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Internally standard set theories
by

George Wilmers (Manchester)

In this paper we prove results which show that the standard model
property is extremely incompact. In particular we show that if there
is an inaccessible cardinal then there is a complete extension T' of first-
order Zermelo-Fraenkel set theory such that every subtheory of T
definable in T has a standard model but 7 has no standard model.
Furthermore if we make a stronger assumption (the existence of a Ramsey
cardinal suffices) then we can find a complete extension I' such that
every constructible subtheory of T' has a standard model, but 7 has no
standard model. These results are developed in Section 3. The method
of proof uses a technique of model construction involving the compactness
and completeness theorems of [1] which was first used by Barwise
in [3].

Various results concerning pointwise definable models for set theory
are also required in Section 3 and these are developed in Section 2.
(A model is called pointwise definable if every member of the domain
of the model is first-order definable in the model.) In particular we show
that if 7' is a complete extension of first order Zermelo—Fraenkel set
theory satisfying the axiom that every set is ordinal definable, then T has
no standard model if and only if 7 has a pointwise definable model which
is not well-founded. This provides a eriterion which is useful in constructing
set theories having no standard model.

In Section 2 we also introduce the idea of a rank extension of a model
for set theory. This is a natural strengthening of the concept of an end
extension obtained by adding the condition that every new element
shall have a rank which is not an ordinal of the original model. This
definition is clearly related to the idea of a natural model. In Section 3
we prove that every countable standard model for set theory has a proper
rank extension and, further, if every set is ordinal definable in the original
model then the rank extension can Dbe chosen to be pointwise
definable.
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Section 1

Preliminaries. When we refer to formulac of set theory we shall
mean formulae of the first order predicate caleculus with = and e ag the
only non-logical constants. The following abbreviations for sentences ang
sets of sentences will be used throughout this paper:

ZF The set of axioms of Zermelo~Fraenkel set theory.-

AC The axiom of choice.

V=L Bvery set is constructible.

V=0D Every set is ordinal definable (sce e.g. [7] for definition),

In There exists a strongly inaccessible cardinal greater

than o.

As our metatheory we shall use an informal theory similar to ZF--AQ,
Sentences will be identified with their Gidel numbers wherever this i
possible without confugion.

F'a will denote the ath constructible set in Godel’s hierarchy and
Flo= {F'B| f < a}. The rank of a set » is defined as usual and will he
denoted by rk(z). ‘

‘ A set B is transitive if » « B implies » C B. A model for ZF of the
form <4, ) where 4 is a transitive set will be called a standard model.
(Note that this is a strengthening of the usual definifion.) A model
for ZF of the form <B, H) is well-founded if there is no infinite sequence
(Didico of elments of B such that by, Eb, for each n < w. By an oft
quoted result of Mostowski every well-founded model of the axiom of
extensionality is isomorphic to a unique standard model. By a theorem
of Godel each standard model of ZF4(V = L) is of the form <F"a, <)
where o is the supremum of the ordinals in the model. If (B, E) is
a model for ZF an ordinal u of the model is called standard if the set
{vl veB and vHu} iy well-ordered by the relation F. The model (B, I)
is called o, -standard if every countable ordinal (in the gense of the
plodel) is standard, and o-standard if every finite ordinal of the model
is standard.

If A6 is any structure D(A6) is defined to he the substructure of A
whose dor.nam is the set of elements of the domain of A6 which ave first
f)rder'deflnable in A [oedom(dt) is said to be first-order definable
in A6 if there is a ¢(2) with one free variable » in the ordinary first order
language for J¢ such that

Mo l=pla]  and Ao =T wp(a)] .

-}[ ﬂ])O §=M>)= o then 4t is said to be pointwise definable. Pointwise de-
ina le mode_ls for ~seb theory have been studied in [6], [9] and [3]. The
terminology is due to Barwise [3]. .
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If <A, B> and <{A', B> are models for ZF, we say that {4, B is
an end extension and write <4, B> C, (4', B if <A’, B') is an extension
of ¢4, B> and whenever aF'b and be 4 then acAd.

If. 6 and N are relational systems of the same type, = N and
J < N will denote “AG is elementarily equivalent to N and “J6 s an
elementary subsystem of N respectively. For definitions of these terms
see e.g. [4]. For any system 6, the domain of that system will be denoted
by dom (AG).

Tn Section 3 we shall make use of the infinitary language £4 of [1]
where <4,>3) is a countable standard model for ZF. Formulae of L4 are
sets in A and conjunctions and disjunctions over sets of £ 4-formulae
which are elements of 4 are permitted. A set of Lu-formulae which
is a member of A is called A-finite. (For further details see [1]
or [2]). We remark that for each a €4 there is a constant ¢, of the lan-
guage £4. Now we shall need to associate with each ¢4 a constant
of £4 in such a way that not all the constants of £4 are used up. Ac-
cordingly for each a ¢4 we denote by @ the constant ¢(a)- A get 2 of
£4-formulae is said to be definable if there is a formula of set theory p(x)
with one free variable # such that for any aed aeX if and only if
(A, e |=9p[a]. The notion of & derivation D from a set X of £4-sentences
is defined as in [1]. Der(Z) is the class of derivations from X and Der 4(X)
= A ~ Der(2).

Throughout this paper all theories to which the term complete is
applied will be assumed to be consistent.

Section 2

We shall make use of the following consequence of theorems of
Myhill and Scott [7], and Montague and Vaught [5]:

REsvLt 2.1 If A6 s a model for ZF then the following are equivalent

(i) Jof= (V= OD),

(i) D(M) < Ay

(iii) there is a poimtwise definable model N° such that A6 = N.

It is easy to show that the model N of (iii) above is unique up to
isomorphism. That the following more general theorem holds was observed
by Jane Bridge.

THEOREM 2.2. If A6 and N are pointwise definable structures of the
same type and M = N0, then b =2 N.

Proof. Let £ be the first-order language with equality corresponding
to the type of J6 and N. Let' X be the set of formulae @(z) of £ with one

free variable # such that
M= T wp(2).
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We define an equivalence relation “~” on the members of ¥ g4
follows:
p(@)~ ple) if and only if A= Va(p(@)erp(s) .
We denote the equivalence class of ¢(#) by [p(@)].
Now let ¢ = {lp(#)]| p(2) is in X} and let C = {0, R;> be the structure
of the same type as JC with the ni-ary relations E; on € given by

{Qyy euey @ngy € By if and only if
o = Vo, oo Vaor [ @r(@) Ao A @i Bng) =Pty 1ovy #0,)]

where P; is the predicate of £ corresponding to By and @), ..., gg(e)
are members of X such that [p.(x)] = a, for each r such that 1 <r < ny.

Tt is easy to see that C o J6. We can define an isomorphism NE .M,?—nge
as follows: for any m in the domain of A6, let p(2) be a formula defining
min A6 and let f(m) = [p(2)]. It is clear that this definition is independent
of the particular choice of p(x), and that f defines an isomorphism. But
the construction of C depends only on the theory of 4G and so since
A =N we have also C =~ N'. Hence At =~ N and the theorem i§ proved.

The theorem above has a useful consequence which gives a ecriterion
for eertain set theories to have no standard model;

CororLARY 2.3. If T s a complete ewtension of ZF (V= OD),
then T has no standard model if and only if T has a pointwise definable
model which s not well-founded.

Proof. Let A be a pointwise definable model for T, guaranteed
by 2.1. If T has no standard model then J6 is not well-founded. Con-
versely if A6 is not well-founded suppose that there exists a standard
model N for T. Then D(N) is a well-founded pointwise definable model

for T. But by theorem 2.2 we must have that 46 = D(N°) which is clearly
impossible.

The next two theorems concern end extensions of pointwise de- -

finable models.

TEROREM 2.4. If A6 is a standard pointwise definable model for
ZF+(V = L), ¥ is a model for Z¥ + (V = L) which is a proper end exten-
sion of M, and o is in Mo then

(i) N 4s not well-founded,

(il) the standard ordinals of N° are ewactly the ordinals in Jb.

Proof. Suppose that there exists a supremum 6 in N of the ordinals
in 6. Let @(w,y) be the usual formula of set theory defining Giodel’s
F-function, so that ®(x,y) reads “z is an ordinal and F's = y”. Now

O(z, y) is equivalent to a X-formula and so is preserved under end ex-
tensions. It follows that the formula (2, a) given by

F(e; a)r (o is an ordinal)A Vo[ ¢ relp (B < and (B, x))]
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actually defines F''6 (i.e. the domain of ) when we put « equal to 6 in J°.
‘Hence A6 e N°. But it is & theorem of ZF that the supremum of the ordinals
in a standard pointwise definable model for ZF is less than w,. Sin‘ﬁ,e
N |=ZF this statement holds in N and s0 we must have that 6 < wy .
But this contradicts the hypothesis that oy is in At Thus the ordinals
in X' which are not in 46 have no infimum and so are non-standard.
Since N’ |=(V = L) and N # A there must be such ordinals in N which
are not in J6 and so the theorem is proved.

The following corollary to Theorem 2.4 is an analogue for the
constructible hierarchy of Theorem 5.4 of [4]. It is interesting to observe
that the original proof of [4] cannot be used in this case.

COROLLARY 2.5. If (F"a,¢> is a model for ZF, o <o and if
By €& <(Fa, €, then there is an of < o such that.

F'a* & = <Fa, € .

Proof. This follows from the theorem above together with the fact
that if J6 is a standard model for ZF+ (V= L), 46 is pointwise deﬁna.]gle
if and only if 4G contains no element which is a structuve elementarily
equivalent to At (see Corollary 2 of Theorem 1 of [9]). )

‘We now introduce a strengthening of the concept of an end exte'mswn
which we shall use in the next section. We first note that the nomqn of
rank is absolute with respect to end extensions in the sense th.a,t.rf S
and N are models for ZF, 46 Ce N, @ is in A6 and rk(a) = o within A6, -
then rk(a) = o within N.

DEFINITION 2.6. If A6 and N are models for ZF; N° is s_aid to be
a rank ewtension of A6, and we denote this by 46C N, if J\f’ Is an end
extengion of J6 and for any a in N, if rk(a) is in A then a is in AG.

Intuitively, if N° is ¢ rank extension of At then 6 is an “initial
segment” of N. If N is standard, then A6 is a natural model for ZF
within N°. .

We observe the following simple facts about rank extensions. Let A6
and N be models for ZF and A6 C, N. Then if a € dom (), b e_dom(zN’g )
and b C a, it follows that b e dom(dG). A consequence of this is that

‘ae dom (), then R(a), the set of all elements of rank less than a, is the

same get when construeted in N as when constructed in 6. Ib fol.lovw%
in turn from this that all cardinals are preserved by rank e-xtensifor;,
thus if « e dom(A) and « is a cardinal of G, then o is a cardinal of N.
The following theorem is an analogue of Thepreng 2.4.
TaeorEM 2.7. If J6 is a standard pointwise defina?ble model ];;')'r Z(f‘
and N is a model for ZF which is a proper ramk extension of A, then (1)
and (i) of Theorem 2.4 hold.

7
Fundamenta Mathematicae, T. LXXI
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Proof. The proof is similar to that of Theorem 2.4, For if the su-
premum of the ordinals of G were an ordinal ¢ of N°, then R(6) in ¥
would define dom (). But since 0 > w, R(0) cannot be countable in N
and hence (R (0), €) cannot be pointwise definable in N, Since the notion
of pointwise definability is absolute for w-standard models for ZF ip
follows that (E(0), ¢» is not pointwise definable, which contradicts the
assumption about J6. Hence there is no supremum in N of the ordinals
in A6 and the theorem follows.

Section 3

DzriNirion 3.1. If 7' is a complete extension of ZF, a set of inte-
gers s is said to be 7-definable if there is a formula of get theory o(z)
with one free variable # such that for each integer n, n e s it and only

if |7 ¢(%) (here @(#) is an abbreviation for Va (n(#) > (@) Where () -

i§ the formula defining the numeral n). A theory is said to be T'-definable
if its set of Godel numbers is 7'- definable. ‘

In this section we answer the folloWing question: is there a complete
extension of ZF such that every T'-definable subtheory of T has a well-
founded model, but T has no. well-founded model? The angwer to this
queétion is yes, if there exists an inaccesgsible cardinal. This shows that
the property of having a standard model is highly incompact. In order
t0 derive this result we introduce the following concept;

DEFINITION 3.2. An extension T of ZF ig said to be internally standard
(abbreviated to is.) it 7 is complete and whenever 8 is a T-definable
subtheory of T the sentence SM(S), which ‘asserts that & has a standard
model, is a theorem of 7. ‘

A model A for ZF is said to be internally standard it its theory is
internally standard. B

The condition of being internally standard can be regarded as

8 global reflection principle on 7. The following lemma shows that quite

weak mbdel theoretic conditions on standard models are sufficient to
generate i.s. theories. o

Lmvwa 3.3 If <4, & is a standard model of ZF and there is an » € A
such that (m, €5 = <A, < then the theory of <4, & 18 1.8.
The proof is clear.

.The next lemma, guarantees the exigtence of models with the prop-
erties required for our construction.

Luvwa 3.4, In ZF+1In one can prove that there ewists o standard,
pointwise definable i.s. model for ZR. :
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Proof. Let 6 be the first inaccessible. Then 6 is an inaccessible in
the constructible universe and so (F'8, > is a model for ZF. Also by
Theorem 6.8 of [4] there is an a< 6 such that < "a, €y = (B0, e
Now it is clear that F'a e F'0 and so by Lemma 3.3 the theory of
J"'0, € is i.s. Now let A6 be the standard n}odel Which. is isomorphic
to DCF6, ). Then by 2.1, Jt has the required properties.

‘We shall need the following version of the completeness and com-
pactness theorems of [1]. Both these results follow immediately ﬁ"oy.:a
the generalized version of Theorem 2.12 of [1] if one observes t]_lat if
(A, e is o standard model for ZF then f.or any predicate P flef]lnable
in the language of ZI', 4 is P-admissible. This was noted by Barwise in [2].

Resurr 3.5 (Barwise). Let (4, € be a countable standard model for
set theory, and let X be a definable set of sentences of £4. Then

(a) if @ is a sentence of L4 which is a logical consequence of X, then
there is a derivation D e Dera(Z) of |- o,

(b) if every A-finite subset of X has a model, then X haa-* a model.

‘We now. comé to the main part of the constm}ction which makes
use of a technique of model construction first used 1g [3]. We shal.l call
a theory '@ arithmetic if the set of Godel number§ of its sentences is de-
finable by a first order formula with one free variable over the structure

w, < . .
@ LI:JB_;VI’A 3.6. If Q is an arithmetic ewtension of ZF—{—'(V:. OD) ‘whwh
has o countable, standard, i.s. model A, then @ has a pointwise definable,
i.s. model N which is a proper rank extension of AG. . o

Proof. Let At be <4, ). We shall assume first that J() is pointwise
definable. Let Gd be the set of Godel numbers of sentences in thg_ laxilgua,ge
of set theory and for each % e Gd let @, be the sentence with God: n;ma(i
ber n. Let SM.(z) be the formula asserting that # C Gd and whas a standar
model. )

Let X be the following set of sentences of La:

1) A@,

(2) (¢, s an ordinal) A ¢y > a
(3) Va[we@e \/ o= D]
bea

for each ordinal a e 4,
for each a e A4,

(4) Va[rk(z) < ae g=10] for each ordinal aec4,

blxk(b)<a

() Va \ [Vylpy)ey =),
v} - (m)]]
6) A [ A (p(@) ~>pn) >Vo[Vyly e vy e Gd Ap(y)) > .
v nead . ‘
The infinite disjunction in (4) is tak(?n over _all bt.v;)vllllois;‘le (I:)n{;rlntﬁ; ellfi
less than . The disjunction in (5) and first conjuncti ™
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over all formulae of set theory with ome free variable, . Conditiong (3),
(4), (B) and (6) correspond to the property of being an end extension,
a rank extension, pointwise definable and internally standard. Trespectively.
{1), () and (6) are single sentences of L4 whereas (2), (3) and (4) are in-
finite schemas, but it iy easily seen that the whole collection ig definable
over A6 by a formula of set theory, H(z).

Now if %, is an 4-finite subset of 2 we can make 4G a model for %,
by taking the realization of each @ occurring in ), to be @, and the reali-
zation of ¢, to be the supremwm of the set {a| « is an ordinal in A4 and @
occurs in X} (Since X is A-finite we know that this supremum is an
ordinal of 4.) Thus each such subset X, has u model. Applying Result 3.5
we obtain & model N for X. By (3) we can take N to he an end extension
of . Conditions (4) and (2) ensure that N is a proper rank extension
of £, conditions (5) and (6) that N is pointwise definable and internally
standard respectively and condition (1) that N is a model for ©. This
completes the proof for the case when J6 is pointwise definable.

Now suppose that G is not pointwise definable. By 2.1 there ig
an A = b such that A, is pointwise definable and standard. Now it
is clear that the predicate H(z) mentioned above can be chosen to be
absolute in the sense that for any standard model {4, e for ZF, the set
of L-sentences (1)-(8) is given by {0} @c A and (4, &) |= H[a]}. Hence
by the above proof the following sentence of set theory holds in J,:

“For every set @ of infinitary sentences such that Va (zz: eh->H (:x:)),
there is no D « Der(®) which is a derivation of the empty sequent.”

Since 6 = A, the above sentence also holds in A6, and 8o by the
completeness theorem (3.5 (a)) the set of L4-sentences X has a model.
This completes the proof of the lemma, :

Although Temma 3.6 has no special significance except for our
construction, it is perhaps worth noting that the same proof establishes
the following more general regult: .

TEBOREM 3.7. If Q is an arithmetic exiension of ZX which has o coun-
table standard model A, then @ has o model N which is a proper rank
extension of 6. Moreover if Mo|=V = OD then N can be chosen 1o be
pointwise definable.

We are now ready to stablish the prinecipal results of this paper.

THEOREM 3.8. T f @ is an arithmetic extension of ZF - (V == OD) which
has a standard is. model A6, then Q has a complete extension T such that

every T-definable subtheory of T has well-founded model but T has no
well-founded model.

Proof. By 2.1 Wwe can choose .G to be pointwise definable. Let N be
the rank extension of constructed in Lemma 3.6 and let 7' be the
theory of N, By Theorem 2.1 N is not well-founded and so by Corol-
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lary 2.3, T' has no well-founded model. The crucial step in proving that
every T'-definable subtheory of 7' has a well-founded model is to observe
that N is co;-standard. (This follows from the fact that N is a rank
extension of A6 so that w'{v = w{‘“’.) Now let S be a T-definable subtheory
of T'. Then SM(S) can be written as a sentence of set theory and N° [=SM(S)
sinee N is i.8. Applying the downward Lowenheim—Skolem theorem and
the Mostowski collapsing theorem in N we have

N |=“There is a standard model for § the supremum of whose ordinals
is less than ,”.

Since N is w;-standard such a model for § is actually well-founded
and so the proof iz complete.

'COROLLARY 3.9. In ZF +1In one can prove that there exists a complete
extension T' of ZF such that every T'-definable subtheory has a well-founded
model, but T has no well-founded model.

Proof. Apply Lemma 3.4 to Theorem 3.8.

If we make slightly stronger assumptions we can prove the existence
of even stranger theories. Following our previous terminology we call
a theory constructible if its set of Godel numbers is a constructible set.

TrEOREM 3.10. In ZF - “There emists a Ramsey cardinal” one can
prove that there is a complete extension T of ZF such that every constructible
subtheory of T has a well-founded model, but T has no well-founded model.

Proof. By a well-known result of Rowbottom (see e.g. [8]) if there
is a Ramsey cardinal, then there is a countable ordinal « such that
I a, e><x(L,e>. By Lemma 3.3 the theory of (F"'¢,e> isi.5. Also since of<a
every constructible set of integers is a member of ¥”a. By Lemma 3.6
there is a proper rank extension N of {(F"a, ¢» which is a pointwise de-
finable i.s. model for ZF - (V = L). Let T be the theory of . ¥ cannot
be well-founded since the supremum of the ordinals in a standard point-
wise definable model for ZF-+(V = L) is less than oF. Hence by Corol-
lary 2.3, T' has no well-founded models. On the other hand since N is
a rank extension of <(F''a, €, N is w,-standard. Hence since N is is.,
every T-definable subtheory of T' has a well-founded model. But since N°
is pointwise definable and contains every constructible set of integers
as an element, it follows that each constructible set of integers is 7'-de-
finable. Thus every constructible subtheory of 7' has a well-founded
model and the theorem is proved.

Note. The assumptions necessary for the above theorem can b‘e
weakened to ZF--In--“The set of constructible sets of integers is

_ countable”.

As a final corollary of Lemma 3.6 we give a theorem which ename:s
one to pass from non-well-founded to well-founded models. However, it is
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doubtful whether this theorem has any application. Let us eall a moge
for ZF+(V = L) peouliar if it is pointwise definable, w,-standard, ig,
and not well-founded.

TramOREM 3.11. In ZF4-Tn one can prove that if 8 is am arithmetic
set of sentences of set theory cach of which holds in every peculiar mogde
Jor ZF 4+ (V = L), then Z¥+-(V = L)+8 has a standard model.

Proof. Pub @ = the set of logical consequences of 2V (V=1)
in 3.6, let A be the model constructed in 3.4, and observe that
N |=SM(ZF+(V = L)+ 8). Then by the argument of 8.8 if follows
that ZF+ (V= L)-+8 has a well-founded model,

In conclusion my thanks arve due to Jane Bridge for her considerable
help and in particular for formulating Theorem 2.2, and also to Professor
Mostowski for kindly reading a draft of this paper and making several
helpful suggestions.
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