Comparison of the axioms of local and universal choice®
by
Ulrich Felgner (Heidelberg)

Tn the v. Neumann-Bernays—Godel set theory (in short: NBG-set
theory) one can give the axiom of choice in two versions: a local and
a universal version. The local version asserts that for every set » of non-
empty sets there exists a function f such that f(y) ey for every yea.
The universal version asserts the existence of a function which is defined
on the class of all sets such that for every set y either y = @ or B(y)ey-
The local version of the axiom of choice, cail it (AQ), is therefore the
axiom of choice of the Zermelo-Fraenkel set-theory (in short: ZF-set
theory) and the universal version is the axiom (E) in Godel [5]. Here
we shall discuss the relative strength of these two versions and prove
by means of Cohen’s forcing method the following result: NBG+(E) is
a conservative extension of ZF-F(AC) with respect to ZF -formulas. This
result will be generalized at the end of the paper.

§1. We are working in NBG-seb theory as presented in Godel [5].
Here we consider the NBG-set theory as a theory formulated in the
two-sorted lower predicate calculus without equality whose unique non-
logical constant is “c”. The language fnpe is built up from the primitive
expressions wey, we ¥, Xey and Xe Y as usual (using the sentential
connectives T, vV (negation, disjunction), the quantifier \/ (there exists)
and brackets). Equality = i8 introduced as a defined relation: e.g. X=X
is defined by A (¢e X<=>2c¥); 0=%, X=y and z=y are defined

(2
similarly. Remark that the logical symbols A, =, <> (conjunction, impli-
cation, equivalence) and A (quantification “for all”) are introduced bY
definition (by means of 7, v, V) as usual The axioms of the NBG-set
theory are the axioms of groups A, B, O and D, but with the difference

* The results of this paper were obtained and prepared for publication while
the author was working at the Rijksuniversiteit of Utrecht (Holland) and at t‘he F01:-
schungsinstitut fir Mathematik at the E. T. H. Zirich. He wishes to express his g'.ra.m-
tude to Dr. Carl Gordon, Dr. Petr Hijek and Prof. Dana Scott for helpful discussions.
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that we replace Godel’s axiom (A 3) by the following axiom:
AANN[ZeY Ar=2r)z>zeX].
z Y 2

This replacement is necessary, because Godel [3] treats equality in its

logical meaning as identity and we are treating equality as a mathe-

matically defined relation. Axiom (A1) is the following sentence:

/m\ \x/ (z = X). Axiom (A 2) reads as follows: /2> /I> (X e¥=\Vao=2X),ete.
@

The system of axioms of groups A,B,C,D is called X. Lower case
roman letters are called “set variables” and capital roman letters “class
variables”.

Let ZF be the system of axioms of Zermelo-Fraenkel set theory
(including the axioms of replacement and regularity but without choice).
The axioms of ZF are formulated in a sublanguage fLzr of the lan-
guage [npg, where Lzg is built up from the atomic formulae z ey using
I, v, V and brackets. It is well-known that 2'is a conservative extension
of ZF with respect to ZF-formulas:

(#) (Vo e Lzp)[ZF b o i 2 Fg]

(see e.g. Cohen [2], p. 77). A question which arises now is, whether this
is also true for ZF+its axiom of choice and X--its awiom of choice. The
aim of the present paper is to show that this is in fact the case.
. TaEOREM 1. If @ 18 @ senience of the language Lzg, then ¢ is provable
in X+ (B) if and only if @ is provable in ZF+ (AC).

Theorem 1 together with (#:) gives the following

COROLLARY. If ¢ is a sentence of the language Cnpe in which no class
variables occur and if @ is a theorem of Z--(B), then ¢ is also a theorem
of X+ (AC). .

The corollary gives the solution to a problem posed by A. Lévy
in [7]. Professor R. Solovay informed me, that theorem 1 was also obtained
independently by P. J. Cohen, R. B. Jensen, S. Kripke and R. Solovay
himself.

Before giving details we indicate briefly how we will prove theorem 1.
Suppose theorem 1 is false; then (1) for some ZF-sentence ¢, X (B)F¢
put ~ZF—I— (AC) . Then by ( 4f) also ~ 2+ (AC) F . Hence X+ (AC) -+ g
i3 consistent, has a model and by the Liwenheim-Skolem argument
a cc?untable model 6. We want to extend J6 by adding to it a universa
choice function F. We cannot take F' as the limit of an arbitrary increasing
sequence of (local) choice functions fi e M, F= {Jf; (union in the sense

1

(*) The symbt?l F i.s used to denote the syntactical provability relation, hence
S b & says that @ is derivable from S and ~ S + & says that & is not derivable from S.

icm

©

Comparison of the of local and universal choice 45
of the meta-theory), because such arbitrary F’s need not to generate
models of the theory X By means of a certain forcing relation we will
define the notion of & complete sequence of (local) choice functions. Then
it will be shown that, if I is the limit of a complete sequence, then F is
generic (id est: generabes a model of X). Let N’ be the extension of A by F.
N will have only new classes but no new sets. Hence, since g holds in 6
and ¢ speaks only about sets, ~Ig holds also in N Tf 7 is the limit of a com-
plete sequence, then F is a universal choice function in the extension N,
hence (2) N [=(E). But N |[=Z+(E)+ g is the desired contradiction
to Z4+(B) Fo.

We have stated the corollary for the NBG-seb theory. Clearly, it is
in an appropriate form also true for ZF (add Hilbert’s e-operator to ZIf‘~—
gee Lévy [7]). In Ackermann’s set theory with an axiom of foundatlgn
added, the corollary becomes trivial, since, as Lévy [6] has shown, in
this theory (AC) and (E) are equivalent. But (E) is not equivalent to
(AO) in the NBG-set theory as W.B. Baston [3] has shown.

§ 2. Proof of theorem 1: the forcing relation. Suppose that there is
a sentence @ of the language fz¢ such that g is a theorem of X+ (E) but
not a theorem of Z--(AO). Then there is a countable model 46 = (M , By
of Z+4(AC) in which T holds. R is the interpretation of the bmaa:y
predicate “e” in the model and need not to be the actual membership
relation (we can not suppose that J6 is a standard model!). Tg make
easier the reading of the paper we will write from now on a M b instead
of aRb and the reader will remember that et is the relation B and.not
the actual membership relation e restricted to ! We wish to extend M
to o model N in such a way that N has no new sets but only some new
classes, in particular a yniversal choice function. This‘is done by Cohen’s
method of forcing which is used to construct. a generic class F suc.h that
the resulting relational system &N° will be a model of .Z'_—I— (E). Since .N’
chall not contain new sets, we can choose an unramified language In
order to describe the structure N’ (usually one needs ramified languages).

The language . Primitive symbols: .

(a) Set-variables: v for each ¢ of b such that i is an integer in the
sense of A6 (w,v,w, %, Y, 2, stand for these variables).

(b) Constants 8 for each clags § of 4. ‘

(¢) A one-place predicate symbol F and 2 two-place predicate
symbol e.

(d) Sentential connectives ~; Vi 2 quantifier \/ and brackets.

(*) The Bymi)ol |= is used to denote the semantical satisfaction relation, hence
Jo[=D says that @ holds in the structure S,
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The formulae of o
_ (the inductive definition takes place in the meta-language, so that
the length of a formula will be finite in the “usual” sense):
(i) If @ and b are variables or set-constants then F'(a) and acb
are formulas (3). .
(ii) If @ is a variable or a set-constant and if § is a constant, then
ac 8 is a formula. ’

(fli) If @ and ¥ are formulas,  a variable, then —(D), (D
and V (@) are formulas. ’ ’ 2 (@)
m .

(iv) Only th.ose sequences of symbols of £ which can be obtained
from the rules (i), (i), (iii) in finitely many steps are formulas.

) We follow the usual conventions which allow us‘to omit brackets
in some cases (see Hilbert—Ackermann [10], p. 74). We remark that in
contrast to the symbols of the “object-language” 87 the following
symbols are used in the meta-language: ~, &, V, =, «, V, U, T, ¢
G, {;..}, ete (negation, conjunction, disjunction, implication, eqiliv':xl;l’e;
for all, there exists, equality, membership, inclusion, comprehension)i
The follow.ing convention is useful: a notion, operation or relation with
a superseript JG shall always mean the notion, operation, relation resp
in .the sense of JG. Thus e.g. “z is a set’™®” means “v is a:n object of .AL
which is a set in the sense of J(” and “f is a function®” means that fis
2 set ajnd a function in the sense of (. Q‘M’ is the inclusion-relation”*
(in mj‘h respect to e““’) and pr;-'“’(m) is the projection‘““‘ of the set™ & of
nituples to the ith coordinate™. Notions operations, and  relations
Wlthoult superseript 6 are understood to be the corresponding notions
:p:;‘gtwfns, (;"ela’(uiions resp. of the underlying meta-language. E%g. if a i;
) of ordered pairs, then pry(a) i ;
a) = o (Hb)({b,c),e s pri(a) is the set {b; (He)(<b, o> e a)} and
The forcing argument:

funO?EFJ]iL’\IITIO.ITI. A condition is a set p such that p is a (local) choice
o mnth (this 1.113%115, that p is a set”™® of ordered pairs™ guch that
pri &E)’ he doma;ldz‘l() of p, consists* of non~empty""’ sets® and P i8 a func-
tion™ and p(z) e®# for all 5t pr‘{“’(p)) (4.

3 .

. e( iei&s :etf-?j(?stant is a constant § where S is a set in the sense of (. If ¢ is a set

o Sho somsc :nd ‘; efhe_nuby (A 1) there is a class § ofu such that both are equal in the

convention s ‘Azrl wlil:]: 11};}1119 1is;ymbolst, s and § interchangably. Further 'we malke the
nven 5 e lower case latin variable s, ghall al that s i

a “set” of G, whereas § e means that § is a “class” of uiG. g mesn fhat s

(#) In contrast to Godel i
of the fumction € el [5] we let pry(@) be the domain and pry(G) be the range

©
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It is clear that the collection™ of all conditions forms a proper elass
in 6, which will be called Cond. Now we will give (by a simple induction
on the length of @) the definition of the relation p|—® (p forces @)
petween conditions p and sentences @ of 2. We will use p, 9, 2", ...,
4y g, B8 variables for conditions.

@) pl-teSetes,

@) pl-Fle)os <, ‘

@) - B (VO C° g>~al-2),

@) pl-2v¥e(p|-eVp|-¥)

(5) 2l la)er (Es « SO |- 21
n the following three lemmata let @ be any sentence of e,

CONSISTENCY LEMMA. For no p do we have p |- P and p |- T1P.

FIRST DXTENSION LoMMA. If p [~ @ and pC* g, then g|- 9.

SECOND EXTENSION LEMMA. Tvery condition p can be extended to
o condition g such that either ql=® or ¢l 719

The definition of the (strong) forcing relation |- was carried out in
the underlying meta-theory. It is well-known that for each specific
sentence @ of " the forcing relation can be defined in A (see e.g. Cohen [2],
p. 120-121, Baston [3], p- 20) because @ is finite and the construetion
of the class Op of p's forcing @ can be done in finitely many steps. For
each specific @ the mechanism of constructing O can be implemented
within 46 but the mechanism is not universally applicable for all sen-
tences @ of £F, so that within b we do not have the whole relation |-

(This i§ not too much surprising gince the definition of forcing resembles
very much the definition of truth.) However, as we have already men-
tioned, we can define forcing for a single given sentence @ or for some
particular family of sentences within JG:

Lmvma 1. Let (s, ..., @n) be a formula of @F. There ifma class Cs
in Mo whose dements™® are the nL-tuples™ <D, 815y 8n) such that
P81y vy Su)e

Proof by induction on the length of & (see e.g. Faston [3], p- 20).

Remark that forcing does not obey some simple rules of the propo-
sitional caloulus. T.g. p may force ~17® but not ¢. Furthermore, .the
forcing relation |~ hag by definition, clauses (4) and (8), & hox.nomorphlgn.a
property with respeet to disjunction (v, V) and existential quantifi-
cation (\/, ). The relation |- does not have the homomorphism property
for conjunction (A, &) and universal quantification (A, V). For example
only the following holds:

(6) o |- oA Y > (Eg 2% p) (g 2 D@ |- P & sl T
We will introduce a relation [-* (called weak forcing), Which has the
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property that p[-*@—p|-* 71710 and the homomorphi
: ' . : phism propert
COD]lln.GtIOIl and universal quantification|-* does mnot ha.vel thlébr}grior
morphism property for digjunction and existential quantification and o
as we may say, dual to the strong forcing relation |- 15,
§ 3. Properties of the strong and weak forcing relation.
DEFINITION. .p“—*@Hp 1712 (p weakly forces @),
plpe(p|=0Vp |-10) (p decides ),
PP (p | OVp | T1D) (p weakly decides D),
@< (Vo) (p -9
p and ¢ are compatible «p U ¢ is a condition.
LEN'[MA 2. The weak forcing relation has the following properties:
() p =@ ~(Eg)(p g & g |-T10),
(i) p[-P~>p |-,
(i) pl=*"1@op |-T10,
(iv) If @ is of the form WiAW,, Wi, AW or s=1, then
pl0op s, - -
(V) pI-* AP (p [P & p [ ),
(vi) p ¥ AD (@) (Vs € S6)(p [+ D (s)),
&

(Vid) PPV (p | Beop D),
we
(viil) (Vg 27p)(q |- Porg |- ¥) »p [P V.
Proof. (i), (ii) and (iii) are immediate consequences of the forcing

definition. Notice that all sente: in (i
n f the f i
follows from (i) ces in (iv) are of the form ~1I", hence (iv)

Mo

tumAi;l ((;f)). pl]\—*dﬁ/\&” is by (iv) equivalent to p |- 1( 1@ v D), which in
s 3J{Jp)[’yw eljcmse; (3) and (4) of the forcing definition) equivalent to
(Ve 2) o z ;:l@z 7&[?7‘?{] Use now again (3) to get the equiva-
oot of (v): P T1¥. The proof of (vi) is very similar to the
" —?gd/ (g)ili‘). Assume p ”—*QC:!{/ and pl}—*@ but ~p|-*¥. Then by (i)
q:}—j‘j@ . sh)_m_e] gjq ?E:tendmg p. Hence by the first extension lemma
;(qu qu)(q N q; £us by (3) ;md (4) of the forcing definition
e is_by (3) ,M‘Ji ;}/he).f'?:*e (3) in order to see that q\H-T(fI)»‘If).
el | st extension lemma in contradiction with
Ad (viii). Suppose that th i
1 e conclusion do
then by (i) and the forcing definition (3), (Zj:myU hold. T~

(+ (Tt M .
for)som ' (Eg" 2%9) (¢ -0V g |-P),
e ¢ extending p. By the second extension lemma ¢||® for some ¢

©
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extending p. Bub both possibilities, § |-® or 7 [~ "1®, are in contradiction
ith (+). Hence p|-*®@=¥ must hold. Similarly it follows that also
p |-+ P=0 holds. Thus p |-*@<=¥ holds by (v). :

TemMA 3. (a) If p and q are ‘compatible and p |- and q|-¥, then
p ™ g PN «

(b) If pl® and plP, then p|OVY, pld=¥, PIOAY ond p|e=Y.

(0) I pli® and p|¥, then p @AYo (p -0 &p [-¥).

(@) If pl® and plP, then p -G Por(p |-Oorp |-¥).

(e) Let 8 be a set’ or a class™ of Mo If Pl B(Wy, ., ta) for all
o M8, 8, then p H_w/bs z/\zS Dy, ...y Tn).

A e

Proof by direct computation (use lemma 2 and the consistency
lemmal).

Loia 4. (a) If pl*® and p|"¥, then p|* 1D, pFOAY, PI'OVY,
plro=¥ and P>,

(b) If pI*® and pI*¥ then p|"@v ¥ (PP VP E).

(©) If pl*® and p|"¥ then p|*@e= S (p[=Pop ")

Proof by direct computation (use lemma 2 (vii) and (viii)).

Notice that formulas @ of Q" in which the symbol F does not occur,
have 2 natural interpretation in b (the interpretation of ¢ is ¢ and
the interpretation of a constant 8 is the class™ 8).

LMwA 5. If @ is o sentence of the language & in which the symbol F
does not ocour, then |-Perdbl= O (Tp) (p|-D)-

Proof by induction on the length of @.

§ 4. Definition of the extension.

DerINITION. A sequence € = (p© PP,
the following two requirements are satistied:

(I) G is well-ordered by Q‘M’ and of order type w,

(I1) If C is a class”® of conditions such that every condition. has an
extension”® in”* ¢, then p'® ¢ for some p™® € C. ,

Remarks. A complete sequence C of conditions is a set in the meta-
language and need not to be a clags in the sense of JG. Our definition of
completeness seems to be more complicated than the usual definitions.
In fact, the usual definitions are given for standard models (thab ig, for
those models whose membership relation is the actual membership re-
lation €) but our ground-model b can be non-standard. So we had to
distinguish cavefully between “in the sense of J6” an(}& “in the Jsfnse of
the meta-language”. Thus, e.g., o' ig the setm’ of finite”™ ordinals but @
is the meta-linguistical collection of all (actually) finite ordinals. A, com-
Dlete sequence G of conditions is by (I) a sequence (in the sense of the

Fundamenta Mathematicae, T. LXXI 4

of conditions is complete iff


GUEST


50 U. Felgner

metalanguage) 9%, 2", % .. such that p@C* p®” c*p®ch . can

be seen from the outside of AG. Call & class™ O of conditions dense in Cond

itf the following holds (Vp)[p ¢®* Cond (&g * Cond) (¢ * ¢ & pC* gy,

Thus (II) requires that C “intersects” every dense subclass®® of Cond.
We remind the reader to the following important lemmata.

Lizmwa 6. If C is & complete sequence of condivions, then every sentence @
of ©F is decided by some p™ €C.

Proof. Let @ be given. By lemma 1 there is a class™® O whose ele-
ments™ are precisely those conditions p for which p||# holds. By the
second extension lemma C is a dense subclass™ of Cond.

LeMMA 7. There ewists a complete sequence of conditions. Moreover,
for every condition p there is a complete sequence C in which p occurs as
first element.

Proof. Since G is countable there is an enumeration of all classes”
of db: Gy, Oy, Cs, ... Let p be any condition and put p = p®. It p™ is
defined let p™? be any element™ of ¢, which extends™™ p™ if such an
element”™® exists, otherwise put ™V = »p™. The so-defined sequence
satisfies (I) of the completeness definition. To see that also (IT) is satisfied,
let € be any dense class® of Conditions. In the enumeration O is a cer-
tain O (n e w). By definition we have p™™ ¢! ¢, = 0. Henee (IT) is
satisfied. )

DEFINITION. Let C be any collection of conditions and & a sentence
of the langnage £. Define

-G (Ep <O)(p|-0) and  Cl-*de (Hp < C)(p D).

Notice that if C is a complete sequence then G| is equivalent
to C|-*&.

LemuaA 8. Let C be a complete sequence. If @ (wy, ..., @) ¢ 87 and

G”‘ﬁl =ty ey e]|_§n= tn,
then

Cl-D(s1; vy $2)Cl-D(h, .., tn) -

Proof by induction on the length of @. Remark first that by lemma b
for every condition p the following holds: p |- § = 8, pl~-8=T-»p|-T
=8, I-8=8&p |- S=8)>p -8 = 8, (p|- B T &p |- Fu= )
>pl-8eT and (pl-ScTi&p |- T = T)p |- § ¢ I, Furthermore
it is easily seen that for any condition p,p ||-F(s) & p |- s = ¢ implies
that p |- F (). Hence the lemma is true for atomic formulas @. For arbi-
trary formulas @ the lemma follows by a simple induction.

©
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Definition of the relational system J[C] with respect
to a complete sequence C:

(i) Let @ () be 2 formula of 8. The collection of all set-constants s
guch that p(k) ||~ @ (s) for some P € @ will be a class of J[C]. This class
will be denoted by Ka®(z): Kad (o) = {s; Cl-B(s)} -

(ii) Sets of N[C] will be classes of the form Kz(z «s).

(ifi) The membership relation &M (or shortly &) of N[C] is defined
ag follows: Ka®(2) Ry ¥ (y) will hold iff there is a set-constant s such
that s e Ky ¥ (y) and Kaod (x) = Ko (s < s). . )

{iv) F (quﬁ(m)) will hold iff Ka®(v) ¢ Ka(F(w)).

(v) The interpretation of a constant 8 is the class Kz(z e 8) of N[C].

The following convention is nseful: a notion, operation or rela.t%on
with superseript N°[C], or gimply N, shall always mean the corresponding
notion, operation, relation resp. in the sense of N'[C]. .

N(’ext we have to show that for every complete sequence C, J‘(’[C:! is
2 model of the NBG-set theory. This will follow from the following
two facts:

" (1) A6 is contained in N[C] as a complete submodel, and

(2) a sentence & of QF ig true in N[C] iff @ is forced by some con-
dition p e C. .

Hence by (2) questions abont the extension N[C] can 1E)e reduced
to questions which can be answered in the groundmodel 4. Tt is therefore
allowed to say that: N[C] does not differ too much from Jo.

Henceforth we fix a complete sequence C.

' = - A [@(x)<=>P(x)]
LemMMA 9. Kud(z) = Ky Py)-Cl /}[ (@)
Proof. By definition Kad(x) = KyP(y) s equivalent to
(Vi € JO[(Ep <€) (p |- @)~ (Tg e O)al- F(w)] -
Singe € is totally ordered by Q“K’ we get by lemma 6 and 3 (d):
() (Vo € A6) (Ep € C)p I~ @ {w)<= ¥ ()] - o
The gentence \/ ~1(®(z)+=¥ (%)) is by lemma 6 decided by some p " €C.
If p“‘) =V "]((Z(w)@![/(m)) would hold, we would get by clause (5) of
@ Lo (%) 1 ] [} (m) —
the forcing definition a contradiction to (+). Hence p " |- "1 \a{ (
< (#)) must hold and we have proved the part (;‘)—>” of@the 1en;1(x;a;:.l
|— <=

Tn order to prove the part “<” assume that p || /z\[ ()

holds. By lemma 2 (iv) and (vi):

(+-+) (Vs e Jo)[p® |- D)= F ()] .
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In order to prove Ku®(z) CKy ¥(y) assumew ¢ Ko®(x), id est: p% [~ d(u)

for some p” €. Define = Max{k,j}; hence by (+-+) and the firgt
extension lemma:

2 B (w) <= P(w) & p |- D(w).

Thus by lemma 2 (i) and (vii): p®[—* ¥(w) and therefore by lemma 6
2™ - P(w) for some p™ ¢ C. This proves that weKyP(y). In the same
way one shows that Ky W(y) CKad(x) also holds.

CoROLLARY 9a. If U and W are class- or set-constamis then
Kr(ze U)=EKy(ye W)oC-U=W.

Lievwa 10. A sentence @ of £ holds in N[C] iff € |- .
Proof by a simple induction on the length of @.

LewmA 11. p [|-* D iff D is true in all models N°[C] such that P occurs in C.
(Proof as in Easton [3], p. 32).

‘Lipmma 12. Themapping 8 from Ao into N [€] given by & (B) TRax(ze S)is
an isomorphism withrespeot to the membership relations: 5 (8,) eN’é(Sz)H A e‘M’S’z.

Proof. This follows directly from Corollary 9a and the definition
of the structure N[C].

Sometimes it will be convenient to identify 6 with its isomorphic
image §(uAG). )

Remark. If we would have enriched the forcing langnage &¥ by
a further one-place predicate G(x), with the intended interpretation:
@ is an object of the groundmodel M and the forcing definition by a further
clause, saying that every condition forces G(8), then lemma 12 could
be strengthened by adding the assertion that 6(AM) is a complete imner
submodel of N[C] in the sense of Sherperdson [11], p. 170.

§ 5. Proof of the axioms in the relational system N[C].

Lmmua 18. If @ is a sentence of the language 8 in which the symbol I
does mot occur, then @ holds in N[C] iff D holds in A
_ Proof. This follows immediately from lemma 5 and lemma 10. )
From lemma 13 it follows that the axioms (A 4), (01), (C2) and ((3_3)
hold in the extension N°[C]. Furthermore it follows that the sentence Tl
bolds in N[C] and that the set-form of the axiom of regularity (Fun-
dierungsawiom) is true in N[C]. Godel has pointed out that on the basis
of the axioms of groups A, B, O the set-form and the clags-form (i.e.
axiom (D)) are equivalent—see P. Bernays [1], p. 68. :
The axioms (A1) and (A 2) are obviously true in N[C]. Ad (A 3):
Let two sets‘N), Kz(zes) and Ky(y 1), and a clags™ Kz®(2) be given
such that Kw(zes) sNKng(z) and Kz(xes) T Ky(yct) holds. Hence

(o) 507
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by the definition of N°[C] and lemma 9, C|~s = f and C |- &(s). Therefore
b;r lemma 8, C | @(¢), hence Ky(y ¢ 1) ENszi(z). Thus we know that all
the axioms of group A hold in N[C].

LemmA 14. The awmioms of group B hold in N°[C].

Proof (Easton [3]). The axioms of group B have the form

A AV Alpes Y<=0(X,, ..., Xy, 2)]
X1 X ¥ 2
with k= 0,1 or 2, for @ € 2%, Then, given & and classes™ Ka, i)y een,y
Ka Wi(ws) the required class™ is Ke®' (Ko, Pi(wy), .., Kax Pi(zz)) where
&* is the formula obtained from @ by replacing each subformula u e Xi
of @ by ¥ilu). .
LEMMA 15. The universal amiom of choice (B) holds in .N{{’[C].
Proof. First remark that FEKw(F (w)) is a function™ and that (5)
»
F(Ka(s < 8)) & Ko(wes) for every non-empty” sNet Ka(z e s). K’Ve ha}e
to show that F is defined on the wholﬁ, univel.?se of non-eml?’ﬁy 1setde,:
Let Kw(zes) by any non-empty'm get”' . Consider the following class™:

0= {p; p ™ Cond & (T1) (1 % 5 & <5, 1™ * p)*.

i s/ of Cond, hence by the completeness of C, p""’) &0
fcc');ssagrizn;?k)sgg?h{ﬂ]slerefore pd‘) P s, t)‘M’). This giv:_as us .(Km(:vs §h),
Ky(ye t)}” N F and Ky(yet) & K (x s~§). Een_ce Fis flef‘lNJ}ed on the
whole (glalss of non-empty” sets” and is @ choice-function’ E el i

The proof that the axiom of replacement (C 4) holds m]1 [ghat
organized as follows. In the first s%ep (lemmata 16 and 17) Wf; }f 1.(;We That
for every formula @ (%, ..., ¥s) of £ and every set—‘cf)nstant 8 1;e‘eted "
a formula ¥(%, .., %s) of ¥ in which all quantifiers _avre res l‘lh e
set-constants such that in N°[C] both formulas are eqmval,clentlm T
free variables are restrietﬁ‘d tfo ra,nfﬁ ov?ir IsT '1-;12 gﬁgbsslez]lﬁiie ei) u(n ‘;ion o)

the image™ of aset” unde: ) ! !
Xgeafl]ll leseﬁc%? This thelgl allows us to prove (by induetion) ;n t_hg th;l%'ghstzﬁ
(lemma 19) that for every formula ¥(z, veey ®n) OF 2., in Wf -
quantifiers are restricted to  set-constants, there e)nst]sJ ta]; fo(;mula,s
I'(zy, ..., ©,) in which the symbol F' does not occur such that bo

"are equivalent in N°[C] when the free variables are restricted to range

over s. Combining these results we are able to prove in lemma 20 that

the r;placernent axiom (C4) holds in N[C]. P o fres
DEFINTTION. Let B (%, %, -.., %) be a formula of & dWI Vl; e

variables other than &, ..., &, and let s be a set-constant and y a

() F(u) is the image of u under F (Godel [5] writes F'u).
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not oceurring in @. Define Res(P, s, y) (restriction of @ to s and y) to be
the following formula:

A e Al@yesA. Azmes)=(V (2, ..., wn)ma}]/ D (Toy ores Tn))]

Ty Zn Zo Y
We want to show that the class™ of conditions p for which

-V Res(D, s, y) holds is a dense subclass of Cond.
Y

LzMmA 16. Let p be a condition, s a set of Ao and @ (xg, ..., 21) @ formula
of &F with no free variables other than x, y oy @n. Then there exists an ex-
tension q of p such that

qll—\U/ReS@, 8 9).

Let us first indicate how this lemma will be proved. Let ™ be the
set of n-tuples"“’ of elements™ of s and let Ugy Uiy erey Yy vay O e"f(’ A be
a well-ordering of s". If u, is the n-tuple {2y, ..., za)"" ¢ " then Iet us
simply write @(w,, 1) instead of @ (2, 2, ..., 2:). We define inductively
2 SEqUeNce Uy, Uy, vy Vay ..y 2 € A, of elements of A6, and a sequence of
conditions p C* p,, Pry ey Pay wey & M A, in the following way: if there
is & set v and an extension p’ of p such that p’ |- D (v, u,) then pick such
a pair <p’, o>% and call it {Po, 'uo>““’. If there is no such pair, then define p,
to be p. If conditions p, for all g <M o are obtained, then look at the
“equation” p’ |- ®(x, u,). If there are solutions with U‘M’ {ps; B <M a}“ﬂ’
Q‘M’;p’ then pick such a solution <p’, 'u>"K’ and call it <p,, 'v,l>‘M’. If there
are no such solutions, define p, to be the union™ of the g for ﬁ<"“’ a
and let v, be undefined. Finally let p* be the union”® of all the Pay @ <‘M'Z,
and let ¢ be the set™ of those sets® v, which are defined. Then it follows
that p* |- Res(®, s, ). Clearly, the axiom of choice (AC) was uged in
order to obtain a well-ordering of s". Furthermore we used the universal
version of the axiom of choice (E) in order to pick out the pairs <p,, %}““’.
Since only (AC) and not (B) holds in 6 we must carefully avoid any use
of (B) in the rigourous proof of lemma 16. This will be done by defining
(by means of a certain tree) a subset of Cond x 7 such that the sohitions
<p’, )% of P’ |- P (v, u,) ave selected only from this et (7 4 is the class”®
whose elements”™ are just the sets““’).

M)Proof of lemma 16. Let p, s and &(z,, ..., 2s) be given. s* is the
set® of all n-tuples™ of elements™® of s. By (AC) there is in A6 a well-

ordering of s”. Hence let wa, a<#® 4, be the elements'® of s” (4 is an’

ordinal®), g"“’ is the rank-function (*) of o6 in the sense of . By

lemma 1 there is in A6 a clags D,

D= {0, ud™; p - D0, w) & a<® A & p cpryte.

(%) o(») is the least a such that « is an element of Vg = U T (Vy), T (x) is the power-
f<a
set of z.
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We define inductively sets o, o <t A
\ o
g TLLa, 0" <y v, u>* D&
& (Vp' ™ Cond) (Vo' € JO)[<p', ¥/, ey ™ e D
N 5 10 Moy de
> g™(<g, 1) < M

Suppose we have defined the sets g; for all § <™ 4. We want }8 define % .
Call a subset® d@ of Cond a regular a-chain iff d has p as least™ element™,

a o gyt o U gor(gp); <

d is totally ovdered by Qﬁ’ and if gp is non‘empty‘“’ for g <, thej‘,l there
is exactly one ¢ in® ¢ such that ¢ o pr‘l’“’ (gs). Let Reg, 1_ae the .set of all
regular a-chains. Let 4(p’, a, ¢) be the following expression: ¢ is a regular
a-chain and p’ eatends™ the union™® of ¢. Let further I'(p, v, ¢, %s) be the
following expression:

(Fp' * Cond) (V' € J0)[(<p", ¥/, 4ad™ XD & AW', @, 0))
™, o) < My .
For ¢ Reg, define g(a,¢) to be the set®:
{<Q7"7>J&5 {q, 9, ua>‘M) &D& 4(g, @, 0) & I'(g, v, ¢, “a)}d«, v

Now, g, is defined to be the union”® of all sets g(a, ¢) where ¢ ranges
over Reg.:
Ky J“)
g U™ {g(a, 0); ¢ Reg}™.

i Ho Ko i < ¢, tO
(Let Rega be the union”® of all Setf«, Bega, a< dz, 3(?6. gfﬁ;-: :10 = 1:1 o
express that ¢, is an initial segment of ¢,. (Reg;, < > is the
we have spoken in the discussion above.) Define finally:

Mo Moy Mo
7 T sup®{ (@) +1; 0 e UM g o < BT

Mo % of rank® less™ than 7.
and let 7/ pe the set™ of sets™ of ra )
By tlre axiom of choice (AQ) in G the set Vj“’ has a well-ordering w

Mo .
and therefore we can choose inductively from each sebt pIi (o) a0 ele

S o n element
i tends™ | % {ps g <™ o} if such an e
ment”” p, such that p, exte U™ {ps; 6 ot the pp for B <

exists in pri“’(ga) ; otherwise let p. be the union’

- Ho s W choose a Vg
iti or which Pa r1°(g.) holds we can
For those conditions p, for which pa € DI 3 the sets™® v,

Mo o i f replacem
such that (Pa, vap” € fa- BY the axiom 0 ! )
form a set™ ’t. Define p* = U {ps a<® 3%, p* is a set™ and, since
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the p,'s are totally ordered by QM’, p* is a condition. We claim  that
2* |~ Res (D, s,1) holds. The first step will be to show that

() (VB 2% ) (Vue e BV D0, w)>p* |V (0, )]

Assume that (qo € 4) (B |- B (2, w)). P} W[5 B<™ o & pp " pri(gp)*
- is a regular a-chain and P is an extension of its union®*, Therefore 9. 18
non-empty‘m‘ and P, ||~ @ (vq, %,) Where v, & 1. Hence by lemma 3 (a) and
the definition of forcing: pa |-V (v e tAD(v, %)). Since pq e p*, (4) fol-

lows by the first extension lemma.
The second step will be to show that

(++) (V82" p") (Ve MBIV 200, ) > |-V S0, )]

Assume that B\ (veiAP(v, u,)). Hence there is an extension p of P -

such that P [|- @ (v, w.) for some v * 1, Now continue as in the proof
of (+). The third step:

() (VB2 P (Ve BV B0, 1) BV B0, )]

I P |-\ D(v, us) then 7 |-V B (v, u,) for some $ O™ p. Hence by (+):
v v
P*I-V (@ eird (v, u)) and (o) follows from the first extension lemma
v
The fourth step:

(e0) (VB2 p*) (Vua ™ ") [F |- Vo©, 1) 5V 00, w)] -

Let 7 be an extension” of p*and assume that BI-*V B (v, na). Since\/ (v 1A
vel ' v
AD (v, ﬁa))»\/ @ (v, u,) is a tautology, we get that also 7|-*\/ D(v, Ua)
v v
(see e.g. Lévy [8], lemma 34).
From (o) and (o0) we get:
(V22" %) (Ve (B V B (0, ) oB |2V D00, ]
v VE
Thus lemma 16 follows by lemma 2 (viii), (iv) and the forcing definition,
clause (5).

COROLLARY 16 a. Let D (wy, ..., %) be & formula of £F with no free
variables other than g, ..., o,, and let s be a set-consiant.
Then there exists o set’* t such that N[C] = Res(D, s, 1).

Proof. By lemma 1 there is a class™ ¢ whose elements™® are precisely
those conditions p which force \/Res(®, s, ). By lemma 16 O is a dense
v
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subelass™ of Cond. Hence p*® \l—\v/ Res(®, 8,9) for some 2™ ¢ @ and the

corollary follows from clause (5) of the foreing definition and lemma 10.
LmvmA 17. Let O (2, ..., @) be a formula () of 8 and s a set-constant.
There eists a formula ®%(@y, ..., @) of & in which all quantifiers are
resiricted to sel-constamts such that
N[CIF A .. /\s[qﬁ(ml, vy Tp) <> BV (@y, oy T)]

©v188  ZTne

Proof by induction on the length of @: if @ is atomic, then let o'
be @. If @ is of the form ¥ or ¥,V ¥, then let &7 be —|(¥V), (Tf)v(![’gjz
respectively. If @ iy of the form \/ ¥, then by lemma 16 there is a set

v

t such that
Tnes Y yel

vies

if @, ..., %x are precisely the free variables of @. Let u be the union”
of ¢ and ¢. By the induction hypothesis there is a formula Py, @y, .ny Bn)
of 9F containing no unrestricted guantifier such that

AN o NPy 01y oy Bn) 4:»,—*pv('.'h Ly vy Tn)]

veudien aneu
is true in N°[€]. Define @' to be \l{(ysy\ Yy, By, wny T}
L 18. (Vs ¢ ) (70) [or(5) C* prp) >3 |- )\ (Fl@) =z <]}
Proof. From the definition of forecing we get that
(Vo e £6)(V0)[p - F(@)op 2o p].

Obviously (Vo ¢ 40)(Vp)[pllz e p] and if pri(s) C* pr*(p) then (Vo )
(plF(2)). Hence by lemma 3 (d):

(Voo € ) (V) [pri(s) C* pri(p) > (0 * s >p - Fl@) <=z e )] -
Since # ¢ s p |- Tlzes we get using the definition of forcing:
(Vs ¢ f0) (79)[pr(s) C pri(p) > |- (T e sV (Pl@) =z 2 )]

Hence the lemms follows by lemma 2 (i), (vi) and (iv).- -
TEmmA 19. Let B(2y, ..., Tn) be a formula of QF with no free variables
other tham &, ..., o, such that all quantifiers in @ are restricted to set-

(") We have the following convention: in simplifying the s'ym'boliam we mostly
do not mention the free variables of a formula. But if some variables are listed, then
it is understood that these are all the free variables of the formula.
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constants. For every set™ s there is a Sformula DPNwy, ..., 2) of F with the .

same set of free variables and in which the symbol F' does not oceur such that
N[e] |=m/l\3§...xé\ai[¢(w1, weey By BNy, oy @m)] .
Proof by induction on the length of @.
Case 1. If & is atomic and of the form w e i
, ¥, or e 8 (%, y variable

or set“go.nstants), then let J@L" be @. If @ is of th’e form (m)’, then ta,kz
a condition p such that pry(s) QM’ pr‘i’“’(_p) and define @°x) to be the for-
mula #ep. By lemma 18 the class™ D of conditions g for which
q- /m\ (m s§:>(17’(a?)<:>w € p)) holds, is a dense subclass of Cond. Hence G

“Intersects” D and by lemma 10 A[w e s = (0(s) <= ¢°=))] bolds in N[C]
Case 2. If @ is of the form TEEF’or SZ’VT thy fi
en def 0 0
(Y’f)v(.‘l’zo) respectively. e efine”to be T,
Case 8. Let ®(wy, ..., o) be of the form \/ W(wy,®, ..., 4,) and
11

e

let % be the union™ of s and ¢. B i i i
nd ¢. By the induction hypothesis there is a I'-
formula ¥z, ..., %) such that e

A oo AT (% vy Zn)< Py, oony 3)]

Zoew  Tpeu

holds in N[C]. Hence

A e ALV P@gy oy @) <=\ Pay, oo, 24)]

@188 Gnes most @zt
holds in JN[C]. Thus we can s
AP gy vy ).

Luvma 20. The awiom of replacement (C 4) holds in N[C].

Proof. Let Ka(z e ’ N
€ m(m.N’ 8) be a set” and Kyd(y) be a class™ such that
. By lemma 16 there is a set™ u such that

Ky®(y) is a function
() VIR ALY 20,9 =\ 0, 9"

define @%wy, ..., @) to be \/ (ociA
Zp

'S
muthGO wfbg chl}e union of s and w. By lemma 19 and 17 there is 2 for-
: of 8" in which the symbol F' does not occur such that

FIEIE N AP, 3)™) <= 0@, 95")].
It follows that ==
) NCI=A A [z, 957 < 0%<a, v )]

zes yeu

A?;l;;zet.the ‘symbol F does not ocour in ¢°, the formula ¢° has an inter-
pretation in 6. Hence there is a class™ @ in A such that @ contains
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precisely those sets™® ¢z, 93" such that &%(¢w,y>™). & is a function”™®
(by lemma 13 and (ii)) because Ky®(y)is a tunction™. By the axiom of
replacement (C4) in o there is a set™ ¢ containing™ precisely those
sets™* ¢ such that for some x s, @ contains® ¢z, y}”“’. We claim that
Kz(zct) is the ima,ge‘w of Kz(zcs) under Ky®(y) in N[C]. Thus by
lemma 9 and lemma 10 we have to prove that

(i) /'\ [zete= a}/g@((_m, 2791

holds in N[C]. Since  is the image™ of s under & in Jt:

Alzst<s V &G, 2%

(iv)
2 a:si

holds in 6. Henee by lemma 13, (iv) holds also in N[EL. From (i) and (iv)

we get that ¢ QM“ . Therefore (i} follows from (i) and (iv). This finishes

the proof of lemma 20.

We have shown that for every complete sequence G, N’[C] is a model
of the axioms of groups A, B, ¢, D, E and that "¢ holds in N[C]. Thus
we have obtained a contradiction. Therefore, if X4 (B) kg for ZF-sen-
tences @, then T+ (AC) ¢, and our theorem 1 is proved.

We remark that we have actually proved a more general result,
namely that every countable model A6 of X -+ the local axiom of choice
can be embedded into a model N of X - the global axiom of choice.
Since 6 is countable, hence well-orderable in the meta-langnage, one
can easily show that the extension N°[@] is also countable, hence:

THROREM 2. Every countable model Ao of X (AC) can be emtended
to @ countable model N of Z-+(B) such that the “sets” of N are precisely
the “sets” of A6 and Mo |= @i |= @ for all formulas @ not involving class-
variables.

§ 6. Generalizations and problems. We restate our theorem 1 in terms of
well-orderings:

If ¢ is a formula of set-theory not involving class-variables and if @ follows
(in X) from the assertion that there is a class R which well-orders the uni-
verse V, then @ already follows (in X) from the assertion that every set can
be well-ordered (®).

Tt is natural to ask, whether this statement remains true if one re-
places well-ordering for example by total-ordering or by order-extension
of C to a total-ordering:

ProBLEM 1. Let @ be a formula of set theory without class-variables and
suppose that g follows (in X) from the assertion that there is a binary re-
lation B such that B is a total-ordering of V and R estends the inclusion

() V is the class of all sets.
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relation (id est: if # Cy then <{x,y> e R). Does ¢ then follows (in X) from
the (local) order-extension principle, which says that every partial-ordering
can be extended to a linear-ordering? :

Another problem is the following. Let (Loc-GCH) be the usual (local
form of the) generalized continuum hypothesis: A 2% = x,4; and let
(Univ-GOH) be the universal form of the GCH:

There is a function F from On into V such that for all ordinals o, T (a) 48
a one-one-mapping from 2°* onio Naiy (%).

PrOBLEM 2. Let ¢ be a formula of set theory without class-variables and
suppose that X+ (Univ-GCH) + . Does it then follow that X+ (Loc-GOH) F ®
also holds?

(Remark that from the results of Easton [3] it follows that (E) is

independent from X--(Lioe-GCH), hence (Univ-GCH) is as well inde- -

pendent from X+ (Loe-GCH).)

Clearly, the list of problems can be continued ad nfinitum. All these
problems have a common form. In order to state this general form it is
best to use the notions of “local form” and “universal form?” ( corresponding
to a pair of formulas @ (@, ..., @n), P(@, .., Tpi) introduced in Felg-
ner [4], p. 230).

(Po,w) Let @ be a formula of set theory without class-variables and
suppose that X+ (Univ-@, ¥) F ¢ holds. Is it true that then T+ (Loc-@, V) ke
holds? ‘

The real problem is to find nice and simple conditions €(®, ¥) such
that (Ps,w) has a positive solution whenever €(®,¥) holds. The con-
ditions we have obtained are very restrictive. With these conditions we
obtain a solution of problem 2 but unfortunately not of problem 1. The
reason for this is that in the proof of

(V& 87) (Vs € 46) (Vp) (g D7 p) (@t € 40) (¢ Res(®, s, 1))

(see lemma 16) we need that the local form of the axiom of choice (AC)
holds in the groundmodel 6.

THEEOREM 3. Let ¢ be a formula of set theory without class-variables
and let D(@y, ..., %a) and (@, ..., Bnys) be formulas of the language Lnpe
such that ® and ¥ are ppPs in the sense of Godel [8]. Suppose that
2+ (Loc-9, P) + (AC) holds. Then ¢ is provable in X (Univ-0, ¥) if
" and only if @ is provadle in T+ (Loc-B, ). .

The proof is as follows. Suppose that there is a formula @
of fzp such that X+ (Univ-&, ¥) be but ~(Z+ (Loe-@, V) o). Thgl‘l_

(®) On is the class of all ordinal numbers.
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T4 (Lioe-D, ¥)-+ Tl has a countable model . Since Z--(Loec-@, ¥) k
F (AQ), (AO) holds in Jt. By theorem 2 there is an extension N of 46
such that N =2+ (E)+(Loc-&, ¥)+ Tlp. But Z+ (E)+(Loc-®, ¥) +
b (Univ-®, ¥), hence N |=(Univ-9,¥), which is a contradiction.

Our best partial solution of problem 1 is contained in the following
theorem. X4 is the axiom system X but with the Aussonderungsaxiom
instead of the replacement axiom (C 4). 7

THEOREM 4. Let ¢ be a formula of txss without class-variables and
let ®(x) and P{w,y) be formulas of Lze. Suppose that (¥) ¥(w,y) implies
o(y) < o(@)+ . If ¢ is provable in X4+ (Univ-@, ¥), then g is provable -
in Z+(Loe-D, ¥).

The proof ean be taken almost verbatim from Lévy [7], p- 85. Assume
that ¢ is a theorem of X4+ (Univ-&,¥) but (Loc-D, V)= is %zOt
a theorem of =. Hence X (Loc-@, ¥)-+ T1p has a model M & <M, ¢ .
By a theorem of Montague-Lévy (see [9], theorem 6)—applieq inside
of Yt —there is a Hmit—ordinalﬂ{t a such that T((Loc-@, ¥)=-¢] holds
in M, = TRy, & (Vaiy is the set™ of sets™ of rank™ less™ than a1,
sets of M, are the elements™ of V.,im, classes of M, are the elements™ of
V,,mfrl and ¢ ig interpreted by the membership relation of M), Since a is
a limit-ordinal™, 9, is a model of X4 By the axiom (Loc-@, ¥) in im“
there is a function™ f defined on the set 7 AT {z; @(m)}sm such that
¥(z, f(2)) holds. Since ¥(z,y) implies that if (@) <™ a then g”‘(y) <M g,
we have that fis a subset™ of Vo' x™ Vim, hence a subset™ of Vo' (because a
is a Iimit-numberm) and therefore an element™ of Vat,. Thus (Univ-&, ¥)
holds in M, and therefore ¢ must hold also in M,, a contradiction!
Hence ¢ must be a theorem of Z4-(Loc-P, ¥).
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Proximity approach to extension problems
by
M. S. Gagrat and S. A. Naimpally (Kanpur, India)

1. Introduction. Let X and ¥ be dense subspaces of topologieal
spaces oX and a¥ respectively. An important class of problems in Topol-
ogy deals with necessary andfor sufficient conditions under which a con-
tinuous function f: X Y has a continuous extension f: aX >a¥ (or Y).
Among several known results in this class, the following result, due to
Taimanov [12], has many applications:

(1.1) A necessary and sufficient condition that a continuous fumction
f: X>Y, where X is dense in a T.-space aX and ¥ compact Hausdorff,
has a continuous extension f: aX ¥ is that for every pair of disjoint closed
sets Fy, ¥, of Y,

Cloxf Y Fy) A Cloxf '(F) = @

Lodato [7] has shown that a generalized proximity é, (called LO-proz-
imity in this paper) can be introduced in oX as follows: AG,B iff
A=~ B~ %@ (we use the bar to denote closure when no confusion is
possible). Tt is well known that in the case of a compact Hausdorif space,
8y, as defined above, is a unique compatible Efremovié proximity (called
BF-prozimity in this paper) (see Efremovié [3]). Taimanov’s Theorem
can now be interpreted as follows: If « X and Y are assigned the LO-prox-
imity 8, and the BEF-proximity &, respectively, then f has a continuous
extension if and only if f is proximally continuous. It is interesting to
note that whereas X has the subspace LO-proximity induced by 6, on oX,
Y has an EF-proximity.

This investigation began with an attempt to prove Taimanov’s
Theorem by the use of bunches and clusters (see Lodato [7] and Leader [6]).
However, we found a general theorem which includes several results,
including Taimanov’s result mentioned above, as special cases.

The 2nd Section gives preliminary results needed to prove our
theorems. For a survey of EF-proximity spaces see for example [10].
An uptodate account of LO-proximity is written by Mozzochi [9].
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