Abelian torsion groups with
artinian primary components and their automorphisms

by
Jutta Hausen * (Houston, Tex.)

L Introduction. Throughout this paper 7' denotes an abelian torsion
group and A(T) its automorphism group.

As in [9], we are interested in theorems of the type:

T is a P-group if and only if A(T) is a Q-group ,
where P and Q are group theoretical properties.

In [3], R. Baer has proven that 7T is artinian if and only if every
torsion group of automorphisms of 7T is finite. This nice result holds true
even if the finiteness of the torsion subgroups of A(T) is replaced by the
weaker postulate that elementary abelian 2-groups of automorphisms
of T are finite (see [4]). But it is clear that the torsion subgroups of A (T)
become arbitrarily complicated if infinitely many primary components
of T are nontrivial. So R. Baer raised the question, what group theoretical
property @ imposed on A(T) is necessary and sufficient in order that
every primary component of 7T is artinian.

An answer to this question shall be given in the present paper. We
will prove the following result.

MaN THEOREM. -Hvery primary component of T is artinian if and
only if A(T) is residually finite and, for every primary normal subgroup I'
of A(T), the centralizer ¢I' of I in A(T) has finite indes in A(T).

The investigations in section III of the automorphism group of
abelian p-groups might be of independent interest. We shall show that
for every abelian p-group G, » >3, every normal p’-subgroup of . its
automorphism group A (@) is contained in the center of A(G).

II. Preliminaries. Our notation and terminology concerning abelian
group follows [5].

A group is called artinian if its subgroups satisfy the minimum
condition.

* This work was partially supported by the University of Houston Grant FRSP
(RIG) 69-29. .
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If G is an abelian p-group for some prime p, the maximal divisible
subgroup of ¢ shall be denoted by dG. The rank rk (@) of G is the dimension
of @[p] as a vectorspace over the primefield of characteristic p. By a well-
known theorem, @ is artinian if and only if rk(@) is finite (ef. [5], p. 65,
Theorem 19.2).

If ¥ is a normal subgroup of a group X, we write ¥ < X. The group
of all automorphisms of X shall be denoted by 4 (X).

If X is abelian and § some subgroup of X, the set of all automorphisms
of X which fix § elementwise and induce the 1-automorphism in X/§ is
a subgroup of 4(X), called the stabilizer of § in X, and shall be denoted
here by 2(X/8,8). By a wellknown theorem of Kaloujnine, Z(X/8, 8)
is abelian (cf. [13], p. 88, Satz 19), and furthermore Z(X[8, 8)
= Hom (X/8, §) (cf. [8], p. 153, Hilfssatz 1.4).

T, denotes the p-component of the abelian torsion group T. A torsion
group without elements of order p is called a p'-group. A@B denotes
the direct sum of the abelian groups A and B, 2° II° and IT* are our
symbols for a direct sum, a direet product, and a cartesian or unrestricted
direct product. If C is a I'-admissible factor group of X, for I"'C 4(X)
then I'lc denotes the group of automorphisms of ¢ induced by I

If AC A(X), we write e, I for the centralizer of I'in 4. The centralizer
of I'in A (X) simply is denoted by clI" and the center of I" by zl. I's 4 is
the. subgroup generated by the set of all commutabors y~'67'y6 where
yel and §eA.

A group is called residually finite if the intersection of all subgroups
of finite index is trivial (see [7], p. 16).

7

II. Central automorphisms. In this section we are concerned with
groups of automorphisms of an abelian p-group G.

The proof of our main theorem will vitally depend on the fact that,
if p> 3, every normal p'- subgroup of 4(G) is contained in the center
of 4(@).

In order to establish this result we need several lemmas.

LeMMA 1. Let @ be an elementary abelian p-group of finite ramk n.
If either n 2 or n = 2 and P > 3, then every normal p'-subgroup of A(G)
s contained in the center of A(@).

Proof. If @ is eyclic, then 4. (@) is abelian and our proposition holds.
Therefore, we may assume that k(@) = n > 2. Since every elementary
abelian p-group is a vectorspace over the primefield K, of characteristic p,
A (@) is isomorphic to the group GL(n,p) of all invertible matrices of
size n xn over K,. It is wellknown that, for > 3 or n = 2 and P> 3,
every normal subgroup of GL(n, p) either contains the subgroup SL(n, p)
of all matrices with determinant 1 or it is contained in the center of
GL(n, p) (cf. [1], p. 165, Theorem 4.9). But, for n > 2, SL(n, p) containg
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elements of order p (see [1], p. 170, Theorem 4.11). Therefore, if % > 3
or n =2 and p > 3, every normal p’-subgroup of GL(n, p) is contained
in the center, and the analogue statement holds for A (&) ~ GL(n, p).

This proves the lemma.

LevmMa 2. If @ is an infinite elementary abelian p-group, then every
normal p'-subgroup of A(G) is contained in the center of A(G).

Proof. Let I" be a normal p’-subgroup of 4 (@) and y e I'. Since the
order of y is finite, any two elements x, and », of G can be imbedded into
a finite y-admissible subgroup F of &, and we can choose F to have
arank s 2. Let @ be the set of all automorphisms of & mapping F onto
itself. Then y ¢ @ and, since F is a direct summand, @ induces in F its
full group A(F) of automorphisms. Therefore, the group of automor-
phisms of F induced by I'n® < @ is a normal p’-subgroup of A (F)
which, accordingly to Lemma 1, is contained in zd (¥). Hence, y e '~ &
induces in F' a central automorphism. But the center of A(F) consists
just of the multiplications with p-adic units (see [2], p. 111; Theorem),
80 @y = kzy and z,y = kx, for a suitable integer % prime to p. This being
true for every pair of elements implies ®y = kz for all z ¢ ¢. Hence
yezA (@) and I'CzA (@) as stated above.

A consequence of these two results is the following

COROLLARY 3. Let G be an elementary abelian p-group, p > 3. Then
every mormal p'-subgroup of A(@) is contained in the center of A(G).

Levya 4. For n = 0 an integer, every automorphism of

"= (p"@)[p]l(p" &) [p]

is induced by some automorphism of G.

Proof. Since every automorphism of p"@ is induced by an auto-
morphism of G (see [6], p. 123, Lemma 1), it suffices to prove the propo-
sition for # = 0.

Let B be a maximal elementary abelian direct summand of & (cf. [5],
p- 99). Then, for some subgroup H of G, we have

G = BQH,
where (p@)[p]= H[p], and the mapping o: B-—+F° defined by
bo=">b-+H[p] for beB,

is an isomorphism from B onto F° = G[p]/(pG)[p]. '
Let @ be an automorphism of F°. Then & possesses an automorphism
a satisfying )
ba=bo®ot for beB

ha=h for heH.
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If @ denotes the automorphism of F° induced by a, then
(b+H[pl)d = ba+H[p] = bac = bod = (b-+H[p])D

for every b ¢ B. Hence, a = & and the lemma is proven,

LeMmA 5. Let G be a reduced abelian p-group for p > 3 and I' a normal
p’-subgroup of A(@). Then I'CzA(G).

Proof. Let 4, denote the set of all automorphisms of G inducing

the Il-automorphism in F" = (p"@)[p]j(p""'@)[p]. Then 4, is a normal

subgroup of 4(G) and, by Lemma 4, we have
@ A(F") = A(@)]4 .

For every n, I' induces a p'-group Iy ~ I'4,/4, of automorphisms in ",
which, according to (1), is a normal subgroup of 4 (F"). Hence, by Corol-
lary 3, I's is contained in zA4(F™); it follows that I}, o A(F™) =1 and
@) ToA(@CI'ndy for n=0,1,..

’

using (1) and the normality of I Gonseqlienﬂy,

(3) , TeAd(@CT ~ () 4a).
n=o0

'3ut a,cem:ding to [11], p. 101, the order of every torsion automorphism
in Q_OA,, 1s & power of p, which implies I'rn ([ 4,) = 1. Using (3) we
obtain I'e A(6) =1, ie. I'C 24(Q). "

THROREM 6. Lot G be an abelian p- group for p>3 and I' a normal
p'-subgroup of A(). Then I'is contained in the center of A(G).

‘P.roo.f.. Let G‘:‘ D@E where D is divisible and R is reduced. Using
the‘ Injectivity of divisible groups (cf. [5], p. 59, Theorem 16.1) one verifies
easily that every automorphism of D[p] is induced by an automorphism
of D and therefore by an automorphism of @. Hence, I induces in D[p]
a p’-group 0 of automorphisms which is normal in 4 (D[p)). By Corollary 3
we have :

Tl = 0 CzA(D[p]),

and consequently,

1) [ o 4(@)]lpm = 1.
In particular, I'o (@) C I is a p’-group. A closer examination of the

proof of a lemma by R. Baer (3], p. 525) shows, that every p’-group of

automorphisms of a divisible p- group P operates faithfull
Hence, (1) implies P v on Firt

@ [To A(@)]lp=1.
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Likewise, every automorphism of /D ~ R is induced by an auto-
morphism of @, and I'lgp is essentially a normal p’-subgroup of A (R).
Lemma 5 then implies that Iep C 24 (G/D) and hence,

3) (e A(@llagp=1.
Comparing (2) and (3) we obtain
(4) I'sA(G)C2(G/D, D),

where X(@/D,D) denotes the stabilizer of D in @& But XZ(G/D,D)
o~ Hom (G/D, D) (cf. [8], p. 153, Hilfssatz 1.4), and the order of every
torsion element of X(G/D,D) consequently is a power of p. Since
I'DI'c A(@) is a p’-group, (4) implies I'o A(G)=1 or I'CzA(Q) as
stated in the theorem.

The stabilizer X(G/G[p], G[p]) of G[p] in G is an elementary abelian
normal p-subgroup of A(@). We will need the following

LeMMA 7. Let 6 denote the group of automorphisms of Q[p] that is
induced by the centralizer of Z(G|G[p], G[p]) in A(GF). If pQ +# p*@,
then 0 = z4(G[p)); in particular, 6 is cyclic of order p—1.

Proof. For the sake of shortness, let X = Z(G@/G[p], G[p]). We
claim that

(%) zE e {w} for every 2eG[p] and fecX.

In order to prove this statement, let z ¢ G[p], x ¢ dG. Then G has a de-
composition G = d@ PR, where x ¢ B (cf. [5], p. 63) and pR # 0. By our
hypothesis G/G[p] =~ AGDR/R[p] is not divisible, and consequently @
contains a subgroup U D G[p] such that G/U is cyclic of order p (cf. [5],
p. 67, Exercise 2). Hence ¢ = {g}-+U for g &, g¢ U, and pGC U. It is
easy to see that there exists an automorphism o of @ satisfying

go=g+w
uc=wu forall wuel.

Since z e G{p]C U it follows that o e X Let £ecX and gé = kg+wu for
some integer k and u e U. Since & commutes with ¢ we obtain

0 = g(bo—0f) = gé+Fkn— gt —af = ko —x&
and consequently
(1) ok e {w} . for every weQ[p], ©¢d@.

If de(dG)[p], then, using our nypothesis pG # p@, there exists
z e @[pl, ¢ dG, and we have d = d—x +z where (d—2)§ e {d—x} and
x& e {x} according to (1). A simple computation shows that dé e {d} and
hence z£ ¢ {x} for all z € @[p] and every & e cZ. This proves (%).
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As an immediate consequence of (%) we state
(%%) If £ecZ, then 8&= 8 for every 8C G{p].

By a theorem of R. Baer an automorphism & of an abelian p-group 4
induces the l-automorphism in the lattice of all subgroups of A if and
only if & is the multiplication with an invertible p-adic integer ([2], p. 110,
Theorem 5.2). If 4 is elementary abelian (or p = 2), then the central
automorphisms of 4 are precisely the multiplications with p-adic units
([2], p. 111, Theorem). Hence, (¥%) implies

CZ|G[Z;} =0=1z4 (G[p])

as stated in the proposition. It is wellknown that the multiplications
with p-adic integers operate as a cyclic group of order p—1 of auto-
morphisms on an elementary abelian p-group.

-

Lemma 7 is proven.

IV. The main results. We are now ready to give a new characteri-
zation of artinian p-groups by means of their automorphism groups.

A group is called bounded if there exists a finite upper bound for
the orders of its elements. ;

TaEOREM 8. The following properties of the abelian p-group @ are
equivalent.

(1) @ is artinian.

(2) Buery torsion subgroup A(@) is finite.

(3) A(G) is residually finite and every normal torsion subgroup of A(Q)
is finite.

(4) A(G) is residually finite and A(G)cl is finite for every mormal
torsion subgroup I' of A(Q).

(8) A(G) is residually finite and A(G)fel is finite for every primary
normal subgroup I' of A(G).

(6) A(@) is residually finite and A(@)]eZ(GIG[p], G[p]) is finite.

(1) 4(Q) induces in Q[p] o bounded group of automorphisms.

Remark. Tt is easy to see that the finiteness postulated in (2) and (3)
can be replaced by countability (see [12], Main Theorem). In (4), (5),
and (6) the finiteness of the occuring factorgroups can be weakened to
the condition that they are bounded.
_ ‘Remark. The residual finiteness of A(@) postulated in (3)-(6) is
1nd1.spensable. This is due to the fact that for a divisible p-group D of
arbitrary rank every normal torsion subgroup of 4 (D) is contained in
the center of A (D) (see [10]). Even if we restrict @ to be reduced, the

postulate of residul finiteness in Theorem 8 cannot be omitted completely
(ef. Lemma 9 and Corollary 10).
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Proof of Theorem 8. The equivalence of (1) and (2) was proven
by R. Baer ([3], p. 521, Theorem). It is easy to verify that the auto-
morphism group of an artinian abelian group is residually finite (see [9],
Lemma 9). Hence, (2) implies (3).

Let us assume the validity of (3). Since 4(@G)/el” is isomorphic to
a group of automorphisms of I', it follows that A(G)/cI" is finite, and
we have derived (4) from (3). .

It is obvious that (4) implies (5) and, recalling X(G/G[p], G[p])
= Hom (G/@[p], G[p]) (cf. [8], p. 153, Hilfssatz 1.4), that (5) in turn
implies (6).

So, let us assume the validity of (6). Then there exists a natural
number #» such that

(a) av e cX(G/G[p], G[p]) for all acA(G).
Let us distinguish two cases.

Case 1. pG = p*G. Then G = dGOR, where pR=0 and both,
4@ and R, are direct sums of pairwise isomorphic groups of rank 1.
If rk(dG) or rk(R) were infinite, the group of all permutations on
a countably infinite set would be isomorphic to a subgroup of A4 (@),
contradicting the residual finiteness of 4(Q) (see [9], Lemma 1 and Main
Theorem). Hence, both (d&)[p] and R[p] are finite and so is G[p]
= (AdG)[p]@ R[p]. In this case the validity of (7) is obvious.

Case 2. p@ s p*G. Then, by Lemma 7, the centralizer of
2Z(G/G[p], G{p]) induces in G[p] a cyclic group 6 of automorphisms of
order p—1. Hence, by (a), (")’ = a"® induces the identical auto-
morphism in G[p] for every a ¢ A(@); i.e. 4(G) induces in G[p] a bounded
group of automorphisms. We have derived (7) from (6).

It remaing to show that (7) implies (1). So, let us finally assume
the existence of an integer » > 1 such that

(b) d"lgm=1 for every aecA(Q).

Let G = D@R where D is divisible and R is reduced. Clearly, every
automorphism of D[p] is induced by some automorphism of G, and the
automorphism group of an infinite elementary abelian group is not
bounded. Hence, D[p] is finite and

(e) D ig artinian .

It remains to show that R is finite. :
Let us assume, by way of contradiction, that R is infinite. The:
there exist elements z; « B of order p% # 1 such that
n+1

(@ RB= D  el@H, e<e<.<tui.

i=1
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It is easy to check that @ possesses an automorphism o such that

{zia =2+ p" My for 1<<i<n
tlipeEmmem=1

and by complete induction one verifies that

n
N N\ ei11—e
(e) Zat= Z1’|‘2 (,L)P BaletTE
im

By (b), we have (pa—iz)a™ == p®—1z, and hence, using (e) and the direct
decomposition (d),

en+1—1

o1
* 2t =0,

P lpﬂnﬂ—ﬂlzn+1 =p
which contradicts ™ to be the order of 2,,,. This shows the finiteness
of R, and because of (¢), G = D@R is artinian.

The proof of Theorem 8 is completed.

LEMMA 9. Let & be a reduced abelian p-growp. Then @ is finite or
elementary abelian if and only if A(@)[el s finite for every primary normal
subgroup I" of A(@).

Proof. Clearly, if & is finite its automorphism group has the stated
property. So, let us assume that @ is infinite and elementary abelian.
Let I' be a normal g-subgroup of A (@), for g a prime. If g % p, then
I'Cz4(6) according to Lemma 2. If g = p, then I'= 1, as it is easy to
verify (ef. [14]). Hence, 1 = A (@)/cI is finite for every primary normal
subgroup I" of A(G).

If conversely, 4(G) has the property stated above, then in particular
A(G)[eX(G]G[p], G[p]) is finite. Sinee & is reduced, either PG =10 or
PG # p*@. In the latter ease we apply Lemma 7 and obtain, that A (G)
induces a bounded group of automorphisms in G[p]. By Theorem 8 then
@ is artinian and consequently finite.

This completes the proof of the lemma.

Lemma 9 shows that the residual finiteness of A (@) postulated in (5)
of Theorem 8 is indispensable, even if we restrict @ to be reduced. However,
for areduced group @, residual finiteness in (4) of Theorem 8 can be omitted.

CoROLLARY 10. A reduced abelian p-group G is finite if and only if
A(@G)fel’ is finite for every mormal torsion subgroup I' of A(G).

Proof. In view of Lemma 9 the only thing that remains showing
is that an infinite elementary abelian Pp-group P possesses a torsion
group 4 of automorphisms such that 4 is normal in A(P) and A(P)/cd
is infinite. It is easily seen that the set of all q ¢ A(P) which induce the
identity automorphism in a subgroup of P of finite index forms such
a group. Lemma 9 therefore implies the corollary.

4
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In order to generalize our results to arbitrary abelian torsion groups
we need the following

Lemva 11. If all primary components of the abelian torsion group T
are artinian, then A(T) s residually finite.

Proof. According to Lemma 9 in [9] the automorphism group of
an artinian p-group is residually finite and the property of residual
finiteness is inherited by cartesian products ([9], Lemma 6). Therefore,
A(T) = []" A(T,) is residually finite.

»

We are now ready to prove our

MAIN THEOREM. Ewery primary component of the abeliom torsion
group T is artinian if and only if A(T) is residually finite and A (T)/cI is
finite for every primary normal subgroup I' of A(T).

Proof. First, let us assume that all primary components of 7' are
artinian. Lemma 11 then implies that A (T) is residually finite. Let I' be
a normal ¢-subgroup of 4 (T) for some prime ¢. Clearly, for every prime p,
I" induces a group I'y of automorphisms in the p-component T, of T.
Since every automorphism of T, is induced by an automorphism of T it
follows, that I', is a normal g-subgroup of 4 (7';). Hence, by Theorem 8,

1) A(Ty)|carylyp is finite for all p.

But according to Theorem 6 we have I'y C zA(T,) for every p # g and
p > 3, and consequently

(2) A(Tp)leagply=1 for 3<ps#gq.

Let us, as usual, identify A(7'y) with the group of automorphisms of 7'
fixing 3° T, elementwise. Then I', C A(T) = []* A(T,) and I'C[]*T,.
T#p »

Clearly, we have
. * *
(8) el'= c(n Fp) = ” (Caanl'p)
P F4

and therefore

) awye([T o) = [[T Az [T caznls)] ,

» »
= ] T [A(Tp)[eamnls] .
»

This, together with (2), implies

(8) a@yo([] 1y) = {]‘[} LA (Tp)eurpTs] ,
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and hence, we obtain from (1) that
(6) Amyje([]° 1) is tinite.
b4

Using (3), the finiteness of A (T)/cI” follows.

Let, on the other hand, T be an abelian torsion group whose auto-
morphism group has the properties stated above. Since subgroups of
residually finite groups are residually finite (cf. [9], Lemma 1), 4(T}) is
residually finite for every prime p. And the finiteness of A (Z)/el" for
every primary normal subgroup I' of A(T) implies in particular the
finiteness of A(T'p)/cyr,yl» for every primary normal subgroup I', of
A(Tp). Hence, for every prime p, 4(T,) satisfies condition (8) of Theo-
rem 8; and it follows, that all primary components of 7 are artinian.

The proof of the Main Theorem is completed.

Closely related to this result is the following

THEOREM. Let T' be a reduced abelian torsion group. Then every primary
component of T is either finite or elementary abelian if and only if A(T)el"
i8 finite for every primary normal subgrowp I' of A(G).

Proof. Let first T have the stated property and let I" be a normal
g-subgroup of A(T) for ¢ a prime. Then, as shown in the proof of the
Main Theorem,

Al = || (T eaznTs,
. De{2,3,q
where ', is the group of automorphisms of Ty induced by I Since T, is
either finite or elementary abelian, Lemma 9 implies the finiteness of
A(Tp)earnIy for every p. Hence A(T)fel" is finite.

If, conversely, 4 (T) satisfies the stated condition, then, for every
prime p, A(Ty)jcaq,lyp is finite for every primary normal subgroup I'y
of A(T;). Since T, is reduced, Lemma 9 implies that 7', is either finite
or elementary abelian.

This completes the proof of the theorem.
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