Then by the definition of &,
for each i eI, Q, is finite. Thus Qr= | J{@:: i € I} is at most countable.
Since @, = {g € Q: < g} is uncountable and @ is at most countable; there
exists ¢’ € Q:—@;. Let B = {¢'}. Since f{¢'} =1 and fig)=10 for each
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iel, fi¢R(f;) for each iel Thus {R(f)}v {{fi}: 4<I} is an open
covering of {fi: ieI}w {fi} which has no finite subcovering. Thus
{fi i e I} v {fs} is a non-compact, closed subset of K;. But this contra-
dicts the compactness of K;. Thus K; ~ ¢ is finite for each ¢ e P. Hence,
every compach set in @ is finite. Thus @ is a normal mesocompact space
which is not paracompact.

BxAMPLE 5.2. A regular metacompact developable space which is not
sequentially mesocompact.

R. W. Heath [6, Example 1] has presented an example of a meta-
compact Moore space which is not screenable—hence not metrizable.
This space can not be sequentially mesocompact, because if it were, then
by Theorem 4.2 it would be metrizable.

ExXAMPLE 5.3. A compaci-finite (cs-finite) open family in a k-space
(sequential space) which is not closure preserving.

Let X be the space defined by Franklin [5, Example 1.8]. Franklin
establishes that X is a sequential space (thus a k-space) which is not
a Fréchet space. In fact X is not even a k'-space.

The compact sets in X which contain 0 as a cluster point must be

of the form K v (L {0}), where L is a subsequence of {11—%:';% € N} and

K is a compact set in X such that 0 is not a cluster point of K in the

1 1
usual sense. Hence, {(n——i—_l’%): nsN} is a compact-finite (cs-finite)

open family in X which is not closure preserving, since

U{[ﬁ’i—l’ﬂ: neX}=(0,1] ;&[0,1}:01(%(%,%): neN}).

ExAMPIE 5.4. A compact-finite (cs-finite) open family in a k'-space
(F'réchet space) which is not locally finite.

Let @' be the space defined by Franklin [5, Example 1.11]. The
quotient mapping f: @ —~Q’ may be defined by f(r) = » for each r e Q—TI
and f(n) = 0 for each n € I. @' is not first countable at the point 0 and
is not locally compact at the point 0. Franklin states that @ is a Fréchet
space. Accordingly, @' is a k'-space. The family {(n,n+1): nel} is
a compact-finite (thus cs-finite) family, and every open neighborhood

of 0 intersects every set (n, n--1). Hence, {{n, n+1): n ¢ I} is not locally
finite at 0.
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