Chains of simple closed curves and a dogbone space

by

E. H. Anderson (State College, Miss.)

1. Introduction. R. H. Bing in [4] presented an example of an upper semicontinuous decomposition of E^3 into points and tame arcs, Bing's dogbone space, that is not topologically E^3. In [2], a second dogbone space, resulting from a simpler construction than that of Bing's dogbone space, was shown to be topologically different from E^3 but the proof could not be easily modified to apply to a third dogbone space, also presented in [2], resulting from an apparently minor change in the construction. In this paper, we prove some theorems about linking simple closed curves and use them to show that this third dogbone space is not topologically E^3.

It will be assumed where necessary or convenient that all embedded complexes are triangulated and polyhedral and any two are in relative general position and all homeomorphisms are piecewise linear.

The standard definitions and basic results employed will be those of Hocking and Young [6].

After Casler [3], if N is a positive integer, $N\alpha$ will denote a sequence of positive integers $J(1), ..., J(N)$, and if r is a positive integer, the sequence $J(1), ..., J(N)$, r will be denoted by $N\alpha$, r. If $N = 0$, $N\alpha = 0$ and $N\alpha$, $r = r$.

2. Chains of simple closed curves. The concept of linking of simple closed curves will be that of [3], namely, two simple closed curves Y_1 and Y_2 link if and only if there is a two complex $Y_1\delta$ with boundary Y_1 and Y_2 intersects $Y_1\delta$ an odd number of times.

A simple chain ζ is a collection $L_1, ..., L_N$, $N \geq 3$, of simple closed curves which can be numbered so that L_i links only L_{i-1}, L_{i+1} links only L_{i-2} and if $i \neq 1, N$, L_i links only L_{i-1} and L_{i+2}. A closed chain ζ is a collection $L_1, ..., L_N$, $N \geq 3$, of simple closed curves which can be numbered so that each L_i links only L_{i-1} and L_{i+1}, where subscripts are taken modulo N. A simple closed curve in a chain is called a link.
The following is well-known:

Theorem 1. Suppose P is a topological cube in E^3 and f is a homeomorphism of S^2 into E^3. Then each component of $P \cap f(S^2)$ separates P into exactly two components.

We paraphrase Theorem 3 of [4] by Bing:

Theorem 2. Suppose L_1 and L_2 are two linking simple closed curves in the interior of a topological cube P in E^3 and f is a homeomorphism of S^2 into E^3. Then, for each component M of $P \cap f(S^2)$, there is a component of $P - M$ that intersects both L_1 and L_2.

We prove:

Theorem 3. Suppose ζ is a simple chain in the interior of a topological cube P in E^3, f is a homeomorphism of S^2 into E^3, and some component M of $P \cap f(S^2)$ separates two links of ζ. Then some link of ζ intersects M.

Proof. Suppose M, a component of $P \cap f(S^2)$ separates links L_i and L_{i+1} of ζ. Denote the two components of $P - M$ by A and B with $L_i \subset A$ and $L_{i+1} \subset B$. Let T be the least integer such that $i < T < i + j$ and $L_T \cap B \neq \emptyset$. Then $L_{T-1} \subset A$. By Theorem 2, $L_T \cap A \neq \emptyset$. Thus, L_T intersects M and the proof of Theorem 3 is completed.

Since a closed chain $\zeta = \{L_1, ..., L_n\}$ may be expressed for each integer j as the sum of two simple chains $\{L_1, ..., L_j\} \cup \{L_{j+1}, ..., L_n\}$, we apply Theorem 3 twice and obtain:

Theorem 4. Suppose ζ is a closed chain in the interior of a topological cube P in E^3, f is a homeomorphism of S^2 into E^3 and some component M of $P \cap f(S^2)$ separates two links of ζ. Then two links of ζ intersect M.

The proof of the following is inspired by the proof of Theorem 5 of [4] by Bing:

Theorem 5. Suppose ζ is a closed chain in the interior of a topological cube P in E^3, f is a homeomorphism of S^2 into E^3, and $\{U_i\}$, $1 < T$, is the set of components of $P - f(S^2)$, and $\zeta \cap U$. Then some U_i intersects L_1 and two other elements of ζ.

Proof. Let Z be a continuum such that

(a) Z is composed of closures of elements of $\{U_i\}$, $1 < T$.
(b) Z intersects L_1 and two other elements of ζ.
(c) no proper subcontinuum of Z satisfies (a) and (b).

We show Z contains exactly one element of $\{U_i\}$, $1 < T$. For, suppose Z contains two elements of $\{U_i\}$, $1 < T$. Then, Z is the sum of two proper subcontinua Z_1 and Z_2, both composed of closures of elements of $\{U_i\}$, $1 < T$, and $Z_1 \cap Z_2 = M$ for some component M of $P \cap f(S^2)$. Suppose Z intersects L_1 and L_2. We show a contradiction when we show that the assumption that M does not separate any pair of L_1, L_2 and L_3 violates (c) and the assumption that M separates some pair of L_1, L_2 and L_3 violates (c).

Suppose M does not separate any pair of L_1, L_2 and L_3. Then, each of L_1, L_2 and L_3 intersects M or some one of L_1, L_2 and L_3 does not intersect M. If each of L_1, L_2 and L_3 intersects M, then each of L_1, L_2 and L_3 intersects both L_2 and Z_1, a violation of (c). If some one of L_1, L_2 and L_3, say L_1, does not intersect M, then L_1 intersects exactly one of Z_1 and Z_2, say Z_1. Then, each of L_2 and L_3 must intersect Z_1 since, if L_1 intersects Z_1, only L_3 would not intersect M and M would separate L_1 and L_3. Thus, each of L_1, L_2 and L_3 would intersect Z_1, a violation of (c). Thus, the assumption that M does not separate any pair of L_1, L_2 and L_3 violates (c).

Suppose M separates some pair of L_1, L_2 and L_3. If M separates L_1 and L_2, and, say, L_3, by Theorem 4 two links L_2 and L_3 of ζ intersect M and $L_2 \neq L_3$, L_3 since L_1 does not intersect M. Thus, L_1, L_2 and L_3 intersect one of Z_1 and Z_2 and Z_2, a violation of (c). If M separates L_1 and L_3, by Theorem 4 two links L_1 and L_3 of ζ intersect M and one of them, say, L_1, is not L_2, then L_2, L_3 and one of L_1 and L_3 would intersect one of Z_1 and Z_2, a violation of (c). Thus, the assumption that M separates some pair of L_1, L_2 and L_3 violates (c).

Thus, the promised contradiction has been demonstrated and the proof of Theorem 5 is complete.

Theorem 6 is the best result obtainable since for every integer $n > 3$, it is possible to construct a closed chain ζ of n elements in the interior of a topological cube P in E^3 and a homeomorphism f of S^2 into E^3 such that every component of $P - f(S^2)$ intersects at most three elements of ζ.

A result needed later is:

Theorem 6. Suppose ζ is a closed chain in the interior of a topological cube P in E^3 and f is a homeomorphism of S^2 into E^3. Then either

(i) some component of $P - f(S^2)$ separates two elements of ζ; or,
(ii) some component of $P - f(S^2)$ intersects each element of ζ.

Proof. We suppose (i) is false and show (ii) is true. If (i) is false, then no component of $P - f(S^2)$ separates any two elements of ζ and, hence, for any two elements of ζ, there is a component of $P - f(S^2)$ intersecting both. Thus, we complete the proof of Theorem 6, by applying the following theorem by Bing [4, Theorem 5]:

Suppose U is the interior of a topological cube, Y is a collection of bounded continua in U, and M is a compact 2-manifold with boundary such that for each pair of elements of Y, there is a component of $U - M$ intersecting both of those elements. Then there is a component of $U - M$ intersecting each element of Y.
3. Topological Figure Eights and Property R. An arc \(l \) is the image of the unit interval \(I = [0, 1] \) under a homeomorphism which will also be denoted by \(l \). The end-points of an arc \(l \) are \(l(0) \) and \(l(1) \) and \(l \) may be written \(l(0)(1) \). A \(p \)-od \(k \) is the union of \(p \) arcs \(l_i \) such that if \(i \neq j \), \(l_i \cap l_j = l_i(0) = l_j(0) \); the center of \(k \) is \(l_i(0) \) and the set of end-points of \(k \) is \(\{ l_i(1) : i = 1, ..., p \} \).

Suppose \(l \) is an arc and \(A \) and \(B \) are sets. The integer \(N \) is an Intersection Number of \(l \) with respect to \(A \) and \(B \) if and only if there are \(N+1 \) points \(t_0, ..., t_N \) in \(I \) such that \(0 = t_0 < ... < t_N = 1 \) and for each \(x \), \(l([V_x, V_{x+1}]) \) intersects at most one of \(A \) and \(B \).

A topological figure eight has Property R with respect to sets \(A \) and \(B \) if and only if for every two points \(p \) and \(q \) in opposite loops there is an arc \(l \) in it from \(p \) to \(q \) and 2 is an Intersection Number of \(l \) with respect to \(A \) and \(B \).

![Fig. 1](image)

For the remainder of this section, we adopt the notation of Figure 1. As in Figure 1, let \(P \) be a topological cube in \(F \) and \(L_1, ..., L_4 \) a collection of simple closed curves in \(F \) linked as shown. For each \(i = 1, ..., 4 \), \(L_i \) is the sum of two arcs from \(a_i \) to \(b_i \); which intersect only at their endpoints; to distinguish these arcs, we arbitrarily designate one \(+a_i b_i \) and the other \(-a_i b_i \). \(\alpha_i \) is an arc with \(c_i \) only on Boundary \(P \). The arcs \(\alpha_i \) and \(\alpha_4 \) are in the complement of \(\text{Interior}(P) \) with end-points only on Boundary \(P \).

The main result of this section is

Theorem 4. Suppose \(f \) is a homeomorphism of \(S^2 \) into \(F \), \(A \) and \(B \) are closed disjoint subsets of \(f(S^2) \), \(P \cap f(S^2) \subset A \cup B \), for each \(i = 1, ..., 4 \), each arc \(\pm a_i b_i \) intersects at most one of \(A \) and \(B \), and \(f(S^2) \cap (\alpha_1 \cup \alpha_3) \cup (\alpha_2 \cup \alpha_4) \cup \Omega = \emptyset \). Then there is a topological figure eight \(\Phi \) in Interior \(P \) such that \(\alpha_1 \cup \alpha_3 \cup \alpha_2 \cup \alpha_4 \cup \Omega \) such that \(\alpha_i \) and \(\alpha_4 \) are in opposite loops of \(\Phi \) and \(\Phi \) has Property R with respect to \(A \) and \(B \).

Proof. From Theorem 6 we have

(i) some component of \(P \cap f(S^2) \) separates two of \(L_1, ..., L_4 \) or

(ii) some component of \(P \cap f(S^2) \) intersects each of \(L_1, ..., L_4 \).

We begin the argument for (i) by supposing that some component \(M \) of \(P \cap f(S^2) \) separates two of \(L_1, ..., L_4 \). The component \(M \) cannot separate \(L_i \) from \(L_j \) or \(L_k \) from \(L_l \) or \(L_m \). Thus, we assume that \(M \) separates \(L_i \) from \(L_j \). Then, by Theorem 5, some component \(U_i \) of \(P \cap f(S^2) \) intersects \(L_i \), \(L_j \) and \(L_k \) and some component \(U_j \) of \(P \cap f(S^2) \) intersects \(L_i \), \(L_j \) and \(L_k \).

Select a point \(p_i \) in \(U_i \) and for \(i = 1, 3, 4 \), construct an arc \(p_i \alpha_i \) by constructing an arc in \(U_i \) from \(p_i \) to \(L_i \); then along \(L_i \) to \(a_i \) so as to intersect at most one of \(A \) and \(B \) and finally along \(a_i c_i \). There results a 3-od \(k_i \) in \(P \) such that \(p_i \alpha_i \) is the center of \(k_i \), the end-points of \(k_i \) are \(a_i \alpha_i \) and \(a_i \), and each arc \(p_i \alpha_i \), \(i = 1, 3, 4 \), intersects at most one of \(A \) and \(B \). Similarly, select a point \(p_j \) in \(U_j \) and construct a 3-od \(k_j \) with center \(p_j \) and end-points \(a_j \alpha_j \) and \(a_j \) such that each arc \(p_j \alpha_j \), \(i = 2, 3, 4 \), in \(b_i \) intersects at most one of \(A \) and \(B \). Let \(K = k_1 \cup k_3 \cup k_2 \cup k_4 \).

A copy of \(K \) is shown in Figure 2a (see p. 136). We show how to construct the desired figure eight \(\Phi \) by selecting, except for one case, arcs \(p_i \alpha_i \) in \(K \) or arcs each of which are so close to some arc \(p_i \alpha_i \) that the selected arc intersects \(A \) or \(B \) only if \(p_i \alpha_i \) intersects \(A \) or \(B \). It is always true that \((\alpha_i \cup \alpha_4) \cap (A \cup B) = \emptyset \). The cases where some \(p_i \alpha_i \) does not intersect \(A \cup B \) may be neglected. Thus, we have six arcs of the form \(p_i \alpha_i \), each of which intersects at most one of \(A \) and \(B \), a total of 64 cases. However, we may assume \(p_i \alpha_3 \) intersects only \(A \) and \(p_i \alpha_4 \) intersects only \(B \) without loss of generality.

For the case 13, the solutions are obtainable from of arcs in \(K \) or arcs near \(K \). To solve case 13, we use a theorem by Bing [4, Theorem 6], paraphrased for our purposes:

Suppose A and B are two mutually exclusive closed subset of a topological cube \(P \) and \(p_1 \alpha_1, q_1 \alpha_2 \) and \(q_2 \alpha_3 \) are homotopic arcs in \(P \) such that \(q_1 \alpha_1, q_2 \alpha_3 \subset A \cup B \). Then, there is an arc in \(P \) with end-points \(c_1 \) and \(c_1 \) such that \(1 \cap (A \cup B) = \emptyset \).
The arc l allows the solution of case 13 and the argument when some component M of $P - f(S^8)$ separates L_1 and L_2 is complete. The argument when some component of $P - f(S^8)$ separates L_3 and L_4 follows by symmetry, thus completing the argument for (i).

The argument for (ii) follows readily since it may be assumed that the centers p_1 and p_2 of the 3-ods k_1 and k_2 of (i) are in the same component of $P - f(S^8)$. Thus, the proof of Theorem 7 is complete.

4. A dogbone space that is not topologically E^3. To construct the dogbone space of this paper, let A_4 be a solid double torus in E^3, as in Figure 4. Embed a cube U_1 in the top of A_4 and cubes D_1 and D_2 in the bottom of A_4. Then, embed solid double tori $A_5, ..., A_4$, linked as indicated, in A_4, although each of $A_5, ..., A_4$ is shown as a finite graph, it is topologically equivalent to A_4. For each $i = 1, ..., 4$, Closure $\{A_i - (U_i \cup D_1 \cup D_2)\}$ is a topological cube and the intersection of Interior (A_i) with any horizontal plane is an open disk or the sum of two disjoint open disks.

For each $i = 1, ..., 4$, cubes U_{i1}, D_{i2} and D_{i2} and solid double tori $A_{i1}, ..., A_{i4}$ are embedded in A_i such that there is a homeomorphism of E^3 onto itself which is the identity on the complement of some open set containing A_i and takes A_i onto A_i, U_i onto U_{i1}, and D_i onto D_{i2}, $f = 1, 2$. Let this process be continued; succeeding steps of the construction may be described inductively.

Let $M = A_4 \cap \bigcup A_i \cap \bigcup A_{i1} \cap \bigcup A_{i2} \cap \bigcup ...$. Let G be the set whose elements are components of M and one-point subsets of $E^3 - M$. Then, G is an upper semicontinuous decomposition of E^3 into tame arcs and one-point sets. Let E^3/G denote the associated decomposition space, the dogbone space of this paper. We show:

Theorem 8. E^3/G is not topologically E^3.

![Image of chains of simple closed curves and a dogbone space]
Proof. To assist in the proof of Theorem 5, we state some definitions and prove some lemmas.

Let C denote $U_1 \cup D_1 \cup D_1 \cup \sum A_i$, $i = 1, \ldots, 4$. Then C is a topological cube with handles. As in Figure 5, let I_n be a central curve of C consisting of points a_1, b_1 and c_1 and arcs a_2, b_2, c_2, a_3, b_3, c_3, where the end-points of a_i are a_i and b_i if A_i intersects U_i and D_i. Similarly, for a fixed sequence N_{n+1}, $N_{n+2} \cup D_N \cup D_{n+2} \cup \sum A_N$, $i = 1, \ldots, 4$, is a cube with handles with central curve I_{n+2}.

Fig. 5

Fig. 6

Also in Figure 5, let P_1, P_2, P_3, P_4 be disks in A_4 such that for each i, $P_i \cap \text{Boundary}(A_4) = \text{Boundary}(P_i)$. We may regard $P_i \cup P_3 \cup P_3 \cup P_i$ as the intersection of A_4 with a homeomorphic image of S^3.

The statement and proof of the following lemma is identical to that of the proof of Lemma 1 for Theorem 5 of [3].

Lemma 1. Suppose g is a continuous function of A_4 into A_4 which is homotopic to the identity by a homotopy G which is fixed on Boundary(A_4). Then, for some $i = 1, \ldots, 4$, $g(a_i)$ intersects both $P_i \cup P_3$ and $P_3 \cup P_i$.

We prove:

Lemma 2. Suppose N is a positive integer and F is a homeomorphism of Boundary$(A_4) \cup \sum P_i$, $i = 1, \ldots, 4$, into A_4 which satisfies

(i) F is the identity on Boundary(A_4),

(ii) each a_{N+2} in each I_{N+2} intersects at most one on $F(P_i \cup P_3)$ and $F(P_3 \cup P_i)$.

Then there is a homeomorphism h of Boundary$(A_4) \cup \sum P_i$, $i = 1, \ldots, 4$, into A_4 which satisfies

(i) h is the identity on Boundary(A_4),

(ii) each a_{N+1} in each I_{N+1} intersects at most one of $h(P_i \cup P_3)$ and $h(P_3 \cup P_i)$.

Proof. Suppose N is a positive integer and F is a homeomorphism which satisfy the hypotheses of the lemma. Let $(N-1)$ be a fixed sequence. The solid double torus A_{N-1} is shown in Figure 6. For clarity, only the details of A_{N-1} and I_{N-1} are shown and possible intersections of $F(P_i \cup P_3 \cup P_3 \cup P_i)$ with a_{N-1}, $i = 1, \ldots, 4$, are indicated. It may be assumed that $F(P_i \cup P_3 \cup P_3 \cup P_i)$ does not intersect a_{N-1}, $i = 1, \ldots, 4$, since $F(P_i \cup P_3 \cup P_3 \cup P_i)$ could be adjusted in a neighborhood of a_{N-1}, $i = 1, \ldots, 4$, without adding intersections to any arc a_{N-1}. Thus, a cube Y may be constructed in A_{N-1} such that Y contains a_{N-1}, $Y \cap I_{N-1}$ is a 4-od and Y does not intersect $F(P_i \cup P_3 \cup P_3 \cup P_i)$. Replace $Y \cap I_{N-1}$ by two 3-ods with a single common end-point, expand Y by a homeomorphism h_1 of E^3 onto E^3 which is the identity on the complement of Interior(A_{N-1}) and arrive at the situation of Figure 7 (see p. 140).

If a cube Y' similar to Y is constructed in A_{N-1}, $Y' \cap I_{N-1}$ is replaced by two 3-ods and Y' is expanded by a homeomorphism h_2 of E^3 onto E^3 which is the identity on the complement of Interior(A_{N-1}), there results four simple closed curves which link in D_{N-1} as shown in Figure 8 (see p. 140). For $i = 1, 2$ each pair of simple closed curves in A_{N-1} is connected by an arc in A_{N-1} which does not intersect $h_i h_j F(P_i \cup P_3 \cup P_3 \cup P_i)$ for $i \neq j$. Let I_i denote the closure of each arc in the complement of D_{N-1}. Each simple closed curve in D_{N-1} is the sum of two arcs each of which intersects at most one of $h_i h_j F(P_i \cup P_3)$ and $h_i h_j F(P_3 \cup P_i)$ in W_i. We apply Theorem 7 to obtain a topological figure of eight F_i, shown in Figure 9 (see p. 140), composed of 4-ods k and the area I_i and I_i such that I_i and I_i are in opposed loops of F_i and F_i has Property E with respect to $h_i h_j F(P_i \cup P_3)$ and $h_i h_j F(P_3 \cup P_i)$.

By a homeomorphism h_3 of E^3 onto E^3 which is the identity on the complement of a small neighborhood W_i of D_{N-1}, each component of $h_i h_j F(P_i \cup P_3 \cup P_3 \cup P_i)$ may be pushed along the arc of k until it intersects the complement of D_{N-1} so that $h_i h_j h_3 F(P_i \cup P_3 \cup P_3 \cup P_i) = 0$ and F_i has Property E with respect to $h_i h_j h_3 F(P_i \cup P_3)$ and $h_i h_j h_3 F(P_3 \cup P_i)$.
The 4-od h_1 is contained in $D_{\mathcal{A}^{\mathcal{A}_{2}}_{\mathcal{A}^{\mathcal{A}_{2}}}1}$ and has endpoints only on Boundary($D_{\mathcal{A}^{\mathcal{A}_{2}}_{\mathcal{A}^{\mathcal{A}_{2}}}1}$). Let W_i be a neighborhood of $D_{\mathcal{A}^{\mathcal{A}_{2}}_{\mathcal{A}^{\mathcal{A}_{2}}}1}$ contained in W_j. The cutting and sewing process of [1] may be applied which results in a homeomorphism h_i of $P_i \cup P_j \cup P_k \cup P_l$ into A_4, such that $\mathcal{A}^{\mathcal{A}_{2}}_{\mathcal{A}^{\mathcal{A}_{2}}}1 \cap \mathcal{A}^{\mathcal{A}_{2}}_{\mathcal{A}^{\mathcal{A}_{2}}}1 \cap \mathcal{A}^{\mathcal{A}_{2}}_{\mathcal{A}^{\mathcal{A}_{2}}}1 = \emptyset$ and for each i, h_i is the identity on Boundary(P_i), h_i[Interior(P_i)] \subset Interior(A_4), $h_i(P_i) = W_i \subset h_i h_i(P_i)$, and Φ_i has Property E with respect to $h_i(P_i) \cup P_j$ and $h_i(P_j) \cup P_i$. An important point is that for each sequence $(N-1)\alpha, j \neq (N-1)\alpha, 1$ or $(N-1)\alpha, 2$, $h_i(P_i)$ intersects an arc $a_{i-1,2}$ in $\Gamma_{i-1,2}$ only if P_i intersects $a_{i-1,2}$. Since $h_i(P_j) = W_j \subset h_i h_i(P_j)$ and $h_i h_i(P_j)$ is the identity on the complement of $A_{i-1,2} \cup A_{i-2,3}$, extend h_i to a homeomorphism of Boundary(A_4) $\cup \sum P_i$, $i = 1, \ldots, 4$, by defining h_i as the identity on Boundary(A_4).

Let h_i be a homeomorphism of E^3 onto E^3 which is the identity on the complement of Interior($A_{i-1,2} \cup A_{i-2,3} \cup D_{\mathcal{A}^{\mathcal{A}_{2}}}1$) and, as shown in Figure 10, expands Interior($D_{\mathcal{A}^{\mathcal{A}_{2}}}1$) so that h_i[Interior($D_{\mathcal{A}^{\mathcal{A}_{2}}}1$)] contains $(a_{i-1,2} \cup a_{i-2,3}) - U_{\mathcal{A}^{\mathcal{A}_{2}}}1$. The closure of $h_i[\Phi_i - D_{\mathcal{A}^{\mathcal{A}_{2}}}1]$ is composed of two arcs, $h_i[\Phi_i]$ and $h_i[\Phi_i]$. For each $i = 1, 2$, extend $h_i[\Phi_i]$ to a point in the interior of the component of $U_{\mathcal{A}^{\mathcal{A}_{2}}}1 - h_i[\Phi_i]$ it intersects and from this point construct an arc in $U_{\mathcal{A}^{\mathcal{A}_{2}}}1 - h_i[\Phi_i]$ to $\Gamma_{\mathcal{A}^{\mathcal{A}_{2}}}1$ - Boundary($U_{\mathcal{A}^{\mathcal{A}_{2}}}1$). Thus, a finite graph \mathcal{A}_4 composed of two simple closed curves s_1 and s_2 joined by a connecting arc has been constructed in $A_{i-1,2} \cup A_{i-2,3} \cup D_{\mathcal{A}^{\mathcal{A}_{2}}}1$. The simple closed curves s_1 and s_2 are linked and each links $A_{i-1,2}$ and $A_{i-2,3}$ in Interior($U_{\mathcal{A}^{\mathcal{A}_{2}}}1$). That part of \mathcal{A}_4 in the complement of $U_{\mathcal{A}^{\mathcal{A}_{2}}}1$, which is also part of the connecting arc in the component of $U_{\mathcal{A}^{\mathcal{A}_{2}}}1$ is $(a_{i-1,2} \cup a_{i-2,3}) - U_{\mathcal{A}^{\mathcal{A}_{2}}}1$. The connecting arc does not intersect $h_i[\Phi_i]$, hence $h_i[\Phi_i]$, $h_i[\Phi_i]$, and $h_i[\Phi_i]$, $h_i[\Phi_i]$ are each arcs in \mathcal{A}_4 with respect to $h_i[\Phi_i]$, $h_i[\Phi_i]$, and $h_i[\Phi_i]$, $h_i[\Phi_i]$, where p and q are points in, respectively, s_1 and s_2, there is an arc pq in \mathcal{A}_4 such that 2 is an Intersection Number of pq with respect to $h_i[\Phi_i]$, $h_i[\Phi_i]$, and $h_i[\Phi_i]$, $h_i[\Phi_i]$. If $(N-1)\beta, j \neq (N-1)\alpha, 1$ or $(N-1)\alpha, 2$, $h_i[\Phi_i]$ intersects an arc $a_{i-1,2}$ in $\Gamma_{\mathcal{A}^{\mathcal{A}_{2}}}1$ only if \mathcal{A}_4 intersects $a_{i-1,2}$, hence h_i is the identity on the complement of Interior($A_{i-1,2} \cup A_{i-2,3} \cup D_{\mathcal{A}^{\mathcal{A}_{2}}}1$).

Thus far, the definition of homeomorphisms and construction has been done relative to $A_{i-1,2}$, $A_{i-2,3}$, and $D_{\mathcal{A}^{\mathcal{A}_{2}}}1$. A similar definition of homeomorphisms and construction is to be done relative to $A_{i-1,2}$, $A_{i-2,3}$, and $D_{\mathcal{A}^{\mathcal{A}_{2}}}1$ resulting, as shown in Figure 11, in a homeomorphism h_4 of Boundary(A_4) $\cup \sum P_i$, $i = 1, \ldots, 4$, into A_4, which is the identity on Boundary(A_4), and a finite graph \mathcal{A}_4 in $A_{i-1,2} \cup A_{i-2,3} \cup D_{\mathcal{A}^{\mathcal{A}_{2}}}1$. In the complement of $A_{i-1,2} \cup A_{i-2,3} \cup D_{\mathcal{A}^{\mathcal{A}_{2}}}1$, for each i, $h_4(P_i)$ is contained in $h_4 h_4(P_i)$. Thus, for $(N-1)\beta, j \neq (N-1)\alpha, n, n = 1, \ldots, 4$, each arc $a_{i-1,2}$, i
sects $h_0(P_0)$ only if $F(P_0)$ intersects $d_{2N-(N-1)a}$. The finite graph Ψ_m is composed of two simple closed curves s_1 and s_2 joined by a connecting arc. The connecting arc does not intersect $h_0(F_1 \cup F_2 \cup F_3 \cup F_4)$. If p and q are points in, respectively, s_1 and s_2 there is an arc pq in Ψ_m such that 2 is an Intersection Number of pq with respect to $h_0(F_1 \cup F_2)$ and $h_0(F_2 \cup F_3)$.

All four simple closed curves in Ψ_1 and Ψ_2 are linked in Interior ($U_{(N-a)}$). The sum of Ψ_1 and Ψ_2 in the complement of $U_{(N-a)}$, which is also the sum of the connecting arcs in the complement of $U_{(N-b)}$, is $I_{(N-a)} - U_{(N-a)}$.

Since the four simple closed curves in Ψ_1 and Ψ_2 are linked in $U_{(N-a)}$, by Theorems 3 and 5 of [3], there is a graph Ψ of $U_{(N-a)}$ such that Ψ is the unique simple closed curve in $U_{(N-a)}$ such that 2 is an Intersection Number of pq with respect to $h_0(F_1 \cup F_2)$ and $h_0(F_2 \cup F_3)$. We select a point p_i in $U_{(N-a)}$ such that p_i is an intersection point of $U_{(N-a)}$ and $U_{(N-a)}$. The sum of the curves $\pm p_i F_{1,2,3,4}$, $i = 1, \ldots, 4$, is a figure eight, Φ. By a homeomorphism h_0 of F^0 onto F^0, we can find an identity on the complement of $U_{(N-a)}$ such that there is a homeomorphism h_0 of F^0 onto F^0 which satisfies

(i) Φ is isotopic to the identity by an isotopy which is fixed on the complement of $U_{(N-a)}$, and

(ii) each $g(\alpha_{a,b})$ in each α_i intersects at most one of $P_i \cup P_i$ and $P_i \cup P_i$.

Definition. If $F^0 \mid G$ is topologically E^0, the shrinking number L of $F^0 \mid G$ is the least integer such that there is a homeomorphism h_0 of F^0 onto F^0 which satisfies

(i) Φ is isotopic to the identity on $U_{(N-a)}$, and

(ii) each $g(\alpha_{a,b})$ in each α_i intersects at most one of $P_i \cup P_i$ and $P_i \cup P_i$.

Definition. If $F^0 \mid G$ is topologically E^0, the shrinking number L of $F^0 \mid G$ is the least integer such that there is a homeomorphism h_0 of $U_{(N-a)}$ such that there is a homeomorphism h_0 of F^0 onto F^0 which is isotopic to the
Some characterizations of para-compactness in k-spaces

by

James R. Boone (Texas)

1. Introduction. Paracompact spaces and k-spaces both have the distinction of being simultaneous generalizations of metric and compact spaces. The purpose of this paper is to present some of the interactions between these seemingly unrelated notions. Throughout this paper the underlying topological structures will be the k-spaces (e.g. first countable, Fréchet, sequential, locally compact, k'-space, and k-space). Specifically, for spaces within the class of k-spaces, those with the paracompact property are characterized. For this purpose, four generalizations of paracompactness are introduced. These generalizations are defined in terms of refinements which have some finiteness condition on the elements of a given collection of subsets. With the additional structure of the k-spaces these refinements have the properties required for the characterizations. These characterizations are given in § 3 and are summarized in the implication diagram which appears in Figure 3.2.

The fundamental notions used in this study are developed in § 2. Applications of these concepts to metrizability of spaces are given in § 4. Some examples are presented in § 5. The term "space" will mean a Hausdorff topological space and the term "family" will mean a family of subsets.

2. Preliminaries. The fundamental notions involved in this work will be developed in the general setting of F-hereditary collections and weak topology in the sense of Whitehead. A family $\mathcal{K} = \{K_a : a \in A\}$ in a space X is said to be an F-hereditary collection provided: (i) \mathcal{K} is a covering of X and (ii) for each closed set $F \subseteq X$, $F \cap K_a$ is \mathcal{K} for each $a \in A$. Some mapping properties of collections with property (ii) were investigated by Remmert [11]. For all F-hereditary collections of interest, the singletons are in \mathcal{K}, and (i) is satisfied. For instance, the collection of all compact

* This paper represents part of the author’s dissertation which was written under the guidance of Professor Hisashi Tamano at Texas Christian University. The author would like to acknowledge the National Aeronautics and Space Administration for financial support during the research and the Society of Sigma Xi for assistance in the preparation of the dissertation.