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On the topology of curves III
by ‘
A. Lelek and L. Mohler (Warszawa)

From topological point of view, the arc seems to be the simplest
example of a curve and there is an interest in examining curves that
are close to arcs. Roughly speaking, there exist two possible ways of

_approximating curves by ares: one from the outside and the other from

the ingide. While the former materialized in many results concerning
mainly the notion of a chainable curve, the latter inspired fewer works.
Some boundary properties of a curve occur when its structure is in-
vestigated relative to distribution of ares in it. We (*) return to an old
concept of Karl Menger [13] and we describe such a property in this
paper with an attention paid to the class of acyelic curves (see § 1). We
also introduce two classes of curves which we call radial and strictly
radial, respectively (see § 3). To some extent they are reminiscent of the
cone construction as it appears in topology under several circumstances.
These ideas enable us to construct some paradoxical examples of curves
(see § 4) one of which is an enlargement of a rational curve constructed
by Zygmunt Janiszewski [7]. Incidentally, a tharacterization of rational
curves i3 obtained (see §2) which deals with mappings of the Cantor
set onto a curve. -

§ 1. Rim-types of rational curves. By the rim-type of a rational curve X
we mean the minimum ordinal « such that X admits an open basis
consisting of sets with countable boundaries whose a-th derivatives are
empty (compare [13], p. 294). Thus rim-types of rational curves ave
countable orvdinaly; curves of rim-type 1 coincide with regular curves.
The rim-types will be shown to affect the existence of ares in acyclic
curves. Let § denote the unit circle, ie. the set. of complex numbers
with module one; having the natural topology inherited from the plane.
A curve X is called acyelic provided each continuous mapping of X into 8
is homotopic to a constant mapping. It is known that all tree-like curves

() The second author was participating in an exchange of scientists administrated
jointly by the Polish Academy of Sciences and the National Academy of Sciences (U.8.A.).
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are acyclic but not conversely (see-[3], pp. 74 and 81). It is also known
that all acyclic curves are unicoherent (see [10], p. 437). Since curves
are 1-dimensional, continuous mappings of a subcurve of a curve X
into S admit extensions over X (ibidem, p. 354). It then follows from
the classical theory of S. Eilenberg that all subcurves of an acyclic curve
are acyelic (ibidem, pp. 407 and 421-427). Hence all acyclic curves are
hereditarily unicoherent. Moreover, by same theory, all hereditarily
unicoherent and hereditarily decomposable curves are acyclic (see [4],
p. 216). Let us mention that, by a recent theorem of H. Cook [6], the
last statement can be strengthened by replacing “acyclic” by “tree-like”,
Since rational curves are hereditarily decomposable, we conclude that all
hereditarily unicoherent rational curves are tree-like and acyclic.

1.1, Lewma, If ACX ds a subset of an acyclic curve X, UC X is an
open subset and aj, aj, p € X are points such (?) that

gednell, ajeA\U, Q(4,a)=Qq(4,a)
for j=1,2,.. and

p=1lim a;=lim a;, dimy(clU\U)=0,
j-00 j—0

then p € cl[4 A (lD\U)].
Proof. Let B = cl[4 ~ (clU\U)] and let us suppose on the contrary
that p ¢ B. Observe that p and B lie in the boundary cl U\U of U. Since

clU\U is 0-dimensional at the point p, there exist closed subsets By,
B; CX such that

peBy, BCB, BynB,=@, B,uB =cll\U.

Denote by y: clU\U->I the real-valued function which sends B,
and B, into 0 and 1, respectively. TLet y: clU->I and 't INU—I be
continuous extensions of y such that B,= p=%(0) = ' ~1(0). We define
a continuous mapping f: X 8 by means of the formula

fla) = {ei"“?f’”’) for wecll,
e for  we X\T.

It follows from the acyclicity of X that f is homotopic to a constant
mapping. Then there exists a real-valued continuous’ funection ¢: X +R
such that f() = ¢*% for o ¢ X (see [10], p. 427). We have 4 By=0@
and B, = y~1(0), whence the set (4 ~ clT) does not contain 0. Similarly,
the set 9'(A\U) does not contain 0, and we conclude that the set

F(4)=f(4 ~ elT) © F(A\T)

() We maintain the terminology of [11] in using the symbol @ (4, a) to denote

the quasi-component of space 4 at a point @ ¢ 4. Thus Q(4,a) is the intersection

of all closed-open subsets of 4 that contain g.
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does not contain the point ¢ = 1. Consequently, the set @(4) contains
no integer. Bub since both points a; and e; belong to a quasi-component
of A, the set ¢(4) contains the segment with end points ¢(a;) and @(aj)
it follows that there exists an integer n; such that

)

m<glag) <m+l, n<epla))<m+1,
for j=1,2,.. Since a;e¢clU and aje X\U, the points
flag) = grired,  f(aj) = e=nivte)

belong to the upper and the lower closed half-planes, respectively, which
have the real line as a common boundary. Hence

ng < @) <m+d, mt+i<opa) < n+l

for j=1,2,... On the other hand, we have p ¢ B;, whence y(p) = '(p)
=y(p) =0 and f(p)= 1. Thus ¢(p) is an integer. But the sequences of
points a; and a; being convergent to p, the numbers ¢(a;) and ¢(af) must
converge t0 ¢(p). Because n; and ¢(p) are integers, there must be indexes j;
and j, such that ny = @(p) for j > j; and ns+1 = p(p) for j > j,. Taking &
greater than j; and j,, we geb ng = nx+1, a contradiction which completes

- the proof of 1.1.

1.2. TugorEM. If X ds a hereditarily unicoherent rational curve of
finite rim-type, then each subcwrve of X contains an arc. .

- Proof. Let n be the rim-type of X and let G be an open basis in X
such that the m-th derivative of clG\@ is empty for every set G e G.
Suppose on the contrary that there exists a curve €;C X such that O
containg no are. Thus 1 < n < oo, Let J,C () be a curve such that J,
is an irreducible continuum and let g,: J, »I denote the finest monotone
continuous mapping of J, onto the unit segment I (see [10], p. 199).
Sinee Jy is not an are, there exists a number #; « I such that g7 (t,) is non-
-degenerate. Since J; is rational, thus hereditarily decomposable, the
seb gi'(t,) has void interior in J, (ibidem, p. 216). This means that the
union of the sets

Ai={wedy: 05 @) <t), Bi={redyt<g@) <1}

is dense in J,. The sets 4, and B, are composants of the irreducible
continua cld, and clB,, respectively (ibidem, pp. 202 and 209). Thus
eld\4; and c1B\B, are continua (ibidem, p. 210) whose union is g1’ ).
Consequently, at least one of these two continua is non-degenerate. In
view of the symmetrical role of 4, and B, {relative to the orientation of I}
we can assume that elA\4, is non-degenerate. Let us denote X; = cl4,,
Cy=X\A4,, and apply to ¢, the same procedure as that just applied
to ;. Repeating this procedure n times, we successively get curves O
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(k=1,...,n+1) such that Cr1= X \Ar where Xy = clAx and 45 C 0y
is a connected set for k=1, ..., n. Hence X1 C Opra C Xk (F=1,..,n—1).
Since Cny: is non-degenerate, there exist distinet points ¢, ¢’ € Cpyy and
let G, ¢ G be an clement of the basis such that ¢ e G, and ¢ ¢ clG,. We
define sets Uy, .., Un inductively by the formulas

U, = XNl [X\el(X; n Go)l

Uesr = Xar N\ [ X\ Zpa1 » Ul
for E=1,...,n—1. Thus U is an open subset of X; with the boundary
Fy=clU\Uz (k=1, .., n). Moreover, we have the inclusions
X, nGC U CdlX;n6y), -

Xpgs 0 UrC Usgr Cl(Xppa 0 Vi)

from which we conclude that Xz~ G C Ui (k=1,..,%) and
Fy = clUNT, C el(X; ~ G)\(E; ~ Go) CelGN\Gy
Fryr = U \Tpe1 C Al (Xppr » T\ Xiewr » Ur) C elUk\U,, —

fork=1,..,0—1. Butce Opns1C X, and ¢ € Gy, whence ¢.e X n G!, CU,.
On the other hand, the closure c¢lU, is contained in clGy; and therefore
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¢ ¢ c1U,. Because Oy is a continuum joining ¢ and ¢’ in X, the boundary )

of U, must intersect Cni1, i.e. the set Fuyi= Ops1 n Fy is non-empty.
Since we have the ineclusions

Fps1 CF,C ... CF,CclGN\G, -

and the n-th derivative of the boundary of G, is empty, a contradiction
completing the proof of 1.2 will be found out if we prove thabt Fn, lies
in the n-th derivative of clG\G,. .

To do this, let us take any integer k=1, ..., n and a point p e Fya;
thus p e X\4r and p e clUz. The set Ay is dense in Xy and the set Uz
is open in X;. Hence clUy = cl(Adg ~ Uyx), and s0 p ecl(4dx n Uy). Given
any open neighbourhood V of p in Xy, let us suppose that A AV C Uk.
Then again, by the density of Az in X, we should have clV = cl(4x ~ V),
and 8o p eV CellUi. However, it follows from the definition of Uy that
each open subset of X} is contained in Ug provided it is contained in ¢lU%.
Consequently, we should have p ¢ Ui contrary to the assumption thatb
P € Fyr1 CFy. We have therefore shown that Ax ~V is not contained
in Uy, which implies p e cl(4Ax\Ux). Since the point p belongs to the
closures of both sets 4y ~ Uy and A\ U, there exist points a;e Ax ~ Uk
and af e AN\Tx (j= 1,2, ..) such that a; and a} eonverge to p. The set
Ay CXxCX is connected, and X being hereditarily unicoherent and
rational, Xy is an acyclic curve. The boundary Fy of Uy in Xy is contained
in the boundary of & in X which is countable, hence 0-dimensional.

. Fundaments Mathematlcae, T, LXXI
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Thus we can apply 1.1 fo Ay, X and 1,
pecl(dx ~ F).

Since p was an arbitrary point of Vi
we conclude that

As a result we obtain
and Iy C gy = Xi\4z,

Fiesa C el(Ai 0 Ta) C ol(Pi\Frys) C cl GG,y

for k=1, .., n It follows that Ty is, indeed
derivative of elG\@;, and the proof of 1.2 is completed.

Remark. There exist hereditarily unicoherent rational curves of
rim-type @ which contain no aves (3). Historically first construction of
such a curve was given by %. Janiszewski [7], but a detailed deseription
of his curve was never published. Later some other authors (see [1], [2]
[8] and [14], for inglance) gave constructions which could serve ou; edx’
amples of curves of rim-type o and containing no ares. An example Whieh
seems very likely to resemble the Janiszewski curve is due to O, V. Loku-
cievskil [12], and ity congtruetion utilizes an inverse limit procedure
As an effect of this procedure one gets a chainable rational curve of.
rim-type @ which containg no are. On the other hand, each subcurve
of a rational curve of rim-type 1 is regular, and therefore arcwise con-
nected. The latter statement has, by 1.2, an analogue for acyclic rational
curves of higher rim-types. That this analogue seems best possible is
indicated by the oxistence of the Janiszewski curve as well as of the
example from 1.3 Delow. ’

By the arc-component of g topological space X at a point z ¢ X we
mean the union of {#} and of all ares contained in X that contain z.

1.3. Bxamerm. There emists o chainable rational curve X of rim-type 2
such that X has uncountably many arc-components.

Proof. Let 7' denote the Cantor ternary set in the unit segment I

and let I, I,, ... be the segments which are clogures of components of I\T;
we take the curve ‘

» contained in the n-th

O=cl{(m,y): 0< |g|< ==t y=sing-1}

and & homeomorphism Ay of ¢ into the plane circular disk whose diameter

is L (i=1,2,..). Wo require that the points Ra(( =1, 0)) are end
points of Iy. Then X iy defined Dy the formula

o0
X =l | h(0)
qeal

and, clearly, no arc contained in X meets the set IN\(I, v I v ...) which
I8 uncountable,

T ——
(') Here o stands for the minimum infinite ordinal,

11
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§ 2. A characterization of rational curves. There are known characteri-
zations of rational curves by means of real-valued contim.wus functions
defined upon them (see [10], p. 289). It turns out that thlS. me.thod can
be reversed, in a sense, to produce an alternative characterization. ‘

2.1. LemvA. If X dis a rational curve, then there ewists am infinite
sequence Cy, Gy, ... of finite closed covers of X such that, for n=1,2, ...,
the following conditions are fulfilled:

(i)n Cny1 98 @ refinement of C,,
(ii)n Cusi(C) = {0" € Cuyaz 0" C O} is a cover of C for every set O < C,,

(iil)y O~ 0"~ C" =@ for every triple of different sets C, 0", ("' € Cy,

(iv)n cardC n 0" <8y for every couple of different sets O, (' ¢ Gy,

(V)n diam C < n~t for every set CeC,.

Proof. A well-known decomposition theorem (see [10], -p. 288)
guarantees the existence of a finite closed cover C; of X which satisfies
conditions (iii)-(v),. Let us assume that we are given a finite cloged
cover C, of X satisfying (iii)s~(v),. To prove 2.1, it is enough to find
a finite closed cover Cy., of X such that conditions (i),, (ii)y and (iii)pqo~
{V)ny: are satisfied. Sinee X is one-dimensional, there exists a finite open
cover {G, ..., @n} of X such that
(1) CodiamG< (n+1), GinGAGr=0
for different indexes 4,j,k=1,..,m. Let B be the union of all sets
0 ~ (" where C, (' run over all couples of different sets of Cp. By (iv)a,
the set F is countable, therefore zero-dimensional. Since C, is finite,
E is closed. Then there exists an open cover {61, ..., G5} of X such that

(2) GCG:y, BnGinGi=0

for different indexes ¢,j =1, ..., m (see [9], p. 296). Since X is rational,

there exists a closed cover {Fy ooy P} of X such that

(3) F,CaQL,  cardFinFy < o

for different indexes 4,j =1, ..., m (see [107, p. 287). Putting

Crp1={C Ty CeCy, i= 1,..,m},

we readily see that (i), (i) and (v)y4; are true. Let us congider any

triple ¢ ~Fy, ' A Fy, ¢ ~ Ty of different sets of C,.,. Let 4 and B

be the intersections of the three and the first two of these sets, respectively.
If C= C' = (", then the indexes iy J, k are different and

ACFinF]-r\FkCG,;ngjr\Gk=@,

by (1), (2) and (3). It exactly two of the sets C, ¢, 0" are different, then
Wwe can assume that ¢ 3= (" = (", whence j#k and

YAC(C’r\G’)nFjr\FkCEmG,'gnG}u.z(Z},
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by (2) and (3). If all the sels 0, ¢/, " are different,
ACOnC A0 =g,

then

by (iii)}s. Thus wo have proved (iii)

mi1. Finally, observe that ¢f— o
implies 7 5% j, whence

eard B < eard Fy ~ By s, ,
Dy (3). On the other hand, the inequality ¢ - ¢ implies the inequalities
ard B < card ¢ ~ ¢ L AN

by (iv)e. Thus we have also proved (iv),.., which completes the inductive
proof of 2.1. )

2.2, LemymA, If X 48 o rational curve, then there exists an infinite
sequence Gy, Gy, ... of findte closed covers of X such, that, for n=1,2,..,
conditions (Vn—(V)n of 2.1 are fulfilled and

(vi) ‘ 0 = cl[X\cl(X\0)] = O
for CeCyy, n=1,2, ..

Proof. We prove 2.2 by modifying what has been done in 2.1. Let
G,y Gy, ... be the covers of X as given by 2.1. We shall prove that the
required modification will be achicved if we define

Dy = {l[X\A(X\O)]: O ¢ Cay X 2 cl(X\0)}

for n=1,2,.. Clearly, each element ¢ of D, satisfies condition (vi)
We want to prove that Dy is a cover of X such that conditions a—~(V)n
hold with C replaced by D. Observe that D, consists of the closures of
Inferiors in X of those sets of C, whose interiors are non-empty. It follows
that (1)y and (ifi)y—(v)s hold with C replaced by D. Let ¢ e C, be a set
sabisfying the inequality X s el(X\C) and let U = X\cl(X\C). If p < elT
is any point and ¥ is an open neighbourhood of p in X, the set U ~ TV is
open and non-empty. This set is contained in ¢ and C,,11(0) is a finite
closed cover of @), by (ii),. Jonsequently, there exists a set ' € C,py(C)
Whose interior U’ in X meets U ~ V, and since V is an arbitrary neighbour-
hood of p, wo can assume that p ecllU’. But ¢'C ¢ implies clT' C clU,
and we have 17’ e D, 11 Hence ¢1 17 is the union of a subcollection of Dy,y,.
Thus (ii)s holds with € replaced by D. A (uite similar argument, when
applied to (¢ = X, shows that the collections D, are covers of X
(m=1,2,..), and 2.2 ix proved.

2.3. THREOREM. In order that o curve X be rational it is necessary and
sufficiont that there emist o continuous mapping f: T—-X of the Cantor
ternary set T onto X and a coundable set Q C X such that f(x) is a two-point
st for we Q and () is degenerate for ©e X\Q.

1%
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Proof. If such a mapping f: T X exists, then f|f"H{X\Q) is 2 homeo-
. . —1 - .
morphism of the zero-dimensional set f .('X\Q.) cr _01'1140 X\Q, and X is
_rational (see [10], p. 285). Thus the condition is sufficient. To prove ‘th.at
it is also necessary, let us take the infinite sequence C;, G, ... of finite
closed covers of X as constructed in 2.1 and modified. in 2.2,. We are
going to define inductively an infinite sequence I, I, ... of finite col-
lections of closed segments of the real line such that thg segments of I,
are pairwise disjoint of length less ‘than n—! and there exists a one-to-one
tunction @p: I,-~Cp mapping I, onto Gy (n=1,2,..). Let I, be any
colleetion of pairwise disjoint closed segments of length less than 1 such
that cardl, = cardC,, and let &; be any one-to-one correspondence
between the segments of I and the sets of C,. Assuming I, and &, are
given, we define I;; and Py 88 follows. First of all, observe that no
set of Cpyy is countable, by (vi). Thus each set of Cpy1 is contained in
exactly one set of Gy, by (i)s and (iv)s. Consequently, the collection G,y
is the union of pairwise disjoint subeollections Cpi1(0), where C e Gy,
according to (ii)s. For I eIy, let us find pairwise digjoint subsegments
of I of length less than (n-{-l)" and a one-to-one correspondence between
them and the sets of Cn.-,l(@n(I)). Let I, be the collection of all these
subsegments where Ie¢I,. So defined correspondence is a one-to-one
funetion @4y which maps Lyy; onto Cpy1. Moreover, for I e Iy and I' € Ly,
we have I' CI if and only if @pya(I') CDu().

By (vi), no set CeC, is degenerate. It follows from (i), and (v}
that, for m sufficiently large, the set (e Gn contains at least two sets
of C,. Then the segment @;(C) contains at least two segments of In.
This guarantees that the intersection of the decreasing sequence |Ij|
DI, D ... of the unions of segments of I, is a compaet perfect subset of
the real line. Since the lengths of segments. of I, converge to zero when n
tends to the infinity, the intersection is- zero-dimensional and thus it
is a Cantor set. We can assume that

=1

and let us denote by In(t), for t ¢ T, the segment of I, which contains ¢
(n=1,2,..). Hence In(t) CIn(¢) which yields

Dpy1(Lnsa(t)) C Gu(In(t) € Cp
forteTand n=1,2,., We define a mapping f: T—+X by the formula

{0} = [ 2a{Tutt)

for i € T, according to (v),. The sets I ~ T are open in T for Iels
(n=1,2,..), which implies that f is continuous, by (v),. Since G, is
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a cover of X and @y is & mapping of I, onto Cy, it follows from (ii)n that
fisa mapping of 7' onto X. For 2 ¢ X, at most two gets of Cy can con?:ai.n @
m=1,2,..), by (i), Since @, is one-to-one, the set f~'(«) is contained
in the union of two segments of I,, for #n =1 s 2y ... Thus cardf ' (») < 2

Finally, let us define =

Q=1 U (0~

n=1 0,07eCy,
C07

and notice @ is countable, by (iv),. For 2 « X, cardf ' (u) = 2 if and only
if there exists a positive integer m, and segments I, I, e I,, such that
I I, and @ € Pyy(I;) ~ Byy(T,). The labter statement is equivalent to
ze@ because Pp, is a one-to-one mapping of L, onto C,,.

§ 3. Radial and strictly radial curves, A curve X will be called radial
provided there exist a point 0 € X and a collection 4 of arcs such that
|4 = X, the point 0 iy an end point of any are from A, and 4, ~ 4, = {o}
for A;, A;e A and A4, # A,. If, in addition, each arc contained in X is
contained in the union of two arcs from 4, then X will be called stricily
radial. Clearly, each radial curve is arcwise connected.

31 If f: B-»X ds a one-to-one continuous mapping of the real line R
into & stricily radial curve X, then the dosure of f(R) in X is an are.

Proof. It suffices to show that f(R) is contained in an arve. If there
exists an are A e 4 containing f(R), we are done. If this is not so, we
have two numbers ¢, f ¢ 2 and two different ares 4,, 4,e 4 such that
0#f(l) e 4, and o s f(t,) e 4,. Given any closed segment J C R con-
taining #;, and %,, the image f(J) CX is an arc which meets A\{o} and
AN{o}. But since X iy strictly radial, the arc f(J) is contained in the
union of two ares from 4. Thus f(J) cannot meet any set A\{o} where
Aded and A; # A # A,. Tt follows that f(J)C 4; v 4,, whence also
f(B)C A4, v 4, and 3.1 is proved.

3.2. Bach strictly radial curve has the fived point property.

Proof. It is known that if the closure of the image of the real line
under a one-to-one continuous mapping into & curve X is an are, then X

has the fixed point property (see [15], p. 493). Therefore 3.2 follows
from 3.1,

§ 4. Embeddings in radial curves. The classes of radial and strictly
radial curves are not so narrow as they look at first sight. Here we in-
vestigate fheir properties related to acyclicity. For instance, a strietly
radial curve need not be hereditarily unicoherent, and a radial curve
can even contain a simple closed curve. In constructions of the examples
which follow, we identify the point (@, ..., @) of the Buclidean n-space B”
with the point (xy, ..., @, 0,0,..) of the Hilbert space. Thus we have
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R=R'CRC.. We'mean by a 1-parallel line any homeomorphic image
h(R) of B in E" such that there exist numbers &, ¢, @ e B (i =1, ..., n)
satisfying the condition

{RQ): 4 < U} = {(Ba+ 1, 2oy ooy 2a): 0 %
e {(mzl'f't’; Loy oeey w:%n): 0 < t},

and then the set h(R¥) is called a 1-parallel closed Lalf-line, the symbol RB*
denoting a closed half-line of the real line B. We also denote

H(t) = {(#1, 7, ) 1< 2}

1.1. Examprir. There exists a radial hereditarily decomposable curve X
such that the circle is embedable in X.

Proof. A collection K, of 1-parallel closed half-lines in R+ and
a countable collection L, of 1-parallel lines in B*™** will he defined by
induction on # =1, 2, ... The sets belonging to the union K, w L, will
be pairwise disjoint (n =1, 2, ...). Let g: T -] be the standard continu-
ous mapping of the Cantor ternary set 7 onto the unit segment I, defined

by the formula
[==] o0
@ ( 2 3"iti) = Z 2_i_1ti
i=1 i=1 "

where ;= 0, 2 for i=1,2, .., et f: T8 be the mapping of T onto
the unit civele §, defined by f(1) = ¢—2ri0d for ¢ e T, Let us locate § and 7
in R* on the plane # == 0and ontheline w, = u, = @, = 0, respectively.
Observe that then the union of the straight segments pf(p) with end
points p and f(p), where p « T, is homeomorphic to the mapping cylinder
of f. Moreover, by the definition of Jf; there exists .a countable set QC8
such that f~%(s) is a two-point set for s €@ and f7Y(s) is degenerate for
se8\@. Thus we can write

Fi® ={nls), o)}, pils) = (0, 2als), 0,0)
(i=1,2) forse@, and

fl(s) = {p(é)} ’ p(s) = (01 w2(3)7 03 0)
for s e S\@. Let us denote

Ki(s) = {(t, za(s), 0, 0): 0 <},
K(s) = {(t,wz(s),(),()): 0<i},
and define the collections K, and L, by the formulag
K ={E(s) v p(s)s: s S\Q},
L= {B\s) © ()5 Wspals) © Bofs): 5 ).
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Notice that |K| v |L;| C H(0).

Agsume now the collections Xy and Ly, ave already defined. We shall
consttuet suitable collections K.y and L,.,. Since I, is countable, we
bave Ly = {Ly, I, ...} where Ly is a 1-parallel line in R¥*+? forj—1.2,..
By the definition of 1-parallel lines, there exists a point g; = (@11 vy Trampa)
guch that the closure JK; of a component of IN{gs} is a L-parallel closed
half-line in R™"™ and

.L';,\K‘j - {(111/1 +t, B, ey Biagpa)t 0 < 0
(j=1,2,..). Morcover, we can assume that n < @5; otherwise, we could
increase ;. by choosing another point of L; to be g;. Let J; be the straight
segment o

Tyem {{wptty @py ey Bpge)t 0L <1}
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and let ¢y be the closed half-circle in R™"™, defined by the formula

1
Gj = {(mjl. 1y @y ey Bponge, Y, )t :1/2+(z_j_1)2 =i 0 y}
(j=1,2,..). Thus the intersection ¢~ J; consists of only one point
p5= (@51, @2y oy Bpangny 0, 0) which is an end point of both ¢y and J;.
Let p;’ denote the end point of ¢; different from p;. Observe that each
2-plane in R**™ which contains J; has at most two points in common
with the half-circle Oy and one of these points is p;. Let T be the Cantor
ternary seb located on ¢y such that pj, pj e 1",. Let fj: Tj'-)le deﬁote
the standard continuous mapping of T; onto J; such that {p;} = f7'(¢;)
and {pj'} = f7(p}). Then there exists o countable set @ CJ; such that
f(r) is a two-point set for » €@y and f;'(r) is degenerate for r e JNQ5.
We write
170) = {paslr), Pi(r)} s Pulr) = (B A1, Biay ey Biania, Yilr), 24(7))
(i=1,2) for r e @y, and '
Filr)y = {ps)},  palr) = (@1, B,y e,y Bianga, Y (1), 2(r)

for v eJN\Q;. Mence g, pjed NGy and pi(g) = pi, pi(pf) = py. Let us
denote

Tgg(r) s (g b1y gy ey Wgonizy Yalr), 2a(r): 0 <2

.Kj()") e {(m;fl"“l Il’y Lay veey Wonpny ?/(’“)7 2(7')): 0 = t} ’

and define the collections Ky and Ly.. Dy the formulas

Ku= (K jo= 1,2, 0w LK) o i 7 eI Qs 5 #7 # a3},
PSS!

Loy = {(LNKNTy) © pipi’ © Kyp): j=1,2,..} v
v () {Es(r) © pu(r)r v rpa(r) © Ky(r): 7 € Qs}
LA
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Notice that |Ly|C [Kupa| v [Logal, [Koga| C Ly v H(n) and [Lga|
C H(n), whence we conclude that the collections K, and L, just defined
satisfy
(4) |Ka| v Ly CH(n—2)
for n =1, 2,... Also, the union

. n n
(5) Ya =kl:{(lK1sI  Ll) = |Ly] ,.L_JIIK”’
Is a closed subset of B™™ It follows that ¥, is locally compact for
n=1,2,... Aceording to (4) and (5), we have
(6) Y= Yn= (K| v [La|) = | K|

n=1 n=1 n=]

because the decreasing sequence of the sets H (n) (m=1,2,..) has an
empty intersection. By the same reason, the sets Y\H (n) form an open
cover of ¥. But

NH(n) = ZQ(IKH ©LEINE (1) = Ypu\H (1) ,

by (4), (5) and (6). Thus ¥ is a locally compact subset of the Hilbert
space. We claim the one-point compactification X = ¥ {0} of ¥ is an
example of a curve possessing all the features promised by 4.1.

Indeed, the set ¥ is connected and one-dimensional, and there-
fore .Y is a curve. Take the collection A of all the sets K w {o} where
K eK, and n=1,2, .. Since these sets K are pairwise disjoint 1-parallel
closed half-lines, elements of A are arcs having the point o as one of their
end points and the only point in common. Henee X is a radial curve
which contains the circle §, and it remains to prove that X is hereditarily
decomposable. Suppose on the contrary that there exists an indecom-
posable subcurve ¢ C X. Then ¢ has uncountably many Dairwise disjoint
composants, and since the set @ u {o} 15 countable, there exists a com-
posant ¢’ of ¢ such that ¢' does not meet Q « {0}. Let K’ be the closure
of the component of the get X\(@ v {0}) which contains ¢’. The com-
posant ¢ being “dense in 0, we have 0 C K. By (6) and the definition
of K; and L,, the components of

ENQ v o)) = 1\
are either elements of K, or parts of elements of L, augmented with some
closed subsets of |K| v |Li] where % > 2. The elements of K, and L,
being half-lines and lines, respectively, we conclude that the indecom-
posable continmum ¢ mugt be contained in the closure of the union
of [Ky| w {Lg| where % > 2. A similar argument applied to @ in lieu of @
vields the induetive step in a proof of the inelusion

oc clkg (K| U [Li])
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for m= 1,2, .. Consequently, we obtain

n=

oc (el [J (1Kl v lal) © 0 lEm—2) n X]= 5,

by (4), a contradiction which completes the proof of 4.1,

4.2. THROREM. Hach rational curve containing no are is embedable in

o stricily radial hereditarily decomposable curve.
" Proof. The proof is analogous to that of 4.1, We only point out
the places in which it should be modified. Tet Z De a rational curve
containing no are. The construction of the radial curve X in 4.1 makes
use of some standard continuous mappings of the Cantor ternary set 7'
onto 8 and J;. What iy essentially needed is only the requirement that
the inverses of points under those mappings either consis; of two points
or are degenerate, depending on whether the point belongs to a countable
set or to its complement, respoctively, By 2.3, we can replace all the
sets S and /7 in the above construction by topological copies of Z. As
a result 'we get again a radial curve X, and the proof of the hereditary
decomposability of X i3 a replica of that from 4.1. Moreover, the fact
that Z contains no are now guarantees that each are contained in ¥ must
be contained in & half-line K eK, where n=1,2,... It follows that
each arc contained in X is contained in the union of two ares from A,
the collection defined in the same manner as in 4.1. Thus X now appears
to be strictly radial.

4.3. Bxamern. There ewists a stricily radial hereditarily decomposable
curve X such that X is mot o dendroid.

Proof. Let Z be the Janiszewski curve or a curve constructed by
0. V. Lokucievikif [12]. Then Z is a rational curve containing no are.
By 4.2, the curve Z can be embedded into a strictly radial hereditzmzly
decomposable curve X. Since cach subcurve of a dendroid is a dendroid,
X and Z are not dendroids.

Remark. According to 3.1, the radial curve described in 4.1 is not
strictly radial. By 8.1 und 4.3, there exist arcwise connected hereditarily
decomposable curves whieh are not dendroids but still have the property
that the union of an increasing sequence of ares is contained in an arc;
this answers somo questions of J. J. Charatonik [5].
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Subdirect decomposition of distributive quasilattices

by
J. A. Kalman (Auckland)

Following Plonka [3], we define o quasilattice to be a nonempty set
with hinary operations A and v which are idempotent, commutative,
and associative, and o distribulive quasilattice to be one which obeys
the laws ‘

wA(yVe) = (@Ay)V(zA2),
It is easily checked that the tables

2V(YAR) = (BVY)A(zVa).

Al O 1L oo vl 0 1 oo
0] 0 0 oo 0] 0 1 oo
Ll 0 1 oo 111 1 oo

[eelie e ile v ool CO O oo

define a distributive quasilattice, X say. Let 8 and & be the sub-quasi-
lattices of X with underlying. sets {0, 1} and {0, co} respectively; £ is
a lattice, and & is essentially a semilattice (it obeys the law zAy = zvy).
The object of this paper is to prove the following , ’

ToeoreM. A distributive quasilattice with more than one element is
isomorphic 1o a subdirect product of copies of X, 8, and G.

This extends Birkhoff’s subdirect decomposition theorem for distri-
butive lattices ([1], p. 193, Theorem 15, Corollary 1), and also contains
a gimilar theorem for semilattices.

In any quasilattice an identity clement for A (resp. V), if it exists,
is unique, and will he denoted by I (vesp. 0) (ef. [1], p. 63, ex. 7, and [2],
but note thati the free distributive guasilattice with 0, I, and one generator
has five, noti seven, elements).

LuvmA 1. Let @ be o distributive quasilattice with O and I. Then, for
al » and y in (),

(i) ®AQ = O if and only if wvl=1;
(il) @Ay = I if and only if &=y = I; and
(ili) @AYAO = O if and only if sA0 =yA0 = 0.
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