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3. Lipschitz pairs and continuous pairs. In [2] two subspaces 4 and B
of a topological space X are defined to form a continuous patr if every
function continuous on each iy necessarily continuous on thejr union,
A characterization of such pairs is given in [2]. This characterization
reduces t0 AnB=A"B=0 if AnB=0@ and shows that it i
sufficient for 4 and B to be closed. With these remarks We can compare
Lipschitz pairs and continuouns pairs of metric subspaces.

The sets 4, and B, of the introduction are closed. Hence disjoint
continuous pairs need not be Lipschitz pairs,

The sets 4, and B, of the introduction are clossd. Tlonce Intersecting
continuous pairs need not be Lipschitz pairs.

If {_1 and B form a disjoint Lipschitz pair then they are Lounded
apart, 4~ B=A ~ B =@ and they therefore Torm 2 conbinuous padr,

However, an intersecting Lipsehitz pair need not be a continuous pair,
For example, let 4 be a closed squave in the plane less one corner and
let B be a side of the square including the missing corner. Then condi-
tion (d) (ii) shows that 4 and B form a Lipschitz pair, But if the square
is set in the positive quadrant of the (%, ¥) plane with the missing corner
at the origin, the function tan=*(y/z) shows that 4 and B do not form
a continuons pair.

The anthor wishes to express warm thanks o C. Davis and W. Kahan
for several stimulating conversations.
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On restrictive semigroups of continuous functions

by
Kenneth D. Magill, Jr. (Amherst, N. Y.)

1. Introduction and statement of main theorem. Let X be a topological
space and let ¥ Dbe a nonempty subspace of X. The semigroup, under
composition, of all continuous selfmaps of X which also carry ¥ into ¥
will be referred to as a restrictive semigroup of comtinuous fumctions and
will be denoted by S(X,Y). In case ¥ = X, we use the simpler notation
8(X) in place so S(X, X). Such semigroups have been investigated
in [4], [7] and [8] and restrictive semigroups of closed functions have
been studied in [6]. A function is regarded.in [6] as closed if it takes closed
subsets into closed subsets. In particular, continuity is not assumed.
Other related semigroups have been studied in [9]. Our main purpose
here is to prove a result about restrictive semigroups of continuous
functions which is somewhat analogous to Theorem .(2.17) of [6, p. 1222]
and Theorem (3.8) of [9]. Before stating this result, we need to reeall the
definition of an §*-space [5]. An §*-space is any T, space X with the
property that for each closed subset H of X and each point p e X —H,
there exists a continuous selfmap f of X and & point ¢ in X such that
flz) = q for each z ¢ H and f(p) # ¢

One readily shows that a space X is an §*-space if and only if it
is Ty, and the point-inverses of X (sets of the form f~%(x) where z¢ X
and f is a continuous selfmap) form a basis for the closed subsets of X.
The class of 8*-spaces is rather extensive. For example, Theorems 2 and 3
of [5, p. 296] taken together yield the fact that every 0-dimensional
Hausdortf space as well as every completely regular Hausdorf space
which containg an arc is an S*-space. In this paper a 0-dimensional
space is one which has a basis of sets which are both closed and open.
Also, let us recall that a space is Lindelsf if every open cover has & count-
able subcover and it is hereditarily Lindelof if each subspace is Lindelof.

It is immediate from the previous discussion that if X is an 8*-space
and one takes ¥ = X, then there exist S*-spaces Z such that §(X, ¥)
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and 8(Z) are isomorphic. One need only take Z to be any homeomorphic
copy of Y. Our main result states that if X happens to be a first countable
(each point has a countable base) 0-dimensional hereditarily Lindelst
Hausdorff space, then these are the only circumstances under which
§(X, ¥) can be isomorphic to S(Z) for some §*-space Z. We formally
state this as the

MAIN THEOREM. Let X be a first countable 0- dimensional hereditarily
Lindelof Hausdorff space and let Y be a nonemply subspace of X. Further-
more, suppose there ewists an S*-space Z such that S(X, X) and 8(Z) are
isomorphic. Then Z is homeomorphic to ¥ and ¥ = X.

2. Proof of main theorem, some supporting results and some related results,
Perhaps a few words are in order about the technigues which will be used
here. The result on restrictive semigroups of closed functions which is
analogous to the Main Theorem in this paper is, ag we mentioned previ-
ously, Theorem (2.17) of [6, p. 1222]. There, the proof consisted of
examining the ideal structure of the semigroups ihvolved and repeated
use was made of the fact that any function with a finite range is a cloged
function (all spaces were assumed to be 7). Since this is not true for
continuous functions unless X happens to be discrete, the techniques
used in [6] simply do not carry over to restrictive semigroups of continu-
ous functions. In fact, the techniques we use here are completely different.
Among other things, various tools from the theory of J-compact spaces,
introduced by Engleking and Mréwka in [1] and further developed by
Mréwka in [10] and [11] play a very essential role here. Before discussing
H-compact spaces further, we recall two definitions and a theorem from [8]
and we use this result to get a “first approximation”-to the proof of the
Main Theorem.

DEFINITION (2.1). A permissible pair (X,¥) is a Hausdorff space X
together with a subspace ¥ such that the following conditions are satistied:

(2.1.1) For every closed subset T of X and every point p ¢ X — T, there exisis
@ function fe8(X,Y) and a point qe¥ such that f(z)= g for
x el and f(p) +# q.
(2.1.2) For every quadruple p, q,r, s of poinis of Y with p +# ¢, there cwisls
a continuous function fin S(X, Y) such that f(p) = r and f(g) = s.
DEFINITION (2.2). A subspace ¥ of X is §-embedded in X if every
continuous selfmap of ¥ can be extended to a continuous selfmap of X.
This next result appears in [8] as Theorem (3.3).
THEOREM (2.3). Let (X, ¥) be a permissible pair and let Z be an §* - space.
Then 8(X, Y) and S(Z) are isomorphic if and only if Z is homeomorphic
to Y and Y is a dense S-embedded subset of X.
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Now, let X, ¥ and Z satisty the hypothesis of the Main Theorem.
‘We first show that the conclusion follows quickly if Y consists of one point
which we denote by p. In this case, 8(X, ¥) has a two-sided zero, namely,
the constant function which maps everything into p. Since § (X, Y) is
isomorphic to 8(Z), the semigroup 8(Z) must also have a two-sided
zero and this can happen only when Z consists precisely of one point.
Otherwise, S(Z) contains at least two distinct constant funetions and
these are both left zeros. But then, § (Z) must be the one-element semi-
group. It follows that ¥ = X and X consists of one point for an assumption
to the contrary results in the contradiction that S(X,Y) has at least
two distincet elements, the identity function and the constant function
which maps everything into the point p. .

Therefore, we need only devote our attention to the case where Y
containg more than one point. First of all, it is not difficult to show that
the pair (X, Y) is permissible in this case. In fact, this follows from
Proposition (2.7) of [8] which states that if X is a 0-dimensional Haus-
dorff space and Y is any subset containing more than one point, then
the pair (X, ¥) is permissible. Thus, Theorem (2.3) can be applied and
we geb the “first approximation” to the proof which we spoke of earlier.

LEMmA (2.4). Let X, ¥, 7, 8(X,Y) and S(Z) satisfy the hypothesis
of the Main Theorem and, in addition, let ¥ have more than one point.
Then Z is homeomorphic to ¥ aend Y is a dense S-embedded subset of X.

It is now evident that our task is to show that the only dense §-em-
bedded subset of X is X itself and this is where the theory of E-compact
spaces is used. It is appropriate at this point to mention that a com-
prehensive treatment of this topicis givenin [11]. Werecall some definitions
and results which are needed here.

In what follows, the symbol R will be used to denote the space of
real numbers, J will denote the closed unit interval, N will denote the
countably infinite discrete space and D will denote the two-element

- diserete space. Let B be any Hausdorff space. A space iz defined in [11,

p. 161] to be E-completely regular if it is homeomorphic to a subspace
of some power of # and it is B-compact if it is homeomorphic to a closed
subspace of some power of H. One easily sees that a space is completely
regular in the usual sense if and only if it is R-completely regular or,
equivalently, J-completely regular. Furthermore, a space is compact in
the usual sense if and only if it is I-compact and it is realcompact if and
only if it is R-compact. For an extensive treatment of realcompact spaces,
one should consult [2]. In the case of the space D, it follows rather easily
from Theorem 2.1 of [11, p. 165] that the D-completely regular spaces
are precisely the 0-dimensional spaces and the D-compaet spaces are
the compact 0-dimensional spaces. It also follows in a similar manner
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that the N°-completely regular spaces are precisely the 0 - dimensiona]
spaces. We will also need the following result from [10, 2.1, p. 598] which
we state here as

THEOREM (2.5) (Mréwka). Hvery 0-dimensional Lindelif Hausdorff
space 18 N -compact. .

In general, we will refer to a space Z as an J-compactification of X
if it is H-compact and contains X as a dense subspace. We note that thig
forces an H-compactification to be Haunsdorff since Z i understood to
be Hausdorff. We need the following important result from the theory
of H-compact spaces [1, Theorem 4, p. 433], [11, Theorem 4.14, p. 17,

TaorREM (2.6) (Engleking and Mrowka). Hvery I - completely 'Mgular
space X has an I- compactification fuX which satisfies the following two
conditions:

(2.6.1) Bwery continuous function mapping X into T can be extended 1o
a continuous function which maps fpX into H.

(2.6.2) Bwery continuous function mapping X into an K- compact spaces T
cam be extended to o continuous function which mapps fuX into ¥,

Furthermore, fzX is unique in the sense that if ayX is any H-com-
pactification satisfying either of the two conditions, then there ewisls & homeo-
morphism from agX into Bz X whose restriction to X is the identity map.

When there exists a homeomorphism between two H-compactifi-
cations apX and yrX of X which is the identity when restricted X, we
regard them as equivalent and do not distinguish between them. If there
exists a continuous function mapping yg X onto ag X which is the identity
on X, we write agX < ypX. It follows easily from (2.6.2) that if ¥ is
compact in the usual sense, then azX < fxX for each F-compactification
CLE-X of X.

Our next result relates the concept of § -embeddedness o spaces
of the form fzX.

TEEOREM (2.7). Let X be an B-compact space and let ¥ be any sub-
space containing a copy of B which is closed in X. Then Y is a dense S-em-
bedded subspace of X if and only if X = PruY.

Proof. First of all, if X == g5, it follows from Theorem (2.6) that
every continuons function mapping ¥ into ¥ can he extended to a continu-
ous function which maps X into X.

"Suppose, on the other hand, that ¥ is dense in X and §-embedded
ag well. To prove that X = g5¥, it is sufficient, according to Theorem (2.6)
to show that if f is any continuous function from ¥ into B, then f can
be continuously extended to a funetion which maps X into' H. By hypo-
thesis, there exists a homeomorphism & from I onto a subset H of ¥
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which is clos<ed in X. Then % o f is a continuous mapping from Y into ¥
and since Y iy §-embedded in X, k o f has a continuous extension ¢ which
maps X into X, Since H is closed in X, we have

g[X] = g[elz¥]C clxg[¥] = clxk of[YICH.

That is, the range of g is a subset of . It follows that k-1oyg is
a continuous exte}nsion of f which maps X into E. Consequently, X must
be the space frY which is deseribed in Theorem (2.6).

We digress for a bit in order to mention that the following two corol-
laries which appear in [8] ag Propositions (4.2) and (4.3) are immediate
consequences of Theorem (2.7) and the observations proceeding Theo-
rem (2.5).

COROLLARY (2.8). Let X be a compact space and let Y be a subspace
which contains an are. Then Y is a dense 8-embedded subspace of X if and
only if X is the Stone—Cech compactification of ¥,

COROLLARY (2.9). Let X be a realcompact space and suppose Y is a sub-
space of X which contains a copy of the real line which is closed in X. Then ¥
is a dense §-embedded subspace of X if and only if X is the Hewitt real-
compuactification of Y.

At this point, we have collected most of the formal machinery we
need for completing the proof of the Main Theorem. We consider two
cases depending upon whether or not X is compact. Since we have taken
care of the case where ¥ consists of one point, we may also assume that ¥
hag at least two points, that is ¥ contains a copy of the space D. By
Lemma (2.4), Y is dense and §-embedded in X. It therefore follows

from Theorem (2.7) and the observations preceeding Theorem (2.5) that

X = fpY. Now fpY is a compactification of ¥ in the usual sense and
by a well known property of Y the Stone-Uech compactification of Y,
we have fo¥ < Y. Although the definition of dimension zero given in
[2, p. 246] differs from that given here, the two definitions do coincide
for Lindelot spaces [2, Theorem 16.17, p. 247] and, of course, X is he-
reditarily Lindelof. Thus, it follows from Theorem 16.11 of [2, p. 245]
that Y is 0-dimensional. Consequently, Y is a D-compactification
of ¥ and, as we observed in the discussion following Theorem (2.6), we

‘have BY < fp¥. Therefore X = pp¥ is, in fact, the Stone-Cech com-

Dactification of ¥. But no point of f¥—¥ = X —¥ has a countable base
[2, 9.7, p. 123] and since X is a first countable space, it follows that ¥’
must coincide with X.

Now we take care of the remaining case where X is not compact.
Since every Lindelst space is realcompact, it follows that X is not pseudo-
compact [2, 5H-2, p. 79]. Thus, there exists an unbounded continuous
function f mapping X into the real line. There is mo loss in generality
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in assuming that f takes on only positive values. Choose any ¥, ¢ ¥ and lgt
Gy={reRe v > fly)+1} .

Since f is unbounded, f-{@,] # @ and since Y is dense in X, there exists

a point y, e ¥ nf~[Gy]. Similarly, let .
Gy = {7« Re v >f(y) +1}

and - choose a point y; € ¥ ~ f~Y[G]. By continuing in this manner, we
get an infinite sequence {y,}n=: of distinet points of ¥ with the property
that {f(yn)}n=1 18 a strictly increasing sequence of real numbers, such
that f(Yn+1)—F(¥s) > 1 for each positive integer n. It follows from thig
that the subset {yn}n=1 0f ¥ has no limit points in X. Thus, ¥ containg
a copy of N which is closed in X. By Theorem (2.5), X is an N-com-
pactification of ¥ and since Y is S-embedded in X, Theorem (2.7)
implies that X = fxY. As we noted in the discussion preceeding Theo-
rem (2.5), the class of D-completely regular spaces is identical to the
class of N-completely regular spaces. They are all 0-dimensional spaces.
Therefore, since D is N'-compact, it follows from Theorem 4.17 of [11,
p- 178] that X = fY can actually be regarded as a subspace of bpY
which, by the same reasons that were given in the previous case, coincides
with fY. Thus, we have ¥ C X C 8Y. Again, it follows from the fact
that no point of §¥ —¥ has a countable base that ¥ must coincide with X.
Therefore ¥ must coincide with X in both cases and this fact, together
with Lemma (2.4) proves the theorem.

We conclude this paper with an example that shows that it is not
possible to prove the theorem without making some restrictions on the
spaces involved. De Groot in [3] has proven the existence of a proper
dense subspace Y of the Euclidean plane W such that the only continuous
selimaps of ¥ are the constant maps and the identity map. Although,
Y # W,-it follows readily that S(W,Y) is isomorphic to S(¥). We note
that these spaces fail to satisfy the hypothesis of the Main Theorem in
that W is not 0-dimensional and ¥ is not an 8*-space. The remainder
of the hypothesis is satisfied.
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