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Atomic compactness and elementary equivalence

by
Walter Taylor (Boulder, Colo.)

In this paper we continue the study, begun in [6], of the relationship
of (generalized) chromatic numbers to atomic compactness and weak
atomic compactness. Our main result (Theorem 3.1) is that a relational
structure 9 is an elementary substructure of some weakly atomic-compact
relational structure if and only if the class of all chromatic numbers of
structures elementarily equivalent to % is bounded from above by some
cardinal,

In [6] we showed that a relational structure 9 is a retract of a com-
pact topological relational structure if and only if 9 is atomic-compact
and all ehromatic numbers of U are finite. Now we show (Corollary 4.3)
that if % is a retract of a compact topological structure B, then there
exists such a B which is a direct product of m finite structures, where m is
the power of the similarity type of U plus that of the universe of 9. Thus
our B has power at most 2™ )

This paper may be read independently of [6]. In particular, we
develop the theory of (generalized) chromatic numbers from the beginning.
This development improves that of [6], although strmtlv speaking the
two are equivalent (see Theorem 4.1).

§ 0 contains the preliminaries. In § 1 we discuss chromatic number
and Dboundedness of chromatic number in an elementary equivalence
class. § 2 contains some lemmas (concerning weak atomic compactness).
§ 3 contains the main result. In § 4 we discuss our two different defini-
tions of chromatic number and extend the main result of [6] as indicated
above. In § 5 we study pure closures-of relational structures. In § 6 we
correct a proof and refine an example from [5].

0. Preliminaries. Notation will be the same as in [6], except where
we deal with chromatic numbers, which will be redefined in § 1. Throughout
this paper, the letters 4 and B will denote the universes of structures %
and B, respectively. If A = ¢4, Rdser is a relational structure and X C A4,
then 9x denotes the structure <4, Ry, Coter,cex+ The reader is referred
to [8] for the basic notions associated with the theory of atomic com-
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pactness and weak atomic compactness. Briefly, a structure 9 is weakly
atomic-compact [or atomic-compact] if and only if every set of atomic
formulas in the langunage of U [or in the language of A,] which ig finitely
satisfiable in U [or in 4] is satisfiable in U [or in U,

If A= <A, Ripter, and 8 C T, then A = (4, Rdes is called a reduct
of A. If § is finite, then U’ is a finite reduct of A. It U = (A, Rjer and
B = (B, Bpyrer are similar relational structures, then a homomorphism
from A to B is a mapping f: 4B, such that for each ¢ 7 and each
@y ey tuy € By, we have (f(aa), ..., flanp)> € 8. IE 9 is & substructure
of B, and there is a homomorphism f: 8B -9 such that I A4 is the identity
on A4, then U ix a retract of B. :

If the universe A of % iy at the same time a topological space, and
each relation Ry of % is a closed subset of A"” in the product topology,
then U is a topological relational structure. If A is any relational structure,
then AU denotes the topological relational structure (BA, Bdieq , where
pA is the Stone-Oech compactification of A (considered as a discrete
space), and Ry is the closure of R; in (84)®.

A strueture ¥ = ¢4, R) is called a graph if R is binary, symmetric
and antireflexive. ‘

A =B denotes elementary equivalence of the structures ¥ and 8.

An (H, A)-sentence is a sentence in some first-order language, having
only the connectives ® and A.

|X| denotes the cardinal of a set X. As in [6], we adopt a symbol co
with the convention that n < oo for every cardinal n. A class K of car-
dinals is called bounded if there is a cardinal 1 such that m < n for each
mek, ie. if K iy a set.

1. Elementary boundedness of chromatic number.

DeriNirioN 1.1. Let ¢ be an (H, A)-sentence in the langrage of 9L
The ¢- chromatic number of A, denoted x(p, A), is the least power of any
structure B satistying the following conditions:

D) B E Tlg;

(ii) there exists a homomorphism f: 9% —%B.

If no such B exists (i.e. A & p), we put x(p, A = oo

It A= (4, R is a graph and ¢ = HzRaw, then (p, A) is the ordinary
chromatic number of . (Definition 1.1 differs from the definition of
chromatic number given in [6]. We feel that 1.1 is more natural and easier
to work with; in § 4 we show that the two definitions are equivalent in
a certain sense.) We first notice the following easy propositions. For the
rest of this section ¢ denotes an (H, A)-sentence.

ProrosITiON 1.2. The following conditions. are equivalent:
(D) 2{@, MW < o003
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(ii) z{p, W < |4];

(ii) A F g

PrOPOSITION 1.3. If there is a homomorphism f: A—>B, then x(¢,A)
< z(9, B)-

COROLLARY 1.4. If U is the direct product of the relational structures Ay
(i e I), then x(p, W) < min{y(p, W): ieI}.

ProPOSITION 1.5. Let Wy be the reduct of A whose only relations and
constants are those mames appear in ; then

2(p, W) = 7, A) .

The next result is a generalization of the Theorem of de Bruijn and
Erdos [1], and will be used in 1.8 Dbelow.

TEEOREM 1.6. If for each finite substructure € of U, z(p, €) <k < %y,
then x(p, AW < k.

Proof. Let 5 be an ultrafilter on the set I of finite substructures
of U such that for each & ¢ M, the set {H e M: $ D K} is in F. Clearly
there is a homomorphism from A into the ultraproduct %zﬁﬂ(ﬁ/fr‘ )

and a homomorphism from $B into an ultraproduct of structures each
of power <% and each satisfying Tlp. Clearly this last ultraproduct has
power <k and satisfies Tp. QED

DrrFiNiTION 1.7. K(p, A) is the class of cardinals

{xlp, B): B=1U}.

Remark 1.8. If (¢, A) =k < &), then K(p,A) is bounded (by k).
For if B =9, then any finite reduct of a finite substructure of B is
isomorphic to the corresponding reduct of some finite substructure of 2.
Thus by 1.5 and 1.6, y(p, B) < k. In fact, by reversing the roles of U
and B in this argument, one sees that y(¢, B)=*%.

Remark 1.9. If U is weakly atomic-compact and 9 F Tlp, then
K{(p, A) is bounded. For if B = U, then there is a homomorphism f: B -,
Hence by 1.3, K(p, %) is bounded by x(p, A), and x(p, A) < o by 1.2.

Remark 1.10. If %« is a graph without quadrilaterals, then
K(HzRxw, ) is bounded. For if B = A, then B is a graph withoub
quadrilaterals, and hence, by a result of Erdos and Hajnal (cf. [3],
Theorem 5.6), has countable chromatic number.

Remark 1.11. If 9 is an infinite complete graph, then K(HzRrx, U)
is not bounded. The graphs described in [2], Theorems 6 and 7, provide
more interesting examples of unbounded classes of this kind.

TemorEM 1.12. If U, is the reduct of A whose only relations and consiants
are those whose names appear in ¢, then K(p, %) is a cofinal subset of

. g*


GUEST


e ©
106 W. Taylor Im

K(p, %,). Thus K(p, %) is bounded iff K(p, Uy) is bounded and supK(p, %)
= sup K(p, %)

Proof. Let neK(p,W); thus n= yx(p, B), where B = 9,. By
Frayne's Theorem (Theorem 2.12 of [4]), we imbed B in an ultrapower
As/F of Uy, which is a reduct of the ultrapower UA7/F. Thus by 1.5, m
= (g, W/F) =1, and m e K(p, %). QED

The following theorem will not be applied in this paper, but it leads
to an interesting open problem. It states the existence of a kind of Hanf
number for y(p, A. ‘

THBOREM 1.13. There is a cardinal m such that if K(p, ) is bounded,
then y(@, A) < m. ‘

Proof.(!) Let 0 be the set of cardinals n such that K(¢p, %) is bounded
by 1, where U ranges over all elementary equivalence classes of similarity
types having only those relations and constants whose names appear
in @. By 1.5, one may take m to be the successor of the supremum of the
set 0. QED '

ProBuEM 1.14. What s the least m satisfying Theorem 1.13%7 In
particular, what is the least my such that every graph of chromatic number
>=my, 18 elementarily equivalent to graphs of arbitravily high chromatic
number? (2)

If % is the graph defined in [5] (Definition 4.6), then 2 hag countably
infinite ehromatic number, and yet K(HzRww, ) is bounded, by 1.9.
Thus m and m, of Problem 1.14 are >=N,.

2. Finite satisfiability. The only new idea in thig section is in De-
finition 2.2. The lemmasg are obvious in the light of § 2 of [8].

LEMMA 2.1. Let W and B be similar relational structures. The following
conditions are equivalent:

(i) any finite set of atomic formulas which s satisfiable in B is
satisfiable in U; i

(ii) for every (H, A)-sentence @, if B = @, then A = ¢;

(ili) there ewists a structure § satisfying only those (H, A)-sentences
which are true in W, and o homomorphism f: B »E;

(iv) there ewists a structure © = A and a homomorphism f: B->C;

(V) there exists an wultrapower € of W and a homomorphism f: B—>C.

(*) This proof is essentially the same as Hanf’s unpublished proof that for every
language L of a certain large class of languages, there exists a cardinal m such that if
a theory expressed in I has a model of power m, then the cardinals of its models are
unbounded.

(® T announced in [7] that the least such m is either ¥, or ¥,, but I later found
a mistake in my proof.
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DEFINITION 2.2. B is said to be A-pure iff A and B satisty any (and
hence all) of the conditions of Lemma 2.1.

The following result shows the relation of Definition 2.2 to the notion
of pure extension of [8].

PROPOSITION 2.3. Let A be a substructure of B, Then B is a pure
extension of W iff Ba is Ua-pure.

PrOPOSITION 2.4 The following conditions are equivalent:

(1) A is weakly atomic-compact;

(ii) if B is U-pure, then there is a homomorphism f: B ->%U;

(iii) if € = U, then there is a homomorphism f: €-U;

(iv) if © is an ultrapower of N, then there is a homomorphism f: €=U,

ProrosITION 2.5. If K(p, ) is bounded, then the class

{x(p, B): B 1s A-pure}

is also bounded.

3. Weak compactification. We now state the principal theorem of
this paper.

THEOREM 3.1. The following conditions are equivalent:

(i) U is elementarily equivalent to some weakly atomic-compact structure;

(i) A is an elementary substructure of some weakly atomic-compact
structure;

(iii) U is & pure substructure of some weakly atomic-compact structure;

(iv) for every (H, A)-sentence g, either K(p, W) s bounded or A+ ¢.

Proof. The equivalence of conditions (i) and (ii) follows immediately
from the theorem of Frayne (used above in the proof of 1.12). The equiv-
alence of conditions (ii) and (iii) follows immediately from Lemma 2.2
of [8]. The proof that (i) implies (iv) is the same as the argument in 1.9.
Conversely, suppose that (iv) holds; we will prove (i). For each (H, A)-
sentence ¢ with 9% £ “lp, we let n(p) be an upper bound on the g-chro-
matic number of all A-pure stroctures. We let 1 = ITn(p). We take & to
be a set of A-pure structures containing one isomorph of every UA-pure
structure 8, with |B,;] < 1. We then let 8 = | $, amalgamated on the
constants of the language of U. It is easy to check that B is U-pure, and
hence, by 2.1, that there is a structure € =%, and a homomorphism
f: B=>C. .

We wish to prove that € is weakly atomic-compact. Suppose that
U, is €-pure; clearly 9, is also - pure. Thus for each ¢ as above, we have
a homomorphism g,: A; ~B,, where |B,| < n(p), and By £ Ip- B, will
be taken to be isomorphic to the direct product PB,. Clearly 1B <1y
and 50 we may take B,;e B, by 2.1. Clearly there is a homomorphism
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9: W —>B;, and 80 f o g is & homomorphism from 9, into €. Thus by 2.4,
¢ is weakly atomic-compact. QED

CoroLLARY 3.2. If every finite veduct of U is elementarily equivalent to
some weakly atomic-compact structure, then the same is true of .

CoROLLARY 3.3. If every relation of U 4s unary, then A is clementarily
equivalent to some weakly atomic-compact structure.

Remark 3.4. It is obvious that Theorem 3.1 remains true for
algebraic structures (structures with both relations and operations) if our
definition of chromatic numbers is extended as follows. If 9 iy an algebraic
structure, then there exists a relational structure U*, with the same
universe as U, and having as velations the relations of 9 together with
the graphs of the operations of %. For each (i, A)-sentence ¢ in the
language of ¥, there is obviously an (I, A)-sentence ¢* in the language
of A%, which is equivalent to ¢ in the following sense: for every structure B
similar to A, B k@ iff B* £ ¢*. Now detine x(p, W) to be x(p*, A*).

4. Finite chromatic number. In this section we show how the chro-
matic numbers defined in § 1 above are related to the chromatic numbers
defined in [6]; we assume (only for Theorem 4.1) that the reader is
familiar with [6].

TurorEM L.1. For every n-ary derived velation R of N, and every
equivalence relation ¢ on {1, .., n}, there is an (H, A)-senténce ¢ in the
language of Ua such that y(R) = y(p, Wa). Conversely, for every such @,
there ewist such R and o, with the property that x(R) = x(p, Wa).

Proof. Given R and o, we define the (&, A)-sentence ¢ = DR, 0)
to De the sentence which asserts that y(R) = co. We claim that y,(R)
= 1(p, Wa). Tt is easy to check that. y,(R) < (@, Wa). To prove the reverse
inequality, assume that y,(R)=1; thus there is a homomorphism
fi <4, B)>G(p, n) = (B, 8), where |B| = n. For each m-ary relation E
of A, we define the m-ary relation §; on B as the least relation making f
2 homomorphism. The definition of G(g,n) ensures that o holds in
B = (B, 8dter. Thus y(p, W) < n.

To complete the proof, we show that for each (&, A)-gentence ¢,
there exists & and ¢ us above such that @ (R, o) is logically equivalent
1o . Clearly any such g is logically equivalent to o sentence Waw, ... Wau(pA 0),
where v is a conjunction of atomic formulas in the langunage of Ay with
no variable oceurring twice in v, and 0 iy a conjunetion of equalities
between variables. Clearly y defines an n-ary derived relation R of 9, and 0
defines an equivalence relation p on the set {1, ..., n}. Tt is easy to check
that ¢ is logically equivalent to ®(R, p). QED

_ In Theorem 4.2 which follows, the equivalence of conditions (i),
(ili) and (iv) follows immediately from Theorem 2.10 of [6] and Theorem 4.1
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above. Similarly, in Corollary 4.3, the equivalence of (1), (i) and (iv)
follows from Theorem 3.6 of [6] and Theorem 4.1 above. Our proofs of
these results, however, are direct, and depend neither on [6] nor en
Theorem 4.1 above.

THEOREM 4.2. Let W= <4, Rrer, and let = |4|-+|T|. The following
conditions are equivalent:

(i) A s o pure substructure of FA;

(i) A is a pure substructure of some product of n finite relational
structures; )

(iii) A is a pure substructure of a compact topological relation structure;

(tv) for every (H, A)-sentence @ in the language of Wy, either Wa k @,
or x(p, W) is finite.

Proof. Clearly conditions (i) and (ii) each imply condition (iii).
Suppose that condition (iii) holds; we will prove condition (iv). % is a pure
substructure of the compact topological relational structure B. Suppose
that x(g, Wa) = 8; we need to show that WAs F . By 1.3, y(p, Ba) = 5.

Of course g is logically equivalent to some (H,A )-sentence Hz, ... Hirnyp,
where y contains neither any quantifiers nor the equality symbol.(3)
Let @ be the directed set of finite partitions of B, ordered by refinement.
For each 6 e @, there exist by, .., bupe B whose f§-equivalence classes
satisfy ¢ in /6. Since B” is compact, we may take <b;, ..., by> to be the
limit in B” of a subnet of the net {(big, ..., bus>: 6 € O). It is easy to check
that By E (D, ..., bn). Thus B k ¢ and thus, since Aispure in B, A4 k ¢.
Thus condition (iv) holds.

Finally, assuming condition (iv), we will prove (i) and (ii). To see (i),
clearly U is a substructure of Y. Supposé that A4 = Tlp for the (H,A)-
sentence ¢ in the language of 4. By (iv), there is a homomorphism f:
Y4B, where B £ Jp and B is finite, and hence compact Hausdorff,
Thus f can be extended to a homomorphism f: f%4—B. Clearly then
fU4 & Tlp. Thus U is a pure substructure of AA. To see (ii), notice that
whenever %4 k Tlg, there is a homomorphism f,: As—B,, where B, is
finite and B, ¢ “lp. Clearly the direct product B = PB, is of the desired
kind. Let the homomorphism f: Ws—B be defined componentwise by the
homomorphisms f,. It is easy to check that f is an isomorphism of %
onto a substructure of B. A is pure in B by 2.1 and 2.3. QED

COROLLARY 4.3. Let 1 be as in 4.2. The following conditions are

_equivalent:

(1) A is a retract of fA;
(ii) A is a retract of & product of n finite relational structures;

(*) We exclude the equality symbol from wp, because if B is not Hausdorff, then
equality will not be a closed relation of B.


GUEST


. L ©
110 W. Taylor Im

(iii) U is a retract of a compact topological relational structure;

(iv) U is atomic-compact, and for every (A, A)-sentence in the language
of Wa, either Wy k@, or y(p, Wa) is finite.

Proof. By 4.2 and Theorem 2.3 of [8]. ]

Remark 4.4. If |T] < |4] and U satisfies the equivalent conditiong
of Theorem 4.2, then by 4.2 (ii), % is a pure substructure of a compact
topological structure of power 2 Thus our new condition (ii) lowers
the power of the compact structure whose existence is agserted in 4.2 (iii).
(Recall that the power of 84 is QZM).

Remark 4.5. If |T|< |4 =%, then 2% iy the smallest possible
power in 4.4. Indeed, let Z be the additive group of integers (with ad-
dition expressed as a ternary relation). Z is easily seen to be a pure sub-
structure of a compact topological relational structure B; for example,
one may take B == PZ,, where for each integer n > 2, Z, is the (finite)
additive group of integers modulo n. We will show that the cardinality
of any such B must be at least the cardinality of the continuum. Let P be
the set of primes of Z, and let f: P—Z be any function. By the Chinege
Remainder Theorem, the congruences {w = f(p)(modp)} are finitely
satisfiable in Z, and hence, by compactness, satisfiable in 8. By purity,
distinet functions f yield distinet solutions in 8. Thus B has continuum
many distinet elements.

Remark 4.6. Suppose that %= <4, R> is algebraic in the sense
that R is the graph of an (at least binary) operation on 4, and that %
satisfies the equivalent conditions of 4.2. We do not know whether 9
must also satisfy (ili’): U is a pure substructure of a compact topological
structure B = (B, 8>, where § is the graph of an operation on B.
Clearly 9 is not always such a structure (e.g. if R is the ternary relation
corresponding to addition of integers). Further, if R is the ternary re-
lation corresponding to addition in the set @ of rational numbers, then

- no product of finite algebras iy such a B. For the reader may easily check
that <@, +> is not a subalgebra of any product of finite algebras, since
there exists no mnon-trivial divisible finite Abelian group. But <Q, +>
satisfies the conditions of 4.2, gince @, +> i a divect summand of the
group of rotations of a circle.

5. Pure closure. As in [9], an extension B of U is called a closure
of U if and only if B, is weakly atomie-compact. If moreover B is a pure
[elementary] ‘extension of oA, then we call B a pure [elemeniary] closure
of . Tt we apply Theorem 3.1 to the structure A4, we have the following
corollary.

CoROLLARY 5.1. The following conditions are equivalent:

(i) ¥ has a pure.closure;
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(ii) 9o has an elementary closure;

(it} for every (H, A)-sentence ¢ in the language of W, either K (p, %Wa)
is bounded or Wq E @.

Proof. The equivalence of conditions (ii) and (iii) is immediate from
Theorem 3.1 and the fact that U is an elementary substructure of B if
and only if A4 = B4 The equivalence of conditions (i) and (ii) follows
immediately from Lemma 2.2 of [8]. QED

In 9], §3, Weglorz asks whether every agebra having a closure has
an atomic compactification. We ask a similar question in the present
context. Namely, if the relational structure U has a pure closure, then
does A have an atomic-compact pure extension?

6. A correction to [S]. We take this opportunity to correct the proof
of the second part of Theorem 4.7 of [5], which asserts the existence of
an atomic-compact algebra which is not a retract of a compact topological
algebra. The algebra (G*, F defined in the proof given there does not
seern to be atomic-compact. We now define another algebra A = (4, f, ¢,
where f and ¢ are unary operations, which satisfies our assertion.

Let <&, B> be the graph defined in § 4 of [5]. Let N be a countably
infinite set disjoint from @, and let & and & be distinet elements not in
Nu@. Let A=DNv Gu {a,b}. Define the unary operations f and g¢
as follows: {f, g>I N is a bijection of N onto R, and for 2 ¢ N, f(z) = a
and g(#) = b. Notice that any ultrapower A’ of U is the reduct of a strue-
ture <A, f', ¢’y R'>, where A’ = N' v @' u {a, b}, (G, R"> is an elementary
extension of <G, R), (f’,g’>} N’ is a bijection of N’ onto R’, and for
¥y ¢ N', f'(y) = a and ¢'(y) = b. Clearly a retraction of <&, R’> onto (&, E)
extends to a retraction of A’ onto . Thus A is atomic-compact (by [8],
Theorem 2.3). )

Our proof that U is not a rvetract of a compact topological relahqnal
structure uses a chromatic number of the kind defined in § 1. Consider
the sentence

¢ = Haly[f(x) = yrg(z) =1y].

It is clear that 9 F lp. But suppose that #: A —~B is a homomor-
phism, where B is a finite structure. Since the chromatic number of the
graph <@, R is infinite, there exists u, v> ¢ R such that ¥ (u) = F(v) = y.
By definition of f and g, we may find s ¢ N such that u = f(s‘) and v = g(s).
Taking = F(s) and y as above, we see that B & @. Thus A is no.t & re'tr.act
of a compact topological algebra (or structure) since ;5((p,?1) is mfmm_a.

The existence of an algebra with two unary operations which is
atomic-compact but not a retract of a compact topological 'a,lgebra. is
to be contrasted with the result of Wenzel [10] that there is no such
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algebra with only one unary operation. On the other hand, there exists

such an algebra with only one binary operation, which we now detine,
Let 4 =N v & v {a,d} be as above, and again take f and g to be

the two components of a bijection from N onto K. We define

fl@) i oeN and y = a;

g(y) i yeN and = a;

@ f ze@ and y e G;

b otherwise .

Fle,y)=

The proof that {4, I"> is atomic-compact is very similar to the above
proof that <4,f,g> is atomic-compact, and will therefore he omitted,
To see that <4, I is not a retract of a compact fopological relational
structure, it suffices to show that y(@, <4, F) = s, where

¢ = Haly[F(u, ) = aAF(y, a) = eAF (a,y) = x].
This is shown by an argument similar to the preceeding one.

Added in proof (Febrnary 19, 1971). T stated Problem 1.14 (for graphs), together
with a related problem in pure graph theory, as Problem 48 in Combinatorial Struc-
tures and their Applications, Gordon and Breach, New York, 1870. My note, (feneralized
chromatic nwmbers, in the same volume, gives some further information on chromatic
numbers.

For a syntactic condition equivalent to the conditions of Theorem 3.1 [or of
Corollary 5.1, see my paper with G. Iuhrken, Weully atomic-compact rélational
structures, to appear in J. Symbolic Logic.

I give a positive answer to the question asked here in the last sentence of § 5,
in my paper, Some constructions of compact algebras, to appear in Annals of Mathema-
tical Logic.
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Retracting fans onto finite fans

by
J. B. Fugate (Lexington, Ken.)

1. Intreduction. By a continuum we mean a compact connected
metric space. A continuum which is hereditarily unicoherent and arcwise
connected is a dendroid. A dendroid which has only one ramification
point (a point which is the common part of 3 arcs, and an end point of
each) is called a fan. A locally connected dendroid is called a tree or
dendrite. A dendroid is finite if the set of end points is finite. Clearly,
each finite dendroid is a tree and finite fans are the union of a finite
collection of arcs, whose common part is a single point. The cone over
the Cantor set, on [0, 1] is a planar fan.

It is easy to see that dendroids are hereditarily decomposable and
thus one-dimensional. In this paper we will establish that fans have
a very strong one-dimensional structure, namely, they can be approxi-
mated from within by finite fans. This is the content of Theorem 1, which
states that each fan can be retracted onto a finite fan, by a map which
does not move points very far. From this it follows that each fan is tree-
chainable, indeed is an inverse limit of finite fans, and (in a joint work
with C. A. Eberhart) that the product of any collection of fans has the
fixed point property.

2. Preliminary results. A chain, in a metric space, is a collection
8= {H, ..., By} of open sets such that H; ~ E; #@ iff [i—j] <1. The
elements of § are links; frequently we denote & by E(1,m) and denote
U{E: 1 <@ < m} by B*1,m) or §. If each link of & has diameter <,
we call § an e-chain. A tree chain is a finite collection of open sets, no three
of which have a point in common and the collection contains no eircular
chaing. We shall often use Z" to denote the first n positive integers.

The ramification point of a fan is called the fop. It is shown in 1]
that each point of a fan, except the top, lies on a umique arc from the
top to an end point. We wish to commence our proof of Theorem 1 by
covering each such arc by a chain in which the arc is straight.

DEFINITION. If [a, b] is & an arc and &= F(1,m) is a chain covering
[a, b] then [a, b] is straight in & provided
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