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"On the lattice of left annihilators of certain rings

by
M. F. Janowitz (Amherst, Mass.)

§ 1. Introduction. In this note we shall explore the connection
between algebraic equivalence in a Rickart ring and certain lattice
theoretic properties of its lattice of left annihilators—our goal being to
place the whole theory in a lattice theoretic rather than a ring theoretic
sefting. In the case of the projection lattice of a von Neumann algebra,
it is- shown that the usual dimension relation of %-equivalence may be
realized as perspectivity in a certain associated lattice. The parallel
between von Neumann’s dimension theory for a continuous geometry
and the one for von Neumann algebras thus becomes apparent in that
both are seen to be intrinsic—based on perspectivity.

§ 2. Rickart rings. Following terminology introduced by S. Maeda [8],
we.agree to call a ring N a Rickart ring in case it satisfies the following
two conditions:

(By) The right annihilator of every element is the principal right ideal
generated by an idempotent.

(B1) The left annihilator of every element is the principal left ideal
generated by an idempotent.

For examples we refer the reader to Kaplansky [5] as well as
8. Maeda [8]. Given the Rickart ring 9, let L(z) denote the left annihilator
of z, R(r) its right annihilator, £(%) = {L(z): z e A} and R(A) = {R(x)
2 e L If £(A) and K(A) are each partially ordered by set inclusion, by [8],
Theorem 1.1, p. 512, they form dual isomorphic relatively complemented
lattices with 0 and 1. Our goal in this section is to extend [8], Lemma 4.3,
p. 517.

First we need some additional terminology. Two elements e, f of
a lattice I are said to form a modular pair, denoted M (e, f), in case
a < f=av(erf) = (ave)Af; they form a dual modular pair, in symbols
DM (e,f), if a=f=anr(evf) = (ane)vf. In a lattice L with 0, two ele-
ments ¢ and f are called perspective and written e~f in case there is an
element # such that eve = fvz with eAz = faz = 0; they are called
strongly perspective and denoted e~sf when they are perspective in
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[0, eVvf]; the symbol e ~f will be used to indicate that e and f are projective
in the sense that there exist finitely many elements e, e, ..., e, such
that e~e ~ ... ~e,~f. We agree to write ¢e<<f to indicate the existence
of an element g such that evg=fvg= eVf, eng=fAg=0 and (f, g}
as well a5 (g, f) both form modular and dual modular pairs; if in addition
(€5 9), (g,e) each form modular and dual modular pairs, we say that e
and f are modularly perspective.

Now let % be a Rickart ring with L= £(A). We adopt the con-
vention that e, f, g, b (with or without subseripts) will always denote
idempotents. If e, Af ¢ L we follow S. Maeda [7] and call e, ASf semi-
orthogonal if we can find e,, f, such that e= We,, Af = Af, and e,f,
= fyeo=0. A mapping ¢: L—L is called residuated if ¢ is isotone and
there exists an isotone mapping ¢*: L—L such that (Ug)ete <Ay
< (Ug)pe+ for all g e L. As in [3], p. 94, each z ¢ L induces a residuated
map gz L->L by the rule (Ag)g, = LR(gz) with (Ag)ps = L(z(1—g)).
As a final item, we agree to call z range-closed if g < LR(z) implies the
existence of an element Ak such that (Wk)p; = Wg; we call x dual range-
closed if Ag > Ogi = L(x) implies g = (Ah)p3 for suitable Ak e L. It is
easy to show that z dual range-closed is equivalent to the assertion that
e < RL(x) implies ¢ = RL(zf) for some f% e R(A).

TeeorREM 1. If RL(z)=el, LR(z)= Uf with ef =fe=0, then
Ae < Af.

Proof. Set d = e+ f. By [8], Lemma 1.4, p. 512, d%d is a Rickart
ring with £(d%d) isomorphic to L{0, Ad]. Dropping down to dAd, we may
assume f=1-—e. It is important to notice that z = exf, 2> =0, R(z)
= R(f)= e and L(z) = = Yf. Set g=e—x and note that ¢ is
idempotent. Also, ag= 0=>ae= ax, 0 a¢=aef =0, while ae=0=-a
€ L(e) = L(z)=ag = 0. This shows that L(g) = L(e), so A(L—g) = A(1—e)
= ¥Yf. Asin [6], Lemma 3.6, p. 165, or by [3], Theorem 27, p. 95, Ug and Af
are complements with (g, Af) as well as (Af, Ag) formmg both a modular
and a dual modular pair.

It remains to show that e and g are complements. If QIev‘!Ig
< Wk, then e= ¢k and g= gh, so

g=¢—a=(e—x}h=¢eh—xh=e—ah
and z=ah. Now R(z) = R(f)=(1—f)U= e, s0 z(1—h) = zh(l—k)
= 0 implies 1—h = e(l h)_ e—eh =0 and h=1. To see that e ~
NnUg=10, let beWenAg. Then b=>be=>bg so b= b(e—x) = be— bz
= b—bx shows b =0, so

bel{n)=IL(e) and b=be=0.
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CorOLLARY 2. With notation as in the theorem, if e, < Me, then
Aoy < (Weo) pz; furthermore, e and Af have a common complement Ag in
their join such that (Wey)pz = (UeyVAUg) ~ Uf for all e, < We.

Proof. If necessary (see [7], Lemma 4, p. 159) we may replace e,
by ee,, 50 we may assume with no loss of generality that e, = ee, = e,e.

Notice that y(e,®) = 0=>ye, e L(x) = L(e)=ye, = ye,e = 0, while ye,= 0
clearly implies yga = 0. Thus L(eow) = L(e,) and RL(eyw) = RL(e,) .
= ¢, .

We now observe that LRE(ez) < LR (@) = Af, so let Af, = LR(e,x).

We may assume as above, that fo = ffy = ff, so we have LR(¢,z) = Uf,,
RL(eyz) = A with e fy= fo¢o=0. By the theorem, if ‘gy= ¢,—e,2,
then g, is a common complement of Ae,, Af, in [0, Ae,vASf,] such that
(Ugo, Afo), (Ufy, Ago) form modular and dual modular pairs. Routine
computation shows that Ag, < Ag, so

We, vAUg = Wey VUG,V Ag = W, VUG v Ag = Af,vAg .
Using M (Ag, Af), we have '
Afo = (Af,vUg) ~ Uf = (Ao vAg) ~ Af
as desired.
CoROLLARY 3. If e = RL(x
to Af, then We < Af.

Proof. By hypothesis there exist e, f, e W such that Ae= Ue,,
Af = Uf, and e,f, = foe, = 0. Let 2, = ;2. Then

)y Uf = LR(%) with e semi-orthogonat

Ly = 0=>¢yay = 0=y = exy = eggay = 0,

zy = 0=>ayy = ey =0,

YTy = 0=>ye,@ = 0=>ye, e L(2) = L(e)=>ye, = yee =0,

Yyeg = 0=>yx, = ye,r =0 .

This shows that R(z,) = R(z) and L(x,) = L(&), s0 RL(z,) = &N, LR (w,)
= Af, and e,f, = fy¢ = 0. Now invoke Theorem 1.

It seems worth mentioning that the symmetry of ¢ and f in the above
Corollary will also yield UAf <Ue. We retu:rn now to the notation of
Theorem 1, and assume RL(z)= e, LR(z) = Af with ¢f = fe =0, and
g=e¢—x. By [4], Lemma 3.6, p. 1216, the assertion DM (Ue, ?[g) is
equivalent to = e¢(l—g)= e(1—e+=) being range-closed, while
M(Ag, Ae) is equivalent to x being dual range-closed. Thus if 2 is both
range-closed and dual range-closed, we have e and Af modularly per-
spective, and We,— (e, vAg) ~ Af an isomorphism of [0, Ae] onto [0, Af]
whose inverse is given by Uf,—(Af,vUg) ~ We. In particular, if e and f
are algebraically equivaleni (see [8], p. 517) in the sense that there is an


GUEST


202 M. F. Janowitz

element y such that 2y = e and yz = f, then « is both range-closed and
dual range-closed, so the above remark applies. It should be noted that
the isomorphism induced lattice theoretically by Ne,—(Ue,vAg) ~ Af
coincides with that provided by the algebraic equivalence of ¢ and f in
the ring U (see [4], Lemma 5.2, p. 1220). This extends [8], Lemma 4.3,
p. 517 and is summarized in the next theorem.

THEOREM 4. If 2y = ¢, yx=f and ef = fe =0, then e and Af are
modularly perspective with the perspectivity implemented by a common
complement Ag such that e, —LE (e, xf) = (UeyvUg) N Af is an isomorphism
of [0,Ue] onto [0, Uf]; furthermore, e, and (We,vAg) ~ Af are modularly
perspective for each Ae, < Ae.

One can, of course, proceed as in Corollary 3 and weaken this to

the case where e and UAf are semi-orthogonal.

§ 3. Rickart *-rings. A Rickart *-ring is an involution ring % in
which the right annihilator of each element « is the principal right ideal
generated by the projection ' (see [8], pp. 522-525). It is immediate
(see [2], Theorem 3, p. 651) that the lattice L = P(4) formed by the
projections in U is orthomodular. We agree to call two projections orthogonal
and write e | f in case ef = 0. As in § 2, we call them semi-orthogonal if
there exist idempotents e,, f, such that Ae= We,, Wf= Af, and ef,
= fo€y = 0. We use the notation ¢ ~*f to denote the fact that ¢ and f are
*-equivalent, in the sense that there is an element x such that zz* =e
and z*r = f. Also, for each # ¢ U we agree to let 2"’ = (2')' = 1—a'. The
results of § 2 when applied to a Rickart *-ring now yield the following:

THEOREM 5. Let W be a Rickart *-ring.

() If «'* is semi-orthogonal to x*’, then o" <&*' and a < (az*)”
for each a < x"'; furthermore, x'’ and «*'' have @ common complement ¢ in
their join such that (az*)’ = (avg)Az™’ for all a < z''.

(i) Let zz* =e and 2"z =f with el f in P(N). Then e and f aré
modularly perspective with the perspectivity induced by an element g such
that x*ax = (avg)Af for all a <e.

It follows from part (ii) of the above theorem that if e | f and e ~*f,
the ortho-isomorphism of [0, e] onto [0, f] induced by their *-equivalence
is also induced lattice theoretically.

COROLLARY 6. If two projections of a Rickart -ring U are both semi-
orthogonal and projective, then they are strongly perspective.

Proof. If g is a common complement for ¢ and f it is easy to see
that (eg’f)"" =f and (fg'e)” = e. Making repeated use of this fact we
see that if e~ f there exists an 2 in U such that 2"’ = ¢ and #*’ = f. Now
apply Theorem 5.
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§ 4. Dimension lattices. Our goal in this section is to show that the
usual dimension relation of -equivalence in a Baer x-ring satisfying
(EP) and (SR) may be regarded as a purely lattice theoretic concept.
First we must establish our basic terminology. A Baer %-ring % is an
involution ring in which the right annihilator of each subset is a prineipal
right ideal generated by a projection. An element # of such a ring is called
ungtary if wu* = w*u = 1; two projections e¢ and f are called wunitarily
equivalent if there exists a unitary element u such that w*eu = f. Writing
“CC” for “commutes with everything that commutes with”, we now
introduce the following axioms (due to Kaplansky [5], pp. 89-90) for 9U:

(EP) For amy non-zero element x there emists a self-adjoint element y
with yCCx*z and o*xy® a non-zero projection (ewistence of projections).

(8R) For any element & we can write «*x = y> with y self-adjoint and
yCOCx™z (square root).

TEEOREM 7. Let U be a Baer x-ring satisfying (EP) and (SR). There
ewists a Baer x-ring B such that A is a *-subring of B, P(NA) is ortho-
isomorphic to an interval sublattice of P(B) and for e, f « P(N) the following
conditions are equivalent: :

(i) There exisis an element x of A such that z" = e, o™’ = f.

(if) e~*f in U

(iil) e is wnitarily equivalent to f in B.

(iv) There exists' a projection g in B such that e is modularly per-
spective to g and ¢ is modularly perspective to f.

(v) e~f in P(B). '

Proof. By [5], Theorem 10, p. 12 we may assume I finite or purely
infinite (see [5], pp. 10-11 for a definition of these terms). In the finite
case we take B = U and apply [5], Theorem 63, p. 99 and Theorem 71,
P- 120 to conclude that (i) <= (ii) which in turn is equivalent to e being
perspective to f in P(A). The remaining equivalences are now obvious.

Thus we may as well assume ¥ purely infinite. In view of [5],
Exercise 2(a), p. 66 we may take for B the 2 by 2 matrix ring over UA

0
and identify % with the set of all matrices of the form [{g 0] with 2 € 9.

(i) = (ii). [5], Theorem- 63, p. 99.
(ii) = (ili). Let @z* = ¢, 4™z = f. Notice that

P [ R

R

A P
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50 [f$1 1; 6] is unitary. We now need only observe that

PR | Py B3
ey e

(ifi) = (iv). If e is unitarily equivalent to f in B there exists an
element X of B such that

"o_. 6 0 *1r___ f 0
e[ wa - f).

o ol~o]

50 two a.ppli(;ations of Theorem 5 (ii) will now produce the fact that

Now

e 0 00
[0 0] is modularly perspective to [O e] which in turn is modularly per-

. Jo
spective t .
pective to [0 0

(iv) = (v). Clear.

0 0
(V) = (i), It [g 0]% g .

b
[a ]e B such that
¢ d

-l Bl

] in P(8B), then there exists an element

But then
[a,b]ﬂ a blfe (ﬂ__ ae 0
¢d]l lealloo] e of’
[a b]_*[f O]’ab _[fa 1b
edl |oofledf [o o
shows b=¢=d=10 so
@b [a 0]
[c d]=_0 0_6%'
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Remark 8. If I happens to be the projection lattice of a von Neu-
mann algebra, we may invoke [1], Theorem 1, p. 383 to replace con-
dition (v) by

(v') e~f in P(B).

Thus *-equivalence in the projection lattice of a von Neumann al-
gebra A coincides with the restriction to P () of perspectivity in the
projection lattice of the 2 by 2 matrix ring over 9.

All of this suggests that a suitable vehicle for lattice dimension
theory ought to be a complete orthomodular lattice such that el f,
e~f=-¢ is modularly perspective to f.
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