

- [3] J. H. Case and R. E. Chamberlin, Characterizations of tree-like continua, Pacific J. Math. 10 (1960), pp. 73-84.
- [4] J. J. Charatonik, Confluent mappings and unicoherence of continua, Fund. Math. 56 (1964), pp. 213-220.
- [5] Thirteen properties of dendroids (University of Kentucky Mimeographed Paper), Lexington 1967.
- [6] H. Cook, Tree-likeness of dendroids and λ-dendroids, Fund. Math. 68 (1970), pp. 19-22.
- [7] Z. Janiszewski, Über die Begriffe "Linie" und "Fläche", Proc. Cambridge Internat. Congr. Math. 2 (1912), pp. 126-128.
- [8] B. Knaster, Über rationale Kurven ohne Bögen, Monatsh. Math. Phys. 42 (1935), pp. 37-44.
- [9] K. Kuratowski, Topology I, New York 1966.
- [10] Topology II, New York 1968.
- [11] A. Lelek, On the topology of curves I, Fund. Math. 67 (1970), pp. 359-367.
- [12] О. В. Локупиевский, Об одной проблеме П. С. Урысона, Dokl. Akad. Nauk SSSR 151 (1963), pp. 775-777.
- [13] K. Menger, Kurventheorie, Leipzig-Berlin 1932.
- [14] G. T. Whyburn, A continuum every subcontinuum of which separates the plane, Amer. J. Math. 52 (1930), pp. 319-330.
- [15] G. S. Young, Jr., The introduction of local connectivity by change of topology, Amer. J. Math. 68 (1946), pp. 479-494.

Reçu par la Rédaction le 13. 1. 1970

Subdirect decomposition of distributive quasilattices

b;

J. A. Kalman (Auckland)

Following Plonka [3], we define a *quasilattice* to be a nonempty set with binary operations \land and \lor which are idempotent, commutative, and associative, and a *distributive* quasilattice to be one which obeys the laws

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z), \quad x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z).$$

It is easily checked that the tables

define a distributive quasilattice, $\mathfrak X$ say. Let $\mathfrak Q$ and $\mathfrak S$ be the sub-quasilattices of $\mathfrak X$ with underlying sets $\{0,1\}$ and $\{0,\infty\}$ respectively; $\mathfrak Q$ is a lattice, and $\mathfrak S$ is essentially a semilattice (it obeys the law $x \wedge y = x \vee y$). The object of this paper is to prove the following

THEOREM. A distributive quasilattice with more than one element is isomorphic to a subdirect product of copies of \mathfrak{X} , \mathfrak{Q} , and \mathfrak{S} .

This extends Birkhoff's subdirect decomposition theorem for distributive lattices ([1], p. 193, Theorem 15, Corollary 1), and also contains a similar theorem for semilattices.

In any quasilattice an identity element for \land (resp. \lor), if it exists, is unique, and will be denoted by I (resp. O) (cf. [1], p. 63, ex. 7, and [2], but note that the free distributive quasilattice with O, I, and one generator has five, not seven, elements).

LIMMA 1. Let Q be a distributive quasilattice with O and I. Then, for all x and y in Q,

- (i) $x \wedge O = O$ if and only if $x \vee I = I$;
- (ii) $x \wedge y = I$ if and only if x = y = I; and
- (iii) $x \wedge y \wedge O = O$ if and only if $x \wedge O = y \wedge O = O$.

Also, we may define a congruence relation B on Q by setting xBy if and only if x=y or $x \wedge O \neq O$ and $y \wedge O \neq O$.

Proof. (i) If $x \wedge 0 = 0$ then

$$I = 0 \lor I = (x \land 0) \lor I = (x \lor I) \land (0 \lor I) = (x \lor I) \land I = x \lor I$$
.

and dually.

- (ii) If $x \wedge y = I$ then $x = x \wedge I = x \wedge (x \wedge y) = x \wedge y = I$, and similarly y = I. The converse is trivial.
- (iii) If $x \wedge y \wedge O = O$ then, by (i), $I = (x \wedge y) \vee I = (x \vee I) \wedge (y \vee I)$, hence $x \vee I = y \vee I = I$ by (ii), and hence $x \wedge O = y \wedge O = O$ by (i). The converse is trivial.

B is obviously an equivalence relation, and is selfdual by (i). If xBy then, by (iii) and its dual, $(x \wedge z)B(y \wedge z)$ and $(x \vee z)B(y \vee z)$ for all z. This completes the proof.

LEMMA 2. Let Q be a distributive quasilattice, and let $a \in Q$. Then

- . (i) we may define congruence relations C_a , D_a on Q by setting $x C_a y$ if and only if $x \wedge a = y \wedge a$, and $x D_a y$ if and only if $x \vee a = y \vee a$;
 - (ii) $x(C_a \cap D_a)y$ if and only if $x \wedge (x \vee a) = y \wedge (y \vee a)$; and
- (iii) $C_a=0$ if and only if Q has an I and a=I, and $D_a=0$ if and only if Q has an O and a=O.

Proof. (i) is easily verified. To prove (ii), we note first that if $x(C_a \cap D_a)y$ then

$$x \wedge (x \vee a) = x \wedge (y \vee a) = (x \wedge y) \vee (x \wedge a)$$
$$= (y \wedge x) \vee (y \wedge a) = y \wedge (x \vee a) = y \wedge (y \vee a).$$

Conversely, if $x \wedge (x \vee a) = y \wedge (y \vee a)$, then

$$x \lor a = (x \lor a) \land ((x \lor a) \lor a) = (x \land (x \lor a)) \lor a$$
$$= (y \land (y \lor a)) \lor a = (y \lor a) \land ((y \lor a) \lor a) = y \lor a,$$

whence xD_ay ; moreover the condition $x \wedge (x \vee a) = y \wedge (y \vee a)$ is equivalent to its dual, hence, by duality, xC_ay . This proves (ii). By duality, it will be sufficient to prove the first part of (iii). It is clear that if Q has an I then $C_I = O$; conversely, if $C_a = O$, then, since $(x \wedge a) \wedge a = x \wedge a$ for all x in Q, we have $x \wedge a = x$ for all x, and thus a is an I. This completes the proof.

Lemma 3. Let Q be a subdirectly irreducible distributive quasilattice. Then

- (i) Q possesses elements O and I (not necessarily distinct); and
- (ii) $a \wedge O = O$ if and only if a = O or a = I.

Proof. (i) Let $C = \bigcap_{a \in Q} C_a$. Then if $x \, Cy$ we have $x \, C_x y$ and $x \, C_y y$, i.e. $x \wedge x = y \wedge x$ and $x \wedge y = y \wedge y$, whence x = y. Thus C = 0. Since Q is subdirectly irreducible it follows that $C_a = 0$ for some a in Q, and a = I by Lemma 2 (iii). Dually, Q has an Q.

(ii) If $a \wedge O = O$ then $C_a \cap D_a = O$; for

$$x = x \lor 0 = x \lor (a \land 0) = (x \lor a) \land (x \lor 0) = x \land (x \lor a)$$

for all x, and hence, by Lemma 2 (ii), if $x(C_a \cap D_a)y$ then x = y. Since Q is subdirectly irreducible, it follows that $C_a = O$ or $D_a = O$ and hence, by Lemma 2 (iii), that a = O or a = I. The converse of (ii) is trivial.

Lemma 4. A subdirectly irreducible distributive quasilattice Q with more than one element is isomorphic to \mathfrak{X} , \mathfrak{L} , or \mathfrak{S} .

Proof. Let $P = \{x \in Q: x \land 0 \neq 0\} = Q \setminus \{0, I\}$ (cf. Lemma 3 (ii)). If $P = \emptyset$ then $Q \cong \mathfrak{L}$. Suppose therefore that $P \neq \emptyset$ and let $E = B \cap \bigcap_{a \in P} (C_a \cap D_a)$, where B is defined as in Lemma 1. We show that E = 0.

We wish to prove that if xEy then x=y, and we may assume that $x \in P$ and $y \in P$ for otherwise x=y since xBy. But then $x(C_x \cap D_x)y$, and hence, by Lemma 2 (ii), $x \wedge (x \vee x) = y \wedge (y \vee x)$, i.e. $x=y \wedge (y \vee x)$, whence $y \wedge x=x$; similarly, since $x(C_y \cap D_y)y$, $x \wedge y=y$; and thus x=y. This proves that E=O, and, since $C_a \neq O$ and $D_a \neq O$ for all a in P by Lemma 2 (iii), it follows, since Q is subdirectly irreducible, that B=O. Hence P has just one element, and $Q \cong \mathfrak{S}$ or $Q \cong \mathfrak{X}$ according as O=I or $O \neq I$.

The theorem stated in the first paragraph follows from Lemma 4 and Birkhoff's general subdirect decomposition theorem ([1], p. 193, Theorem 15).

References

- [1] G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. 1967.
- [2] E. González Baz, Consideraciones sobre las redes distributivas, Comisión Impulsora y Coordinadora de la Investigación Científica (Mexico) Anuario 1945, pp. 31–42.
- [3] J. Płonka, On distributive quasi-lattices, Fund. Math. 60 (1967), pp. 191-200.

Reçu par la Rédaction le 27. 1. 1970