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algebra with only one unary operation. On the other hand, there exists

such an algebra with only one binary operation, which we now detine,
Let 4 =N v & v {a,d} be as above, and again take f and g to be

the two components of a bijection from N onto K. We define

fl@) i oeN and y = a;

g(y) i yeN and = a;

@ f ze@ and y e G;

b otherwise .

Fle,y)=

The proof that {4, I"> is atomic-compact is very similar to the above
proof that <4,f,g> is atomic-compact, and will therefore he omitted,
To see that <4, I is not a retract of a compact fopological relational
structure, it suffices to show that y(@, <4, F) = s, where

¢ = Haly[F(u, ) = aAF(y, a) = eAF (a,y) = x].
This is shown by an argument similar to the preceeding one.

Added in proof (Febrnary 19, 1971). T stated Problem 1.14 (for graphs), together
with a related problem in pure graph theory, as Problem 48 in Combinatorial Struc-
tures and their Applications, Gordon and Breach, New York, 1870. My note, (feneralized
chromatic nwmbers, in the same volume, gives some further information on chromatic
numbers.

For a syntactic condition equivalent to the conditions of Theorem 3.1 [or of
Corollary 5.1, see my paper with G. Iuhrken, Weully atomic-compact rélational
structures, to appear in J. Symbolic Logic.

I give a positive answer to the question asked here in the last sentence of § 5,
in my paper, Some constructions of compact algebras, to appear in Annals of Mathema-
tical Logic.
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Retracting fans onto finite fans

by
J. B. Fugate (Lexington, Ken.)

1. Intreduction. By a continuum we mean a compact connected
metric space. A continuum which is hereditarily unicoherent and arcwise
connected is a dendroid. A dendroid which has only one ramification
point (a point which is the common part of 3 arcs, and an end point of
each) is called a fan. A locally connected dendroid is called a tree or
dendrite. A dendroid is finite if the set of end points is finite. Clearly,
each finite dendroid is a tree and finite fans are the union of a finite
collection of arcs, whose common part is a single point. The cone over
the Cantor set, on [0, 1] is a planar fan.

It is easy to see that dendroids are hereditarily decomposable and
thus one-dimensional. In this paper we will establish that fans have
a very strong one-dimensional structure, namely, they can be approxi-
mated from within by finite fans. This is the content of Theorem 1, which
states that each fan can be retracted onto a finite fan, by a map which
does not move points very far. From this it follows that each fan is tree-
chainable, indeed is an inverse limit of finite fans, and (in a joint work
with C. A. Eberhart) that the product of any collection of fans has the
fixed point property.

2. Preliminary results. A chain, in a metric space, is a collection
8= {H, ..., By} of open sets such that H; ~ E; #@ iff [i—j] <1. The
elements of § are links; frequently we denote & by E(1,m) and denote
U{E: 1 <@ < m} by B*1,m) or §. If each link of & has diameter <,
we call § an e-chain. A tree chain is a finite collection of open sets, no three
of which have a point in common and the collection contains no eircular
chaing. We shall often use Z" to denote the first n positive integers.

The ramification point of a fan is called the fop. It is shown in 1]
that each point of a fan, except the top, lies on a umique arc from the
top to an end point. We wish to commence our proof of Theorem 1 by
covering each such arc by a chain in which the arc is straight.

DEFINITION. If [a, b] is & an arc and &= F(1,m) is a chain covering
[a, b] then [a, b] is straight in & provided
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1. & ig a chain from a to b i.e. a ¢ l;—ClH,, b e Hy— ClE,,,,

2. (6By) ~[a, b] is & one point set if 4= 1 or = m and a two-point
set otherwise.

(If & has only one link, any arc covered by & is straight in §.)

Lemua 1. Suppose X is a dendroid and Y is a finite tree, Y C X and
- peY. Let K= {K: K is & component of | ¥ — {p}}. Then for each open
set U such that p e U, there is an open set V such that p eV C U, and
card (Y ~ &V) = card XK.

Proof. X is a finite set, since each component of ¥ —{p} containg
an end point of ¥. This follows from the fact that if K X, then K is
arcwise connected, because Y is locally connected. The end points of ¥ are
precisely the end points of maximal ares in Y. Since K w {p} is a tree
and K is arcwise connected, then if A4 is a maximal arc in K v {p}, at
least one end point of 4 is an end point of Y.

Suppose X = {K, ..., K,}. According to [4], p. 88 there is an set V",
open in Y such that p e V' C U, and dyV’, the boundary of V' relative
to Y, contains exactly n points. Now V' must be connected, since if V'’
is the component of ¥’ containing p, then V'’ is open in ¥ and oxV" C ayV".
Since we may assume that for each 4, K; ¢ ClU, oyV"' contains a point
from each K. Since dyV’ containg only n points, V' = V'

Thus ¥ —2¢V' is the union of two separated sets, one of which is ¥’
and the other contains ¥ —U. There are disjoint sets § and T, open in X,
such that V'C8 and Y—UCT. Now let V= U—ClT. Then (V) ~ Y
= (8T) ~n Y = 0yV’, an n-point set.

LemmA 2. Suppose [a, b] s straight in § = E(1, m) and W is an open
set containing [a, b). Then [a, b] 1s straight in {8y, A" W, By A W, ..., By ~ W}

Proof. It is clear from the definition of straightness that for each 4,
d(E; ~ W) contains at least as many points of [a, ] as 0H; does. Con-
versely since 8(B;~ W)C (0B v (6W) and [a,b]C W, (@(H;~ W))
~[a, b1 C (8F;) ~ [a, b]. Thus 9(H; ~ W) contains exactly as many points
of [a, b] as 8F; does. That is, [a, b] is straight in {H, ~ W, ..., Bp ~ W}

‘We now show that each arc in a dendroid can be covered by chaing
in which the are is straight.

ProrosrrioN 1. If [a, b] is an arc in a dendroid X and &> 0 then
there is an e-chain &= H(1,m) of sels open in X such that [a, D)
straight in &.

Proof. Suppose, to- the contrary, that there is an arc [a,d] in X
and an &> 0 such that [, b] is not straight in any ¢-chain of sets open
in X. For this fixed &, and fixed are [e, b], we shall say that a subare
[a', 5] of [a, b] has property P iff [a’, b'] is not straight in any s-chain.
Clearly [a, b] has property P; we now show that property P ig inductive.

icm®
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Let L be a sequence such that, for each positive integer 4, L; has
property P and L;y; C L;. We must show that (1) {L;: i is a positive integer}
has property P. If it does not, then [\ {Li: is a positive integer} is not
degenerate, hence it is a subare [¢, d] of [a, b]. Since [a, b] has property P,
[¢, d] # [a, b]; without loss of generality, we may assume that a < ¢
< @<b, < denoting the usual order from a to b on [a, b]. Since [e, d]
does not have property P, there is an e-chain § = F(1, n) of sets open
in X such that [¢, d] is straight in §. Let U be an open set such that
ceU and ClUCF,—ClF,. According to Lemma 1, there is an open
get V such that ¢« VCU, and (V) ~[e¢,d] is degenerate. Similarly,
there is an open set R such that d ¢ RC ClR CF,~ClF,_,, and (2R) ~
~[e, d] is degenerate. Now (Vv [¢,d]w R)~[a,b] is open in [a,b]
and contains [¢, d] = (" {L:: 4 is a positive integer). Hence there is an
integer j such that L;C(V v [e,d] v R) n[a,bl. It L;= [a;, b], then
we may assume that a; ¢V and b;e R, since L;—[c,d]CV v R. Since
VCF,—ClF, and B CF,—CLF,_, F is a chain from a; to b; covering
[dj, bj]. Since, for each ’L‘, @Fs)- (V v R] = @, oF; [(Zj, bijl=0oF;
~[e, d], which is degenerate if F; is an end link of & and a two-point
set otherwise. Thus Ly = [ay, b;] is straight in &; this is impossible, for L,
was assumed to have property P. It follows that [¢, d] must have pro-
perty P, hence that property P is inductive. (Implicit in the above is
the assumption that ¥ has more than one link; if it does not, we can
immediately obtain an I;CF;, hence L; is straight in #,.)

Since [a, b] has property P, there is a subcontinuum of [a, ] which
is irreducible with respect to having property P. This subcontinuum
must be non-degenerate; we shall simply assume that [a, b] is irreducible
with respect to having property P. Let x be a non-end point of [a, b].
Since [a, #] and [z, b] are proper subares of [a, b], neither has property P.
Hence there are e-chains § = @(1,7) and ¥ = H(1, k) of sets open in X
such that [a, #] is straight in § and [x, b] is straight in Je.

Using regularity and Lemma 1, we obtain an open set ¢ such that
zeQ CClQ C(G4—ClG;y) n (H,—ClH,) and (2Q) ~[a,b] contains ex-
actly two points, one in [a, #], the other in [%,d]. (In what follows, we
will assume that both § and Jé contain more thah one link. If each has
only one link, we choose  so that {a, b} » C1§ = @ and ClQ C ¢, » H;.
If ¢ has only one link and J¢ has more than one, we choose @ so that
{2,0} nC1Q =@ and ClQ C G ~ (H,—ClH,).) Clearly [a,x]—@ and
[z, b]—Q are disjoint closed sets. Suppose there is a continuum ¥ in X—-q,
which intersects each of [@,%]—@ and [z, d]—@. Then N nla,bd] is
contained in the union of the separated sets [a,2]—Q and [z, b]—@
and interseets each. Thus N ~ [a, ] is not connected, and this contra-
diets the hereditary unicoherence of X. It follows that X —¢ is the union
of two disjoint closed sets A and B, with {a, #]—@Q C 4 and [z, b]-@ C B.
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Normality guarantees the existence of open sets 8 and ' such that
ACS, BCT and ClS ~ C1T = B. We define chaing 8' = &' (1,4) and

= H' (1, k), one-to-one refinements of § and € respectively, by G/
=G~ (Sv @), Hi= H; ~ (8 v Q). Lemma 2 shows that [a, #] i3 straight
in 6 and [x, b] is straight in J¢. Since the only points in a link of §" and
a link of 3¢’ are those in @, we may define a chain &§ = E(1,m) by

Bi=0} it 1<i<); By=Hiy, if j+1<i<j+k.

We will show that [a, b] is straight in 8. Clearly & is an e-chain
covering [a, b]. Furthermore, since a ¢ G- OlG: = E,—ClE, and b € Hj,—
—Hy = Bipp—ClBjyp-1, & is a chain from « to b. It remains to show
that for each 4, 1< i< j+%k, 0F:;~[a,b] has the proper (mdmayhfv
i1 < i < j—1, then B; = G} and 6G; C 0167 C C18. Since O18 ~ [x, b] =
2@, ~ [a, b] = 8G7 ~ [a, #]. This last set is degenerate if =1, and a two
point set otherwise, since [a, ] is straight in ¢'. In like fashion, if j4-2
<4 < j+k then 8H; ~[a, b] = 6H ~ [#, b], which has the proper cardi-
nality, since [a,b] is straight in Je".

Now (2Ej) ~ [a, b] = (66}) ~ ([a, @] U [, b)) = (26%) ~ [a, a]) v
v ((9(}’;-) ~[%, b]). Since [@, %] is straight in §', 665 ~ [@, #] is degenerate.
Since @j= 8w @nbGy=(8nG)v(Q@nG)=(8nGE)v o
Ca(S~6Gy))voQ and hence (26} ~[w, B]1C((0(8 ~ &) ~ [, b)) v
v ((2Q) ~ [, b]). Inasmuch as 8(8 ~ @) CCLS and CLS ~[w,b]=0
(a(S ~ G,-)) ~[#,b]=0. We chose @ so that @ ~[a,b] contains two
points, exactly one of which is in [z, b]. Thus @5 ~ [@, b] C (2Q) ~ [z, b],
a degenerate set. Hence, (0I5} ~ [a, b] is contained in the union of two
degenerate sets, @@jn [a,z] and 2Q ~[wx,d]. Since {a,b} ~E;=0,
oF; containg exactly two points of [a, b]. ‘

If 4 = j+1, then By = Hi{ and a similar argument' shows that 0H; n
~[a, b] is a two-point set. Thus [a, b] is straight in &, a,n(l the proposition
is established.

Proposition 1 shows that one can cover each arc from the top of
a fan to an end point, by a chain in which the are is straight, and a finite
collection of these chaing will cover the fan. However, different chaing
may intersect very badly. In order to cut them apart, we will need some
control over the boundaries of the links. Hence we establish

PROPOSITION 2. Suppose X is a fam, t is the top of X and W ds the
set of end poims of X. For each ¢ > 0 and each w ¢ W, there is an &- chain
&= E(1,m), of sets open in X, such that [t,w] is straight in & and
oE*(2, m) CE

Proof. Given ¢> 0 and w e W, we use Proposition 1 to obtain an
e-chain & = I'(1,m) of sets open in X such that [t, 2] is straight in F.
We may assume that m > 2, since if m = 1, then we may take &= .
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Since t ¢ ¥, — ClF,, we may use Lemma 1 to obtain an open set ¥ such
that te VCCIV CF 1’1~(*1E2, and &V ~ [t, w] is a singleton. Since [, w]
C&*, [t, w]—V and X —F* are disjoint closed subsets of X —T. We show
that no continuum in X V intersects both of these sets. For suppose K is
such a continuum. Then K contains an are K’ with these properties.
Since w is an end point of X, K’ ~ [t, w] == {w}. Since K’ ¢ [t,w] and
t¢K', K' ~[t,w] contains a mmlfmatlon point of X distinet from 1.
This is impossible, hence no such continuum K exists.

It follows that X —V is the union of two disjoint closed sets, one
containing [t, w]—V, the other containing X — #*, There are open sets S
and T such that X-VCSu T, ClIS~CIT=0, [{,w]-VCS and
X—F*CT. Define an e-chain §= (1, m) by Ei=F;n(8uTV) Ac-
cording to Lemma 2, [t,w] is straight in "§ We shall show that
oE*(2, m) C B,. Now B2, m)=TF"2,m) n (S UT)=F*2,m) A 8,
since  V AF2,m)=0. Thus &E*2, m)C COLE*2,m)CCISCSuT.
Moreover, since CLE™(2,m)C CLE*(2,m) C X —V, aB*2,m)CS. Since
X—F*CT,8CF*=IF*1,m) and therefore 2H*2,m)C (8§ ~ F*(2, m)) v
v (8 A Fy) = B*2,m) v (8§ ~Fy). Cleatly, B*(2, m) ~2E*(2, m) = 0, thus
oF* 2, m)C 8 ~F,CH,. This concludes the proof.

Given a fan X, and &> 0, we want to cover X with an ¢-tree chain
whose nerve is a triangulation of a finite fan. That is, we want the tree
chain to look as does Figure 3. We first show that we can do this for
a finite subfan ¥ of X.

ProrosITION 3. Suppose X is a fan, ¥ is a finite subfan of X, the
top of X, t, is the top of Y and each end point w of ¥, w # t, is an end point
of X. If ¥ = [J{[t, wi]: i e Z"} and 5> 0, then there is a finite collection
F1y Fay ey Fu Such that

(i) each F;=Fy1,r;) = {Fp,Fs,.., F
least 3 links, )

(ii) for each j, [t,w;] is straight in F;,

(iii) for each J, aF}(2,r;) CFy,

(iv) for each j, Fj; = Fy,

(v) if @ =5 then (t, w;] o FX2, ;) ~ CLFX2, r) = 0.

Proof. We proceed by induction on n. If n =1 then Y is an arc
and Proposition 2 yields the desired chain. Suppose then that the con-
clusion holds for » <<%k—1 and Y has & end points, wy, ..., wx. Let Y’
={{[t, w: 1 €% < k—1}. Olearly ¥'is a finite fan satisfying the induction
hypothesis and ¥ = ¥’ v [t, wi]. We obtain a collection &, ..., 8-, of
d-chains which cover Y’ and satisfy (i)—(v).

Lemma 1 yields an open set W such that ¢ ¢ W, and W contains ex-
actly & points of ¥, one from each arc [t,w:]. Let [t,wx] n&W = {s}
Then [t, wi] = [{, s) v [s, wg], [t,8) C W and [t,ws] ~ CIW =[z,5]. We

iy 98 a O-chain with at
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may assume that W was chosen so small that [, wy] ¢ C1W and CIW ~
~OLEY2,r) =0, if 1<i<k—1. We apply Proposition 2 to obtain
an §-chain § = G(1, p) such that [¢, ws] is straight in € and 26*(2,p) C @,.
Let G(b, p) denote the minimal subchain of § containing [s, ws]. We may
assume, without loss of generality, that the mesh of ¢ was chosen go
small that G(b, p) has at least 3 links and that if 1 <4 <% and & A
~ W # @, then ClG; ~ CLE¥2, r;) = @. Since [s,wr] and ¥’ are disjoint
closed sets, we may further assume that ¥’ ~ CLG*(b, p) = @.

Let V= W-Cl@*(b+1,p). Since OLG*(b,p)n ¥’ = 9, Y ~ov
= XY'~oW. By the choice of b, [s,wr] ¢ @*(b+1, p); since [t, wy] is
straight in §, [¢, s]1 ~» @*(b+1, p) = @. Thus Cl&*(b-+1, p) A [t, wi| M oV
contains at most one point, namely s. It follows that [ty wi] ~ OV = {s}.
Thus ¥ ~ 9V contains exactly % points, one from each arc [t, ws]. Thus V
has essentially the same properties as doeg W, and in addition,
V@ Oh+1,p)=0.

We define a chain 8, = Hy(1, r;) covering [t wy] by Bu=7V v G,
By = Gyyi, i > 1. Since V misses G*(b +1,p), it is clear that & is
a chain covering [t, wx]. We show that [¢, wy] is straight in &. If j > 9,
then [t, wx] ~ 8Ek; has the proper cardinality because [t, wy] is straight
in G. Since [¢,ws] ~aV = {s} C G, C By y L8 we] ~ 0B = [t, wi] ~ 86,
Now o6, contains two points of [¢, ws], one of which is in [t, s]C V C B,,.
Thus [t, wi] ~ 0B is & singleton and [t, wy] is straight in &,. _

Since [, wy] C &, [t, wi]— By and (X —6&}) v (Y'—H),) ave disjoint
closed sets. Inasmuch as ¢ is the only ramification point of X, no con-
tingum in X —Fy, intersects both these sets. Thus there are disjoint
closed sets A and B such that X —~Hy = 4 u B, [t,wp]—BEu CA and
(X~ &%) v (Y'~By) C B. Sinee [#, wy] is straight in &, [T, wi] ~ BY2, rs)
is connected and [t,w0;] ~ CLE42, ) is an are, [v,w;). Note that
[t, wp]— B C [, w;). Since A vv,wg] and Bu ¥’ are disjoint closed
sets, there arve disjoint open sets S and 7' such that A w (v, wz] C S and
B v Y'C T.Thus we have [, wy,] — Hy, C [v,w;]]C8and ¥ v (X~ CT.

We now define the chains ;= Fy(l,n), 1< J< k.

Fpp=Bypn T it sk i>1,

F}ﬂd=E]¢'Lf'\S if 'i>1,

Fps= HunT)o i for each j.
(Recall that By = Ty, if j  %.)

We show that the Fs satisty (i)~(v). Properties (i) and (iv) are
immediate consequences of the definitions. If 1% kb % j, then (v) holds
since F; refines & and F; refines §:. We shall show that (v) holds for k.
Ifj # kthen[t, w;]C¥Y' CY U BC Tand F§(2, r;) C T. Since Ff(2, ) C S
and TnCS=0, (It,w]vF}2,r) ~OLFY2,r) = B. Now [{,ws]
= [t; v] © [v, w] C By ~ 8. Since I (2, 7)) CT, FY2,75) ~[t, ws] C B
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AFH2, 1) CBr~ BY1, ) = @.  Thus ([t, we] © FH(2, rj)) A CLE2, 7))
=@, if j #% and (v) bolds for all ¢ and j.

If j # & then 0FN(2, 1;) CoB}(2, 1;) v T C By By, since 8; satis-
fies (). Now (2Ff(2, r9))— B C X~ By C § © 7. Since oF¥(2, r,) C (LT
and 8 ~ CLT = @, we have (0F}2, r;))— B, C T. Thus (EF¥2, 1))~ B
CHyn T, and 0FF(2,7;) C (Bj ~ T) © By = Fy; so (ifi) holds for j# k.
In the remaining case OF¥(2, i) C (2BY2, r4)) © 88 C By 28 — Eg C .
Thus (iii) holds for each j.

Finally, we demonstrate (ii). If J-#k then Fjy = By (T v Ew),
since Hy C By —ClEY2, ry). Then Lemma 2 shows that [t, ;] is straight
in 3‘\‘], for each j = k. If 'L> 1, then [t, wk] N ('JFM C ([f, 'wk] 'a) f‘Em) L
v ([t,wz] ~ 88). However, [¢,u5] ~ 8F4 C [t,wy] A CLEX(2, r) C[v,w:] C S.
Since 8 n 88 = @, [¢, wr] N 0F: C [f, wi] ~ 8By, Since [f, wi] is straight
in & and Fys C By, [t, we] ~ 8Fy cannot have fewer points than [t, wi] ~
~ OBy, Thus [¢, wr] » 0Fk = [T, wx] ~ 8By, and this last set has the
proper cardinality for straightness. The last step is to show that [, wi] m
noFy is degemerate. Clearly, [t,w;] ~aFu C ({1, we] ~o(By A ) v
([t wi] N 0F). Since By C Fyy, [y w] A~ 6Fy C[t, wi]— B C 8. Since
BnClT=0 and 8(Byn~T)CCLT, [t,we] ~(6Fp) 2By T)= 0.
Thus [¢,wx] ~ 8F% C[t, w;] ~ 8B, which is a degenerate, because
[t,ws] 18 straight in &. Since [, wy] N 0Fy, = @, [ty wi] ~ 6F3 is a point
and [t, we] is straight in 5. This concludes the proof of Proposition 3.

Once we have covered the fan X as in Figure 3, we use the cover
to construct the retraction. To do this, we will piece together retractions
of chains onto straight arcs. We therefore prove

PROPOSITION 4. Suppose [a, b] is an arc which is straight in an e-chain
§=B(l,m), &CX a compact metric space, eE*(2,m)C B, and {p}
= (0E;) ~ [a, b]. Then there is a continuous function f: (8*—H)—[p, b]
suchthat f is a retraction onto [p, bl, f[(8E,) ~ B,] = p and for each x € §*—F,,
Az, f(@) < e

Proof. Since 2E*(2,m)CHE;, & —F, is compact and for each 4,
2 <1< m—1, 08, is the union of two disjoint closed sets, (8B, ~ By
and (8H;) ~ Hyyq. Since [a, b] is straight in §, for each 4, 1 < i< m—1,
(0E;) ~ Biy1 A [a, b] is a single point, 7;. Then p = 745 let b = 7y, Again,
straightness guarantees that p = r, <7, < ... < 'm = b, where < denotes
the usual order from a to & on [a, b].

For each ¢, 1 <4 << m—2, we define a function

g2 (0B:) ~ Brys) © [ri, 2] © (0Bia) ~ Bige) [re, 1441l
by
g1($) = ¥z if &re (B.Ei) I Ei+1
gi(x) =2 it welryraal,
gt(w) = Pi41 if &€ (3E,‘+1) n Ei.‘_g .
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Then ¢,,_, is defined as above, except that domain g is ((aEm_l) .
~ Bm) © [Fm_1, rm]. Clearly, each g; is a continuous retraction onto [7;, #;.4].
Since arcs are absolute retracts, for each ¢ there is a continuous extension
Ji; of giy Ryt ClEip1~B;—>[7i, rim]. Notice that each h; is a retraction
which moves each point less than e, since diam (Cl1E;.;) < e. Moreover,
if ¢ = j then domainh; ~ domainh; # @ if and only if j = ¢—1 or j = 1.
Clearly, domainh; ~ domainhsy; = (8B1) » Biie and both h; and Ay,
send all points of this set to #;41. Thus the function f= l; w hy v ... © By
is a continuous retraction of &§“—H; onto [p,b] moving each point less
than e.

TaEOREM 1. Suppose X is a fan and e > 0. Then there is a finite fan
YCX and a retraction r: XY such that if » X, then d(z,r(®)) < e.

Proof. Let ¢ denote the top of X and let W denote the set of end
points of X. Then, ag shown in [1], X = [J{[t,w]: w ¢ W}. For each
we W, we apply Proposition 2 to obtain &,, and ¢/8-chain, having at
least. two links, such that [f, w] is straight in &, and 0(8w— Hu)* C Bu.
There is a finite subset W' C W such that {&: we W'} covers X. If
W' = {wy, W, ..., Wy}, let us relabel the corresponding chains &, &, ..., &.
For each jeZ", & = {Ej, B2y ..., Bim} = B4{(1, m;). We have, then

(1) U8 j € 2™} covers X,

(2) For.each j ¢ Z", [t, wy] is straight in & and

(3) For each j e Z", 0EF(2, m;) C By.

For each j e Z", let Y; be the arc [t, w;] and let ¥ = [ J{¥;: j e Z"}.
Clearly Y is a finite fan with top ¢ and each w; is an end point of both ¥
and X. :

Step I. If ¢ # j we cut the links of E;(2,ry) away from [t, w,] and
we modify the intersection of Ej; with [¢,w;]. That is, for each je 2",
we will obtain an ¢/8-chain G;, a one-to-one refinement of §;, satisfying
1), (2), (3) and

(4) If 4 £ j then [t, w;] ~ C1GH2, my) = @.

(6) If i #j then [t, ws] ~ Ol@; Ct, wi] A Gy
(See Figure 1.)

Choose 6 > 0, 6 < ¢/8 and let Fy, F,, ..., T be a collection of §-chaing
satisfying the conclusion of Proposition 3. We may assume that each
refines &;. Since each [¢,w;] is straight in §, t ¢ CLEN2, my). For each
jeZ", teF¥1,2), hence we may assume that 6 was chosen so small
that for each je Z", Fj(1,2) ~ CLUJ {B*(2, my): i Z"} = 0.

For each j, let By=CL|J {F}(2,r:): 1¢Z", i+ 4} and let Bj=
= Ol U{F¥3,r): 1 € Z", i # j}. Note that Proposition 3 (v) guarantees that

(%) for each j, (¢, w;]w F¥(2, 7)) ~ B;= @ and Proposition 3 (iii)
and (v) shows that
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(%%) for each j, Ff ~ Bj=0, 5f ~ B;CF,,.
For each j, we define the chain §; = Gy(1, m;) as follows:

G = Bp—B; it 2<k<m5,
Gy = B;—Bj.

Fig. 1

Clearly, each G; is a one-to-one refinement of &. The definitions
show that for each j§, ClG¥(2,m;) ~ B; C8B;. Proposition 3 (iii) shows
that 8B; C ;. The F;’s were constructed so that Fjn ~ CLEf(2, ;) =9,
thus Fjy; ~ CLGH2, my) = @ and we have

(%) tor each j, CLGH(2, m;) ~ B;=0.

We demonstrate that (J{8;: jeZ"} covers X. If xe8—Gj, then
# € B; and there is an 4, 4 # j, such that » e CLF(2, ;). Since (%) shows
that F¥(2,7r:) n By= 0, F§2,r;)C&—-B;C g%, Thus we may assume
that e 2F%(2, 7;). According to Proposition 3 (iii), z « Fr; the construction
of ; and (%) yields Fyy C By —Bj= Gu. Thus z e 8 and (1) is satisfied.

Tt follows from the definitions that for each j and k, 86y C (8Ey) v
v (8By). Since (%) shows that aB; ~ [¢, w]= 0, (8Gyx) ~ [, wi] C (8B ) ~
A [t, wy]. Since [t, w;] is straight in &, this last set has the proper fza,rdl-
nality, and thus so does (8Gu) ~ [t, wil Thus [¢, w;] is stmigh.’c %n 8;.

It follows from (52&) that 8632, m;) C 2852, my). Since & satl?ﬁes (3)
oB¥(2, my) C By Since B C By and () holds, 865(2, my) C En—B; = Gn.
Thus each G; satisfies (3).

9*
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Now, for each ¢ and each j +4, [¢, w;]CFf CFy v By. Since (**)
shows that B; » CLG}(2, my) = @, [¢, wi] ~ CLGH(2, my) C Ty ~ OLGH(2, m;),
Bach F; was constructed so that Iy~ OLE}2,my) =@, s0 Fyn
A CLGY2,m;) = O and (4) holds. '

If ¢ j then [{,w]CFfCIFH1,2)w IntB;. From the definition
of G we know that (C1Gy) ~ IntBj= 0, thus ClGy ~[t, w] CF¥(1,2),
Now (%) guarantees that I'{(1,2) n Bj=@, thus F1,2)C B,— B
= @y and (5) holds.

Step IL. If ¢ # §, we refine §; and S, so that the refinements intersect
at most along initial subchains, which have small diameter. More precisely,
for each jeZ" we obtain an /8-chain 3¢ = Hy(1, my), & one-to-one
refinement of §;, such that 3, J6,, ..., B, satisties (1), (2), (4) and (5 )
as well as )

(6) For each j, there is an mtever 7y 2 <5 €5 << My, such that if 4 55
then Hj(e;+1, my) n Hi(es+1, mq) =

(7) For each j, diamH¥1, ¢;) < 8/2.

See. Figure 2.

i,
H,=H,
Hy 1™ e,
4 ¢7
W,
H31 ) H?ma
1
. é T~ ]
T 2
Hy=Hy
3 \q\
e
\Wa
e, = G,
Tig. 2

Let V= [ J{G: j ¢ Z"}. For each j € Z", let ¢; = max {k: if i e Z%, then
G~V 5 @). Since V is the union of the firgt links of the 8y, it follows
that each ¢; > 2. If z e G¥(1, ¢;), then belongs to a link of §; which
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intersects the first link of some §;. Thus d(z,?) < /84 2/8 = ¢/4, and °
diam G§(1, ¢5) < /2.

For each jeZ", we define the eham ;= Hj(1, m;) by for each
L1l << my,

sz = G]‘l— 1 U{G;(ﬁk-l—l, 'm.k): ke Zn k> ]} .

Note that 3, = S,. Moreover, since each Hf(1, ¢;) C G¥(1, ¢;), it follows
that diam Hi(1, ¢;) < ¢/2, and (7) holds.

For each ke Z", ¢z > 2, thus if j < &, then [¢, ;] ~ CLGH(er+1, myz)
=@, since 9 satisfies (4). Hence [t,w;] ~ Cl|J{Gk(cx+1, ms): & e 2",
k> j} = 0; it follows that each [f, wy] is straight in J¢;. Since the Sys
satisfy (4) and J¢; is a one-to-one refinement of G;, the 3,5 satisfy (4).

" Since [f, wi] ~ CL U{GHer+1, me): keZ™ k>i} =0, [t,w]n Gy
=[t,w] ~ Hyu. If 4 5 j, then (5) insures that [¢, w:] ~ O1Gy C 2, wi] ~
A G@n=[t,w]~ Hy. Since CLH;; CClG;, we have [t,w;]~ ClH;
C[t, ws] ~ Hqy, and the J&;’s satisfy (5). If 4 # j, then we may assume that
i< §. Then C1G(¢;+1, my) C Ol J{GH(ex+1, mz): k> i}. The definition
of J; guarantees that J&f ~ Gf(c;+1, my) = @; a fortiori (6) holds.

From the definition, for each e 2", §f—Je* C Cl U{G¥(er-+1, my):
ke Z" k> i}. For each k e 2", since Gy, satisties (3) ClGHer+1, my) C GF;
thus 8§ —Je5 C | J{Sk: %k e Z", k> i}. Suppose # e X and let ¢ = max{i:
ieZ", xeQt). Thus @weQi. If ¢, then a < n, since &, = §,. Thus
o e §5—3¢% C | J{S¥: © > a}. This contradicts the choice of a, hence « ¢ 35
and (1) holds.

Step ITI. We now construet e-chains' K, = K,(1, p,),

Ky = Ka(1, pn) satisfying (1), (2) and

(8) If j e Z2", then K; = Ky,

(9) If 4 # j then K3(2, pi) n Ef(2,p;) = 0.

See Figure 3. (That is the Xs cover X in much the same way that
the Fy’s cover ¥ in the conclusion of Proposition 3. Here, (1), (2), (8)
and (9) are analogous to (i), (ii), (iv) and (v) respectively.) We construct
the ¥;’s by consolidating all the initial subchaing of the J&s’s. For each j,
let Ky = | J{H¥L, ¢): © € Z"}. I 1> 1 and Ky, is not the last link of &,
let Ky = Hj 11 Condition (6) insures that each &;is a chain. For each j,
&y C %f, thus (1) holds.

We show that each are [t, wy] is straight in X;. I 7 > 1, then [t, w] ~
8Ky = [t, w;] ~ 8H ;11 Since [f,w;] is straight in &, [, wl~
M 8H41-1 18 either a one or two-point set, depending on whether Hj .1
is or is not the last link of J6;. In either case, 2Ky ~ [f, w;] has the proper
cardinality. Tt 1= 1, then (2Kp) ~[t,w;]= (@ U{HI1,e): ieZ")

~[t,w;]. If 4 # j then (4) shows that (CLEH2,ms)) ~ [t, w,]._@ and (5)
shows that CLH; ~ [%, ws] C Hy. Thus (2Ku) ~ [, w] CoHF(1, ¢;). Since

Ko = Ky(1, ps) .-
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.[t, w;] is straight in JC;, (GH AL, (:7)) ~[2, wy] is a one-point set, unless H;
is the last link of J¢;, in which case this set is empty. Thus, for each 7
(8K 1) ~ [t;wy] has the proper cardinality and (2) holds. Y

K= Hy g 01

K= Ky = Ky T\ -
Kyy=Hy cq -\F
the )
[
Ky,
TFig. 3

The definition of X; yields (8). If ¢ then K2, ps) ~ X2, p;)
= H¥(e;+1, my) ~ Hi(¢;+1, m;) = @, from (6). Thus (9) is satisfied.
. Step IV. We now construct the map r of X onto ¥ = A, wil:
j€Z". We will assume that each Ky has more than one link; if this is
not true, the needed modifications in the definition of » are obvious.
For each j e Z", there is a point s; e [#, wy] such that (2K) ~ [ 5 5]
= (K1) N Y ~ Ky = {s;}. Since each [t, wy] is straight in the e-chain Xy,
we apply Propogition 4 to obtain a retraction Frt (I — K p) >[5, w]
such that fi{(0K ) ~ K] = {s,} and f; moves each point less than e.
(Note that oI;; is the union of the disjoint closed sets (6XK) Ku,
(0Ep) N K, ..., (0K 1) A Ipo. If i #§ then (domain f;) ~ (domain )
(.ZK{;S?J,]),;) ~ K32, p;) =@, from (9). Thus we may define = Ulfr
j eZ. }. Clearly f is an retraction of X—I, onto UA[se, wil: 52"
moving each point less than e. -
. Now Y~ Koy = (U{[t, si): € 27" and (LK) n Y = (J{[t, s5]: 6 < 27,
since each [1, w] is straight in K. We define ¢: (2I5,,) w (OLK,) ~ ¥)=
>(ClEp) N Y by @)=, if we Y and g(z) = 85, if ® e (0Ky) N Ko,
Since (ClK,) ~ Y is a tree, it is an absolute retract. Hence ¢ can be ex-
tended to a map h: ClK;, —(ClKy,) ~ Y. Since diam (C1K;,;) < &, b moves
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each point less than e Finally, let » =k v f. Since f and & agree on the
intersection of their domains, 8K;;, r is well-defined and continuous.
Obviously, r is a retraction of X onto Y. Since neither & nor f moves any
point as much as e, neither does #.

THEOREM 2. Bach fan is an inverse limit of a sequence of finite fans.

Proof. Clearly, each finite fan iz a polyhedron. If £ denotes the
clags of all finite fans then Theorem 1 establishes that for each fan X
and each & > 0 there is a map of X onto a member of £ which is an ¢-map;
i.e. the inverse image of each of each point has diameter <e. It follows
from [3] that X is homeomorphic to an inverse limit of a sequence of
members of L.

THEOREM 3. Each fan is tree-chainable.

Proof. The collection Iy, ..., o, of Step IIT in Theorem 1 is a tree-
chain.

For completeness, we state the following theorem, whose proof may
be found in [2].

THEOREM 4. If X is a compact connecied Hausdorff space which s
@ product of fams, then X has the fized point property.

Proof. We can establish this by showing that X can be retracted
onto ¥, a finite product of finite fans, by a small retraction. Since each
finite fan is an AR, so is Y. Thus X is an “approximate AR". By [2],
Corollary 1.2, X has the fixed point property. Details may be found in [2].
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