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Small retractions of smooth dendroids onto trees
[ by
J. B. Fugate (Lexington, Ky.)

1. Introduction. A continunm (compact connected metric space)
which is arcwise connected and hereditarily unicoherent is a dendroid.
A dendrite is a locally connected dendroid. A iree is a one-dimensional
polyhedron (the carrier of a finite simplicial complex) containing no
simple closed curve. Clearly, trees are dendrites having a finite set of
end points. Dendroids are easily seen to be hereditarily decomposable,
hence one-dimensional.

It is the purpose of this paper to show that a class of dendroids,
called smooth, are very much like trees, in that they can be retracted
onto trees by maps (continuous functions) which do not move points
very far (Theorem 2). From this theorem, it follows that the product
of any collection of smooth dendroids has the fixed point property (f.p.p.)
and that the cone over a smooth dendroid has f.p.p. In [1] Borsuk showed
that each dendroid has f.p.p.

A dendroid is smooth provided there is a point p ¢ M, called an
initial point, such that if b is a sequence in M converging to by, then
sequence of ares [p, by], [P, bs], ... converges to the are [p, b,]. It is shown
in ([2], Corollary 4) that each dendrite is a smooth dendroid. In the plane,
the cone over the Cantor set (embedded in the usual way on [0, 1]} is
a smooth dendroid which is not a dendrite.

A collection C of subsets of a space is coherent provided that if €' CC,
then some member of C—@C' intersects a memiber of €. We will denote
the union of the members of C by C*. A tree chain T in-a metric space
X is a finite coherent collection of open sets, called links, such that no
point of X is in more than two elements of © and © contains no circular
chains. Thus a tree chain is a one-dimensional cover with nerve whose
geometric realization is a tree. If each member of G has diameter < e,
then G is an e-tree chain. If non-intersecting links are a positive distance
apart, G is said to be taut. A continuum I is tree-chainable or trée-like
provided that for each &> 0, there is an s-tree chain covering M. It
follows from [6] that M is tree-like iff for each open cover O of M there
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is a tree IV and amap f: M —N such that fis an O-map (the inverse image
of each point iy contained in a member of O).

2. Straigat trees and looping arcs. If G is a tree chain and D is a tree
such that D CG* then D is straight in B iff

(1) B is an essential cover of D (i.e. each link of G contains a point
of D not in any other link of ). )

(2) If T« then D ~ BAT contains exactly one point in each link
of B—{T} intersecting 7. ‘
(In Figure 1, the tree D, which contains only the point  of the arc fq,r],
is straight in B. The tree D v [g, 7] is not straight in G.)

8

Fig. 1

_ PrOPOSITION 1. If D is straight in the tree chain T, and T G, then
T~ D is connected. Moreover, if T is an end link of G, then D—T is
connected.

Proof. Let 8, ..., 8, denote the links of ©—{T} which intersect 7.
Now BdT is the union of n mutually disjoint closed sets, §, ~ BdZ,
8, BAT, ..., 8 ~BaT. Suppose that the theorem fails and there are
disjoint closed sets 4 and B such that 4 B = D ~ 7. Since, for each i,
D 8; ~BAT is degenerate, D ~ §; ~ BAT intersects exactly one of 4
and B. Let Uy be the star-component (the maximal coherent collection)
of B—{T} containing §;, and let I; = (Wf—T) ~D. Then L,, ..., Ly is
a collection of mutually disjoint closed sets, and for each 4 D8

NBAT =Ly~ T. It follows that for each 1, L; intersects exactly one
of 4 and B. o '

©
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Let
X=4Av(U{Z:IinA+#0}) and Y=Bu(U{L: LinB+0}).

Then X and Y are disjoint closed sets such that X v ¥ = D, and D is
not connected. This is impossible, hence D ~ T is connected.

If T is an end link of G, then D ~ Bd7T is degenerate. Since each
component of D—T intersects BAZ, D—T is connected.

The principal reason we are interested in the notion of straightness
is given by:

PROPOSITION 2. If M is a compact metric space, G is a tout tree chain
covering M and F is a tree contained in M and straight in G, then there is
a continuous retraction r: M—>F such that r is o G-map.

Proof. Suppose T, is an end link of 8 and T, is the link of B— {7}
which intersects T'. Since no point of M belongs to three links of G,
BdT,= T, ~BdT,. Moreover, since F is- straight in 6, F ~BdT, is
a single point, d,. Define a map

g (FnTY)yoBAT,-F T,
by .
t(2) =z, if

(@) =dy, i

zeF T,
zeBAT,.

Clearly, g; is a continuous retraction onto F ~ T,. It follows from Prop-
osition 1 that F ~ T, is an AR, because it is connected. Thus there is
a continuous extension f; of g;, fi: Ty—F ~ T,. Moreover, since BAT, C Ty,
fi is a B-map. .

Suppose Ty, Ty, ..., T are the links of G—{T,, T,} which inter-
sect T,. Then BdAT, is the union of the mutually disjoint closed sets
I, ~BAT,, Ty nBAT,, ..., Tn ~BdT,. Since F is straight in G, there
are point d,, d,, ..., d, of F such that for each i, Ts ~ BdT, = {d;}. Define

g Ty O (F ATy BAT,»F ~ (T, v Ty)

by _
pel,,

zeFnT,,
vselinBdT,, i>3.

ge(@) = fu(w), if
g.(x) = @, if
ga2) = da, if

Sinece f; is a retraction onto F ~ T, g, is well-detined. Clearly g, is con-
tinuous and a G-map. Applying Proposition 1, we see that F ~ 7; and
F ~ T, are connected, thus F ~ (T, v T,) is connected and an AR. We
may continuously extend g, by for Ty v To—F ~ (T,  T,). After a finite
number of repetitions of this proeess, we obtain 7.

‘We should note here that if F' is a tree which is straight in G, F need
not be a geometric realization of (nerve B); for instance, see Figure 1.
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Even if F is a geometric realization of (nerve T), the mapping » is not
the usual “barycentric G-map” of [6].

If G is a tree chain covering M, and [a, b] is an arc in M, then [, b]
loops in G provided there are distinet links 7 and T, in G and points
#,4,% of [a,b] such that e <z <y <2 <b, 2, 2«BAT, and y eBdAT,.
(Here < denotes the usual order from a to b on [a, b].) One can see that
if D is a tree which is straight in G, then no arc in D loops in 6. The con-
verse of this theorem is false, as can be seen by Figure 1. No are in
D (g, ] loops in G, but D v [g,r] is not straight in 6.

PrOPOSITION 3. Suppose M is compact, 8 is a tawt tree chain covering M,
D is a tree contained in M, and straight in 8. Suppose g€ M —D and no
arc from q to D loops in 8. If [q, v] is the drreducible arc from q to D then
[q, 7] is contained in a single link of S and [q,7] intersects the closure of
at most one other link of S.

Proof. Suppose the proposition fails, and g e 8, ¢ 8. Since [g,7] ¢ 8,
there is a link §,¢8, and a point z such that ze[g,7]~ S, ~ Bdg,.
Similarly, there is a point ¥ «[q, 7] ~ BdS,. Without loss of generality,
we may assume ¢ <2 <<y <r. Since § is an essential cover of D, there
is a point deD 8, ~ BdS,. Inasmuch as [q, 7] is irreducible from g
to D, [¢,7]1C[q,d]. Thus g <o <y <d, and [¢,d] loops in §. This is
impossible, hence [g, 7] is contained in a single link 8, of 8.

Suppose 8, and §; are distinct links of §— {§,} such that [g, 7]~
N8, #0 and [¢,7]~ 8 # 0. We may assume that [q,7] ¢ 8, v &,.
Thus there are points w-and 2 such that we[q,7]~ 8 ~BdS, and
2e[g,71~ 8, ~ BdS;. Since 8 is taut, w # 2. At most one of w and 2 is r,
assume w 7 r. Since D is straight in 8, there is a point ¢ ¢ D ~ §; ~ BdS,.
Then w # ¢ 7 z and the arc [¢, #] loops in 8. This contradiction establishes
the proposition. :

3. Principal results.

TEEOREM 1. Suppose M is a smooth dendroid with metric e and ¢> 0.
Then there is o tree F C M and an e-tree chain W such that

(1) W is a taut tree chain covering M,

(2) F is straight in .

Proof. Suppose that the theorem fails and let p be an initial point
qf M. Tt follows from [3] that M is tree-like; let' R be a taut e-tree chain
covering M. If N is a subcontinuum of I , then N has property @ provided
there does not exist a refinement § of R and a tree D C N such that

(i) 8 is & taut tree-chain covering W,
(ii) D is straight in 8,
(iii) If » e N then the arc [p,n] n N does not loop in §.
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We will show that property @ is inductive. Suppose L is a decreasing
sequence of subcontinua of M, each having property Q. Clearly, (| L; is
a continuum. Suppose § refines R and D is a tree such that § and D
satisty (i) and (i) for N = [7] L;. We will show that () Z; has property @
by showing that (iii) does not hold. Since §* is an open set containing M L;,
§* contains all but finitely many Z;. We will assume that each I;C S*.
Since, for each 4, L;, S and D satisfy (i) and (i), Ly must fail to satisfy (iii).
Thus there is a point n; € L such that I; ~ [p, n;] loops in 8. There are
distinet links Sj;, and Sy, of 8 and points 4, ¥4, 2 such that p <z <y
<2< Ny Piy2€Lly~BdSy, and y;e Ly~ BdS;. Since § is a finite
collection, some pair of links is chosen infinitely often. By passing to,
convergent subsequences and relabeling, we may assume that there are
links 8y and Sy of 8 such that for each 4, 8;=8; and 8x= 8y, and
that the sequences z,y,z, n converge to %, #,, 2, and #,, respectively.
Because L is a decreasing sequence, @, 2, € ([} Li) »~ Bd Sk, %, € () L)
~ BdS; and ny e () Ly. Clearly, lim[p, ;] C lim[p, y;] C lim[p, 2]
Clim[p, n;]. Since M is smooth, these limits are the ares [p, %], [9, %],
[P, 2] and [p, n,), respectively. Thus p < @, < ¥ < 2, < %- Since 85 = Sp
and 8 is taub, () L) ~ BdS; ~ BdSy =@. It follows that x, = ¥, # 2,
and 80 P < %)< Y < 2 < g; thus the are [p, ng] »~ (0 Ls) loops in S.
Since (iii) does not hold, [ I; has property @ and property @ is induc-
tive.

Clearly M has property @, so there is & subcontinuum M’ of M which
is irreducible with respect to property Q. If p ¢ M’, then there is a point
p' € M’ such that [p,p']~ M’ = {p'}. It follows from ([2], Corollary 6)
that M’ is a smooth dendroid with initial point p’. Suppose N is a sub-
continuum of M’ and % < N. Then [p,n]~ N loops in § iff [p',n] ~ N
loops in 8. (In fact, [p', #] ~ N = [p, n] ~ N.) Rather than use M’ and p’,
we will simply assume that p e M’ and M' = M.

It is shown in ([2], Theorem 10) that there is a metric d for M which
is rddially convex with respect to p (i.e. if # € [p, y] and # £ y then d(p, )
< @(p, y)). Let W be an open sphere about p in this metric d. It is easy
to see that W is arcwise connected and, since M is hereditarily unicoherent,
BAW contains exactly one point from each component of M —W. Since
the metries p and d are equivalent, we may assume that W was chosen
so that if By~ W s @, then diam(R; v W) < e in our original metrie p.
Let K denote a component of M —W and let {¢} = K ~ BAW. Since K is
2 proper subcontinuum of M, K does not have property @. Thus there
is a refinement 8 of R and a tree .D such that § and D satisfy (i), (ii) and
(iii) for ¥ = K. )

‘We would like to be able to conclude that g « D and that only one
link of 8§ intersects W. If g ¢ D, there is a point r ¢ D such that [g, 7] ~
~ D= {r}. Let B=[gq,r] v D. Note that ¥ is a tree, although we do
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not know that F is straight in 8. We will refine $ to obtain a tree chain §
80 that B and ¥ satisfy (i) and (i) for ¥ = K, and only one link of g
intersects W. Since [g, #] = [p, #] ~ X, [g, ] does not loop in 8. Applying
Proposition 3, there are distinet, intersecting links §, and 8, such that
[g,71C8, and [g,71A 8=, if 1] 2. See Figure 1. Using (15,
Lemma 1), we obtain a set V, open in M, such that re VCV C 8,V A
N8 =0 if 152 and B4V contains exactly one point from each
component of H— {r}.

We show that §,—8, ~ (#~V) is connected. Since B = D u [q, 7]

and[g,r]1C 8, 8,— 8, n (B—V) = 8,—8, ~ (D~V). Since V' C 81y 8— 8, ~
N(D—=V)=8~8 ~D. Now§,— 8 = §,—8,, 50 Bp— 8N D= (8,—8)
~D= (8~ D)—8,. According to Proposition 1, 8, ~ D is a tree. Let $
denote the links of § intersecting §,. Then $ is a tree chain covering
SnDand 8, ~nDis straight in $. Since §; is an end link of B, we apply
_Proposition 1 again and conclude that (8, " D)— 8, = 8;— 8, ~ (B—V)
i3 connected.

- Let L denote the component; of #—V containing 8o~ 8, ~ (B—V).
Sinee Z—V has only finitely many components, L is both open and
closed in B—V. Thus L and (B—YV)—L=E—(VULI) are digjoint and
clo-sed in M. It follows that L w (83~ 8,) and E~(V v L) are disjoint.
Using normality, we obtain an open set ¥ such that E-VuLCy

and ¥ (Lo (8,—8)) =@. Let G be defined by Ty= 8, if 52 9;
T2=.Sa—(17uV). Since 8, ~ (YVTV)CS, B is a taut e-tree chain
eover%ug K Moreover, B~ T, ~ Bd Iy=(EB-V)~n &8 ~Bd T, which is
contained in exactly one of the degenerate sets L ~ B4V and I ~ Bas,.

Therefore ¥ iy straight in % and so 6 and B satisfy (i) and (ii) and qge B

We may assume that only ome link 7, of 8 intersects W. (If necessary, '

remove W from each of G- {T1}. This new tree chain will still cover K.
because (W—W)~ K = {gCcr.) ’

Qne further refinement U, of % is necessary. Since G covers K, no
-eontmuum in M—W intersects both K and (M —W)—6* Thus Ejlere
18 an open set X such that K C X C€* and BdX CW. Define U by
Ui = T; ~ X. Thus for each component K of M —W, we obtain a refine-
n}ent ‘lL of R and a tree B such that (i) W is a taut tree-chain covering K.
(ii) B Is straight in W, (iv) K ~ BAW = {6 CH, (v) U, is the only Iink’
of U intersecting W, and (vi) Bd U*C W,

There. is a finite collection Uy, Uy ooy W of these tree-chaing
whose union covers M— 7, Denote the corresponding components of
M—W by Ej, the trees by B; and K; ~Bd W — {27} C B;. Now K, v
v ((.ZL/[~W)~Q1 Uf) and (2 —w)—uz) o (jle,) are disjoint closed

subsets of M—W. No gontinuum in M—W intersects both these closed
sets, because, for each Jy BAWS C W. Thus there is an open set Z, such
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that K, v (M —W) —H U CZ, and Z,~ (((M—W)—-‘u,’{) v (U Ky)
= 0. It follows that Z;C Uf u W. Define a refinement v, of 41, by
Vi = U ~ Z,. Then U, has properties (i), (ii), (iv), (v), (vi) and in ad-
dition UT ~ U C W, if j 5= 1. Repeating this process m—1 times yields
tree chains Uy, Vs, ..., Um which have properties (), (), (iv), (v), (vi)
and UV} ~ VFC W, if 4+ j. For each Jy Vi is the only link of U; which
intersects W. Since each %U; refines R, diam(W v V1) < e. Thus W;
= {Viiv W, Vs, ..,Vig} is an e-tree chain covering the tree [p, ;] v H;.
Moreover, [p, g1« Ej is straight in W; and W* ~ Wi=W=Wyn Wi,

m
if ¢ j. Let F= {J([p, ¢;1v F;). Then F is a tree which is straight in
=1

m
the tree chain (J Wy, and this tree chain covers M. This concludes
i=1

the proof.

We note that we could have proved that smooth dendroids are
tree-like using an argument similar to, and somewhat simpler than, that
given in the proof of Theorem 1. However, Cook’s theorem makes this
unnecessary.

Our main result now follows immediately from Theorem 1 and Prop-
osition 3.

THEOREM 2. Suppose M is a smooth dendroid with metric o and > 0.
Then there is a tree F C M and o retraction r: M —>F such that r moves 1o
point of M as much as .

One would like to be able remove “smooth” from the hypothesis
of Theorem 2. In [5] it is shown that we may to this if M is assumed to
be a fan (a dendroid with one ramification point).

For completeness, we state two theorems on fixed points, which
are the joint work of C. A. Eberhart and the writer. For other theorems
along these lines, and detailed arguments, see [4].

THEOREM 3. The product of any collection of smooth dendroids has £.p.p.

Proof. It suffices to show that the produet [] X; of any finite
collection X, ..., X, of smooth dendroids has f.p.p. If ¢: [ X;—[] X; is
a fixed-point-free map, then there iz a 6> 0 such that each point of
T1X; is moved at least 8 by g. Repeatedly applying Theorem 2, there is
4 collection Fy, ..., F, of trees and retractions r;: X; Py, each of which
moves no point of X; as much as §/2". Then []r; is a retraction of [1x,
onto [] 7, moving no point as much as §/2""". The composition of []r;
restricted to [[F, followed by g is a map of []F; into itself which moves
each point of []F; at least 4/2; thus this map is fixed-point-free. However,
[1P; is an AR, hence has the fixed point property. This contradiction
establishes the theorem.

THEOREM 4. The cone C(M) over a smooth dendroid M has f.p.p.
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Proof. It follows from (2], Corollary 12) that M ig contradictible,

According to [7], C(M) has f.p.p. iff M xI has £p.p. Since M x7I ig
& product of smooth dendroids, we apply Theorem 3 and conclude that
C(M) has fp.p.

1]
21

[3]
[4]
[5]

(6]
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Some relations between k-analytic sets
and generalized Borel sets

by
R. C. Willmott* (Kingston, Ont.)

§ 1. Introduction. A. H. Stone introduced the family of %-analytic
sets, where & is an arbitrary cardinal, and established some of their prop-
erties ([7], hereafter referred to simply as Stone). He conjectured that
the relationships between classical analytic and Borel sets, such as
Souslin’s theorem, that if a set and its complement are both analytie,
they are both Borel, would generalize to relationships between %-analytic
sets and k-hyperborel sets, defined as the smallest family of sets con-
taining all closed sets and closed under intersections of 8, and unions
of k& of them. While this seems to be the correct Borel family there are
difficulties in working with different cardinal numbers.

In this paper we establish some relations between Souslin (a)§ sets
(k-analytic sets if k= ;) and generalized Borel families of sets which
eontain the k-hyperborel sets, but admit intersections of % elements.
We remark that Maximoff [2] was led to a similar Borel family while
studying a relation between Borel sets and sets analogous: to k-analytic
sets. The method used is a generalization of Lusin’s theory of sieves.
Most of the proofs in this paper are direct generalizations of proofs of
Lusin [1]. :

Specifically, in § 3 is developed the basic sieve theory; in corollary 4,
Souslin (a)§ sets are characterized as the sifted sets of a certain class of
sieves. In § 4 we establish the decomposition of sifted sets and their
complements into - disjoint Borel{a)F sets (see § 2 for definitions) and
apply this result to express a Souslin(a)F set as a union and intersection
of %4, Borel(a)F sets (theorem 6). Finally in § 5 we show (theorem &)
that disjoint Souslin(a)F sets can be separated by disjoint Borel(a)¥
sets and use this result to prove (corollary 9) that if a set and its comple-
ment are Souslin(a)§, then they are Borel(e)®, and that (theorem 11)
a continuous, one-to-one image of 7(a) (a generalization of the irrationals,
see § 2) is a Borel(a)F¥ set. ’

m was written while the author was a fellow of the 1969 Summer
Research Institute of the Canadian Mathematical Congress.
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