198

F. J. Perticani

- [5] S. Eilenberg and S. MacLane, Cohomology theory in abstract groups, II, Ann. of Math. 48 (1947), pp. 326-341.
- [6] C. J. Everett Jr., An extension theory for rings, Amer. J. Math. 64 (1942), pp. 363-370.
- [7] G. Hochshild, On the cohomology groups of an associative algebra, Ann. of Math. 46 (1945), pp. 58-67.
- [8] On the cohomology theory for associative algebras, Ann. of Math. 47 (1946), pp. 568-579.
- [9] Lie algebra kernels and cohomology, Amer. J. Math. 76 (1954), pp. 698-716.
- [10] G. Hochshild and J. P. Serre, Cohomology of groups extensions, Trans. Amer. Math. Soc. 74 (1953), pp. 110-134.
- [11] Nathan Jacobson, Structure of rings, A.M.S., Providence 1956.
- [12] Lectures in abstract algebra, Vol. 1, 1951.
- [13] S. Mac Lane, Homologie des anneaux et des modules, Colloque de Topologie Alégbrique, Louvain (1956), pp. 55-80.
- [14] Extensions and obstructions for rings, Ill. J. of Math. 2 (1958), pp. 316-345.
- [15] Homology, Academic Press, New York 1963.
- [16] Hakote Misan, Simple Vector Spaces, Sci. Rep Kanazawa Univ., 2 (1953), pp. 5-6.
- [17] Umeshachandra Shukla, Cohomologie des algébres associatives, Ann. Sci. École Normale Supérieure, Paris, 78 (1961), pp. 163-209.
- [18] Ferenc Szasz, Ringe, deren echte Unterringe strong zyklische Rechts Ideale sind, Magyar Tud. Akad. Kutató Int. Közl., 5 (1960), pp. 287-292.
- [19] J. Szendrei, Über eine allgemeine Ringkonstruktion durch Schiefes Produkt, Acta Szeged, XIX (1958), pp. 63-76.
- [20] J. Szep, Über eine neue Erweiterung von Ringen, I-II, Acta Szeged 19 (1958), pp. 51-62 and same Acta, 20 (1959), pp. 202-214.

Reçu par la Rédaction le 23, 8, 1968

On the lattice of left annihilators of certain rings

by

M. F. Janowitz (Amherst, Mass.)

- § 1. Introduction. In this note we shall explore the connection between algebraic equivalence in a Rickart ring and certain lattice theoretic properties of its lattice of left annihilators—our goal being to place the whole theory in a lattice theoretic rather than a ring theoretic setting. In the case of the projection lattice of a von Neumann algebra, it is shown that the usual dimension relation of *-equivalence may be realized as perspectivity in a certain associated lattice. The parallel between von Neumann's dimension theory for a continuous geometry and the one for von Neumann algebras thus becomes apparent in that both are seen to be intrinsic—based on perspectivity.
- § 2. Rickart rings. Following terminology introduced by S. Maeda [8], we agree to call a ring $\mathfrak A$ a *Rickart ring* in case it satisfies the following two conditions:
- (R_r) The right annihilator of every element is the principal right ideal generated by an idempotent.
- (R₁) The left annihilator of every element is the principal left ideal generated by an idempotent.

For examples we refer the reader to Kaplansky [5] as well as S. Maeda [8]. Given the Rickart ring $\mathfrak A$, let L(x) denote the left annihilator of x, R(x) its right annihilator, $L(\mathfrak A) = \{L(x): x \in \mathfrak A\}$ and $L(\mathfrak A) = \{R(x): x \in \mathfrak A\}$. If $L(\mathfrak A)$ and $L(\mathfrak A)$ are each partially ordered by set inclusion, by [8], Theorem 1.1, p. 512, they form dual isomorphic relatively complemented lattices with 0 and 1. Our goal in this section is to extend [8], Lemma 4.3, p. 517.

First we need some additional terminology. Two elements e, f of a lattice L are said to form a modular pair, denoted M(e,f), in case $a \le f \Rightarrow a \lor (e \land f) = (a \lor e) \land f$; they form a dual modular pair, in symbols DM(e,f), if $a \ge f \Rightarrow a \land (e \lor f) = (a \land e) \lor f$. In a lattice L with 0, two elements e and f are called perspective and written $e \sim f$ in case there is an element x such that $e \lor x = f \lor x$ with $e \land x = f \land x = 0$; they are called strongly perspective and denoted $e \sim^s f$ when they are perspective in

 $[0,e\vee f]$; the symbol $e\approx f$ will be used to indicate that e and f are projective in the sense that there exist finitely many elements $e_1,e_2,...,e_n$ such that $e\sim e_1\sim ...\sim e_n\sim f$. We agree to write $e\prec f$ to indicate the existence of an element g such that $e\vee g=f\vee g=e\vee f$, $e\wedge g=f\wedge g=0$ and (f,g) as well as (g,f) both form modular and dual modular pairs; if in addition $(e,g),\ (g,e)$ each form modular and dual modular pairs, we say that e and f are modularly perspective.

Now let $\mathfrak A$ be a Rickart ring with $L=\mathfrak L(\mathfrak A)$. We adopt the convention that e, f, g, h (with or without subscripts) will always denote idempotents. If $\mathfrak Ae, \mathfrak Af \in L$ we follow S. Maeda [7] and call $\mathfrak Ae, \mathfrak Af$ semi-orthogonal if we can find e_0, f_0 such that $\mathfrak Ae = \mathfrak Ae_0, \mathfrak Af = \mathfrak Af_0$ and $e_0f_0 = f_0e_0 = 0$. A mapping $\varphi \colon L \to L$ is called residuated if φ is isotone and there exists an isotone mapping $\varphi^+ \colon L \to L$ such that $(\mathfrak Ag)\varphi^+\varphi \leqslant \mathfrak Ag \leqslant (\mathfrak Ag)\varphi\varphi^+$ for all $\mathfrak Ag \in L$. As in [3], p. 94, each $x \in L$ induces a residuated map $\varphi_x \colon L \to L$ by the rule $(\mathfrak Ag)\varphi_x = LR(gx)$ with $(\mathfrak Ag)\varphi_x^+ = L(x(1-g))$. As a final item, we agree to call x range-closed if $\mathfrak Ag \leqslant LR(x)$ implies the existence of an element $\mathfrak Ah$ such that $(\mathfrak Ah)\varphi_x = \mathfrak Ag$; we call x dual range-closed if $\mathfrak Ag \geqslant 0\varphi_x^+ = L(x)$ implies $\mathfrak Ag = (\mathfrak Ah)\varphi_x^+$ for suitable $\mathfrak Ah \in L$. It is easy to show that x dual range-closed is equivalent to the assertion that $e\mathfrak Ag \leqslant RL(x)$ implies $e\mathfrak Ag = RL(xf)$ for some $f\mathfrak Ag \leqslant R(\mathfrak A)$.

Theorem 1. If $RL(x)=e\mathfrak{A}$, $LR(x)=\mathfrak{A}f$ with ef=fe=0, then $\mathfrak{A}e < \mathfrak{A}f$.

Proof. Set d=e+f. By [8], Lemma 1.4, p. 512, $d\mathfrak{A}d$ is a Rickart ring with $\mathfrak{L}(d\mathfrak{A}d)$ isomorphic to $L[0,\mathfrak{A}d]$. Dropping down to $d\mathfrak{A}d$, we may assume f=1-e. It is important to notice that x=exf, $x^2=0$, $R(x)=R(f)=e\mathfrak{A}$ and $L(x)=L(e)=\mathfrak{A}f$. Set g=e-x and note that g is idempotent. Also, $ag=0\Rightarrow ae=ax$, so ae=aef=0, while $ae=0\Rightarrow ae\in L(e)=L(x)\Rightarrow ag=0$. This shows that L(g)=L(e), so $\mathfrak{A}(1-g)=\mathfrak{A}(1-e)=\mathfrak{A}f$. As in [6], Lemma 5.6, p. 165, or by [3], Theorem 27, p. 95, $\mathfrak{A}g$ and $\mathfrak{A}f$ are complements with $(\mathfrak{A}g,\mathfrak{A}f)$ as well as $(\mathfrak{A}f,\mathfrak{A}g)$ forming both a modular and a dual modular pair.

It remains to show that $\mathfrak{A}e$ and $\mathfrak{A}g$ are complements. If $\mathfrak{A}e\vee\mathfrak{A}g$ $\leqslant \mathfrak{A}h$, then e=eh and g=gh, so

$$g = e - x = (e - x)h = eh - xh = e - xh$$

and x = xh. Now $R(x) = R(f) = (1-f)\mathfrak{A} = e\mathfrak{A}$, so x(1-h) = xh(1-h) = 0 implies 1-h = e(1-h) = e-eh = 0 and h = 1. To see that $\mathfrak{A}e \cap \mathfrak{A}g = 0$, let $b \in \mathfrak{A}e \cap \mathfrak{A}g$. Then b = be = bg so b = b(e-x) = be - bx = b-bx shows bx = 0, so

$$b \in L(x) = L(e)$$
 and $b = be = 0$.

COROLLARY 2. With notation as in the theorem, if $\mathfrak{Ae}_0 \leqslant \mathfrak{Ae}$, then $\mathfrak{Ae}_0 \leqslant (\mathfrak{Ae}_0)\varphi_x$; furthermore, \mathfrak{Ae} and \mathfrak{Af} have a common complement \mathfrak{Ag} in their join such that $(\mathfrak{Ae}_0)\varphi_x = (\mathfrak{Ae}_0 \vee \mathfrak{Ag}) \cap \mathfrak{Af}$ for all $\mathfrak{Ae}_0 \leqslant \mathfrak{Ae}$.

Proof. If necessary (see [7], Lemma 4, p. 159) we may replace e_0 by ee_0 , so we may assume with no loss of generality that $e_0=ee_0=e_0e$. Notice that $y(e_0x)=0\Rightarrow ye_0\in L(x)=L(e)\Rightarrow ye_0=ye_0e=0$, while $ye_0=0$ clearly implies $ye_0x=0$. Thus $L(e_0x)=L(e_0)$ and $RL(e_0x)=RL(e_0)=e_0\mathfrak{A}$.

We now observe that $LR(e_0x) \leq LR(x) = \mathfrak{A}f$, so let $\mathfrak{A}f_0 = LR(e_0x)$. We may assume as above, that $f_0 = ff_0 = f_0f$, so we have $LR(e_0x) = \mathfrak{A}f_0$, $RL(e_0x) = e_0\mathfrak{A}$ with $e_0f_0 = f_0e_0 = 0$. By the theorem, if $g_0 = e_0 - e_0x$, then $\mathfrak{A}g_0$ is a common complement of $\mathfrak{A}e_0$, $\mathfrak{A}f_0$ in $[0, \mathfrak{A}e_0\vee\mathfrak{A}f_0]$ such that $(\mathfrak{A}g_0, \mathfrak{A}f_0)$, $(\mathfrak{A}f_0, \mathfrak{A}g_0)$ form modular and dual modular pairs. Routine computation shows that $\mathfrak{A}g_0 \leq \mathfrak{A}g$, so

$$\mathfrak{A} e_0 \vee \mathfrak{A} g = \mathfrak{A} e_0 \vee \mathfrak{A} g_0 \vee \mathfrak{A} g = \mathfrak{A} f_0 \vee \mathfrak{A} g_0 \vee \mathfrak{A} g = \mathfrak{A} f_0 \vee \mathfrak{A} g .$$

Using $M(\mathfrak{A}g,\mathfrak{A}f)$, we have

$$\mathfrak{A}f_0 = (\mathfrak{A}f_0 \vee \mathfrak{A}g) \cap \mathfrak{A}f = (\mathfrak{A}e_0 \vee \mathfrak{A}g) \cap \mathfrak{A}f$$

as desired.

COROLLARY 3. If $e\mathfrak{A}=RL(x)$, $\mathfrak{A}f=LR(x)$ with $\mathfrak{A}e$ semi-orthogonal to $\mathfrak{A}f$, then $\mathfrak{A}e < \mathfrak{A}f$.

Proof. By hypothesis there exist $e_0, f_0 \in \mathfrak{A}$ such that $\mathfrak{A}e = \mathfrak{A}e_0$, $\mathfrak{A}f = \mathfrak{A}f_0$ and $e_0f_0 = f_0e_0 = 0$. Let $x_0 = e_0x$. Then

$$\begin{split} x_0y &= 0 \Rightarrow e_0xy = 0 \Rightarrow xy = exy = ee_0xy = 0 \;, \\ xy &= 0 \Rightarrow x_0y = e_0xy = 0 \;, \\ yx_0 &= 0 \Rightarrow ye_0x = 0 \Rightarrow ye_0 \; \epsilon \; L(x) = L(e) \Rightarrow ye_0 = ye_0e = 0 \;, \\ ye_0 &= 0 \Rightarrow yx_0 = ye_0x = 0 \;. \end{split}$$

This shows that $R(x_0) = R(x)$ and $L(x_0) = L(e_0)$, so $RL(x_0) = e_0 \mathfrak{A}$, $LR(x_0) = \mathfrak{A}f_0$ and $e_0 f_0 = f_0 e_0 = 0$. Now invoke Theorem 1.

It seems worth mentioning that the symmetry of e and f in the above Corollary will also yield $\mathfrak{A}f \prec \mathfrak{A}e$. We return now to the notation of Theorem 1, and assume $RL(x) = e\mathfrak{A}$, $LR(x) = \mathfrak{A}f$ with ef = fe = 0, and g = e - x. By [4], Lemma 3.6, p. 1216, the assertion $DM(\mathfrak{A}e, \mathfrak{A}g)$ is equivalent to x = e(1-g) = e(1-e+x) being range-closed, while $M(\mathfrak{A}g, \mathfrak{A}e)$ is equivalent to x being dual range-closed. Thus if x is both range-closed and dual range-closed, we have $\mathfrak{A}e$ and $\mathfrak{A}f$ modularly perspective, and $\mathfrak{A}e_0 \rightarrow (\mathfrak{A}e_0 \vee \mathfrak{A}g) \cap \mathfrak{A}f$ an isomorphism of $[0, \mathfrak{A}e]$ onto $[0, \mathfrak{A}f]$ whose inverse is given by $\mathfrak{A}f_0 \rightarrow (\mathfrak{A}f_0 \vee \mathfrak{A}g) \cap \mathfrak{A}e$. In particular, if e and f are algebraically equivalent (see [8], p. 517) in the sense that there is an

202

element y such that xy = e and yx = f, then x is both range-closed and dual range-closed, so the above remark applies. It should be noted that the isomorphism induced lattice theoretically by $\mathfrak{A}e_0 \rightarrow (\mathfrak{A}e_0 \vee \mathfrak{A}g) \cap \mathfrak{A}f$ coincides with that provided by the algebraic equivalence of e and f in the ring A (see [4], Lemma 5.2, p. 1220). This extends [8], Lemma 4.3, p. 517 and is summarized in the next theorem.

THEOREM 4. If xy = e, yx = f and ef = fe = 0, then $\mathfrak{A}e$ and $\mathfrak{A}f$ are modularly perspective with the perspectivity implemented by a common complement $\mathfrak{A}g$ such that $\mathfrak{A}e_0 \to LR(e_0xf) = (\mathfrak{A}e_0 \vee \mathfrak{A}g) \cap Af$ is an isomorphism of $[0, \mathfrak{A}e]$ onto $[0, \mathfrak{A}f]$; furthermore, $\mathfrak{A}e_0$ and $(\mathfrak{A}e_0 \vee \mathfrak{A}g) \cap \mathfrak{A}f$ are modularly perspective for each $Ae_0 \leq Ae$.

One can, of course, proceed as in Corollary 3 and weaken this to the case where $\mathfrak{A}e$ and $\mathfrak{A}f$ are semi-orthogonal.

§ 3. Rickart *-rings. A Rickart *-ring is an involution ring A in which the right annihilator of each element x is the principal right ideal generated by the projection x' (see [8], pp. 522-525). It is immediate (see [2], Theorem 3, p. 651) that the lattice L = P(A) formed by the projections in A is orthogonal. We agree to call two projections orthogonal and write $e \perp f$ in case ef = 0. As in § 2, we call them semi-orthogonal if there exist idempotents e_0 , f_0 such that $\mathfrak{A}e = \mathfrak{A}e_0$, $\mathfrak{A}f = \mathfrak{A}f_0$ and e_0f_0 $=f_0e_0=0$. We use the notation $e\sim^*f$ to denote the fact that e and f are *-equivalent, in the sense that there is an element x such that $xx^* = e$ and $x^*x = f$. Also, for each $x \in \mathfrak{A}$ we agree to let x'' = (x')' = 1 - x'. The results of § 2 when applied to a Rickart *-ring now yield the following:

THEOREM 5. Let A be a Rickart *-ring.

- (i) If x'' is semi-orthogonal to $x^{*''}$, then $x'' < x^{*''}$ and $a < (ax^*)''$ for each $a \leq x''$; furthermore, x'' and $x^{*''}$ have a common complement g in their join such that $(ax^*)'' = (a \lor g) \land x^{*''}$ for all $a \leqslant x''$.
- (ii) Let $xx^* = e$ and $x^*x = f$ with $e \perp f$ in $P(\mathfrak{A})$. Then e and f are modularly perspective with the perspectivity induced by an element q such that $x*ax = (a \lor g) \land f$ for all $a \leqslant e$.

It follows from part (ii) of the above theorem that if $e \perp f$ and $e \sim^* f$, the ortho-isomorphism of [0, e] onto [0, f] induced by their *-equivalence is also induced lattice theoretically.

COROLLARY 6. If two projections of a Rickart *-ring A are both semiorthogonal and projective, then they are strongly perspective,

Proof. If g is a common complement for e and f it is easy to see that (eg'f)'' = f and (fg'e)'' = e. Making repeated use of this fact we see that if $e \approx f$ there exists an x in \mathfrak{A} such that x'' = e and $x^{*''} = f$. Now apply Theorem 5.

- § 4. Dimension lattices. Our goal in this section is to show that the usual dimension relation of *-equivalence in a Baer *-ring satisfying (EP) and (SR) may be regarded as a purely lattice theoretic concept. First we must establish our basic terminology. A Baer *-ring A is an involution ring in which the right annihilator of each subset is a principal right ideal generated by a projection. An element u of such a ring is called unitary if $uu^* = u^*u = 1$; two projections e and f are called unitarily equivalent if there exists a unitary element u such that $u^*eu = f$. Writing "CC" for "commutes with everything that commutes with", we now introduce the following axioms (due to Kaplansky [5], pp. 89-90) for A:
- (EP) For any non-zero element x there exists a self-adjoint element y with y CCx*x and x*xy2 a non-zero projection (existence of projections).
- (SR) For any element x we can write $x^*x = y^2$ with y self-adjoint and $y CCx^*x$ (square root).

THEOREM 7. Let A be a Baer *-ring satisfying (EP) and (SR). There exists a Baer *-ring B such that A is a *-subring of B, P(A) is orthoisomorphic to an interval sublattice of $P(\mathfrak{B})$ and for $e, f \in P(\mathfrak{A})$ the following conditions are equivalent:

- (i) There exists an element x of \mathfrak{A} such that x'' = e, $x^{*''} = f$.
- (ii) $e \sim^* f$ in \mathfrak{A} .
- (iii) e is unitarily equivalent to f in B.
- (iv) There exists a projection g in B such that e is modularly perspective to g and g is modularly perspective to f.
 - $(\nabla) e \approx f \text{ in } P(\mathfrak{B}).$

Proof. By [5], Theorem 10, p. 12 we may assume A finite or purely infinite (see [5], pp. 10-11 for a definition of these terms). In the finite case we take $\mathfrak{B} = \mathfrak{A}$ and apply [5], Theorem 63, p. 99 and Theorem 71, p. 120 to conclude that (i) \iff (ii) which in turn is equivalent to e being perspective to f in $P(\mathfrak{A})$. The remaining equivalences are now obvious.

Thus we may as well assume A purely infinite. In view of [5], Exercise 2(a), p. 66 we may take for B the 2 by 2 matrix ring over A and identify \mathfrak{A} with the set of all matrices of the form $\begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix}$ with $x \in \mathfrak{A}$.

- (i) \Rightarrow (ii). [5], Theorem 63, p. 99.
- (ii) \Rightarrow (iii). Let $xx^* = e$, $x^*x = f$. Notice that

$$\begin{bmatrix} x & 1-e \\ f-1 & x^* \end{bmatrix} \begin{bmatrix} x^* & f-1 \\ 1-e & x \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$
$$\begin{bmatrix} x^* & f-1 \\ 1-e & x \end{bmatrix} \begin{bmatrix} x & 1-e \\ f-1 & x^* \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

so $\begin{bmatrix} x & 1-e \\ f-1 & x^* \end{bmatrix}$ is unitary. We now need only observe that

$$\begin{bmatrix} x^* & f-1 \\ 1-e & x \end{bmatrix} \begin{bmatrix} e & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x & 1-e \\ f-1 & x^* \end{bmatrix} = \begin{bmatrix} f & 0 \\ 0 & 0 \end{bmatrix},$$
$$\begin{bmatrix} x & 1-e \\ f-1 & x^* \end{bmatrix} \begin{bmatrix} f & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x^* & f-1 \\ 1-e & x \end{bmatrix} = \begin{bmatrix} e & 0 \\ 0 & 0 \end{bmatrix}.$$

(iii) \Rightarrow (iv). If e is unitarily equivalent to f in $\mathfrak B$ there exists an element X of $\mathfrak B$ such that

$$X^{\prime\prime} = \begin{bmatrix} e & 0 \\ 0 & 0 \end{bmatrix}$$
 and $X^{*\prime\prime} = \begin{bmatrix} f & 0 \\ 0 & 0 \end{bmatrix}$.

Now

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \sim^* \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$$

so two applications of Theorem 5 (ii) will now produce the fact that $\begin{bmatrix} e & 0 \\ 0 & 0 \end{bmatrix}$ is modularly perspective to $\begin{bmatrix} 0 & 0 \\ 0 & e \end{bmatrix}$ which in turn is modularly perspective to $\begin{bmatrix} f & 0 \\ 0 & 0 \end{bmatrix}$.

 $(iv) \Rightarrow (v)$. Clear.

 $(v)\Rightarrow (i).$ If $\begin{bmatrix} e & 0 \\ 0 & 0 \end{bmatrix} \approx \begin{bmatrix} f & 0 \\ 0 & 0 \end{bmatrix}$ in $P(\mathfrak{B})$, then there exists an element $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathfrak{B}$ such that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}'' = \begin{bmatrix} e & 0 \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{*''} = \begin{bmatrix} f & 0 \\ 0 & 0 \end{bmatrix}.$$

But then

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} ae & 0 \\ ce & 0 \end{bmatrix},$$
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} f & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} fa & fb \\ 0 & 0 \end{bmatrix}$$

shows b=c=d=0 so

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \epsilon \mathfrak{A}.$$

Remark 8. If L happens to be the projection lattice of a von Neumann algebra, we may invoke [1], Theorem 1, p. 383 to replace condition (v) by

(v') $e \sim f$ in $P(\mathfrak{B})$.

Thus *-equivalence in the projection lattice of a von Neumann algebra $\mathfrak A$ coincides with the restriction to $P(\mathfrak A)$ of perspectivity in the projection lattice of the 2 by 2 matrix ring over $\mathfrak A$.

All of this suggests that a suitable vehicle for lattice dimension theory ought to be a complete orthomodular lattice such that $e \perp f$, $e \approx f \Rightarrow e$ is modularly perspective to f.

References

- P. A. Fillmore, Perspectivity in projection lattices, Proc. Amer. Math. Soc. 16 (1965), pp. 383-387.
- [2] D. J. Foulis, Baer *-semigroups, Proc. Amer. Math. Soc. 11 (1960), pp. 648-654.
- [3] M.F. Janowitz, Baer semigroups, Duke Math. J. 32 (1965), pp. 85-96.
- [4] A semigroup approach to lattices, Canad. J. Math. 18 (1966), pp. 1212-1223.
- [5] I. Kaplansky, Rings of operators, New York 1968.
- [6] F. Maeda, Decompositions of general lattices into direct summands of types I, II and III, J. Sci. Hiroshima Univ., Ser. A, 23 (1959), pp. 151-170.
- [7] S. Maeda, On relatively semi-orthocomplemented lattices, J. Sci. Hiroshima Univ., Ser. A, 24 (1960), pp. 155-161.
- [8] On a ring whose principal right ideals generated by idempotents form a lattice, J. Sci. Hiroshima Univ., Ser. A, 24 (1960), pp. 509-525.

Reçu par la Rédaction le 6. 2. 1969

205