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On a generalization of absolute neighborhood retracts*

by
Michael H. Clapp (Coral Gables, Fla.)

1. Introduction. ITn 1953 H. Noguchi [12] introduced a generalization
of the notion of a retraction mapping. This led in a natural way te
generalizations of the notions of Absolute Retracts and Absolute Neighbor-
hood Retracts. He called his generalized retracts e-retracts, and proved
that several properties of compact Absolute Retracts and Absolute
Neighborhood Retracts were also valid for his spaces. More recently

" A. Gmurezyk [4] and A. Granas [5] have extended this list of properties.

They also introduced the terms Approximative Absolute Retracts (AAR)
and Approximative Absolute Neighborhood Retracts (AANR) to replace
Noguchi’s less convenient e-AR and ¢-ANR.

In this paper we continue the investigation of Noguchi’s generali-
zation. In Section 2 we state the basic definitions, introducing a slight
generalization in the definition of Approximative Absolute Neighbor-
hood Retracts. The larger class of spaces thus obtained still possesses
all of the properties of compact ANRs considered by Noguchi. In Section 3
we consider a metric on the set of non-empty compact subsets of a metric
space, which leads to a sufficient condition for a space to be an AANR.
In Section 4 we obtain a characterization of AANRs which shows that
they are exactly the limits of polyhedra in the metric of continuity.
Section 5 contains some results on the fixed point property, and in
particular shows that Granas’ result [5] extending the Hopf-Lefschetz
Theorem to AANRs has a generalization to our more general setting.
Section 6 is devoted to the hyperspaces of non-empty closed and non-
empty cloged connected subsets of a connected AANR, and Section 7
contains some miscellaneous results relating to AARs and AANRs.

All spaces considered in this paper are assumed to be separable
metrie, and d will denote the metric. By a compactum we mean a com-
pact metric space, and by a continuum a connected compactum. A mapping
will always mean a continuous function. @ will denote the Hilbert cube,
and E", n > 1, Euclidean space of dimension n.

* The contents of this paper constitute part of a Ph. D. dissertation written under
the direction of Professor Jack Segal, to whom the author is greatly indebted.
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* 2. Definitions and elementary properties.

DerpiNiTION 2.1. Let M be a metric space, X a subset of M and «
a positive number. A mapping r,: M ~X is an e-retraction of M into X
it for each = ¢ X, d{r(z),n) <e '

DEFINITION 2.2. A subset X of a metric space M is an approximative
retract of M if for each positive number ¢ there is an s-retraction of M
into X. The subset X of M is an approwimative neighborhood retract of M
if for each positive number & there is a neighborhood U = U(e) of X in M
and an e-retraction of U into X.

Remark. In Noguchi’s definition [12] of what we call here an
approximative neighborhood retract, it is implied that the neighbor-
hood U is independent of ¢. By allowing the neighborhood to change,
a wider class of spaces is obtained (Example 2.1 below is an approximative
neighborhood retract by our definition but not by Noguchi’s). Nevertheless
it is easily verified that all of Noguchi’s results remain valid with this
definition.

DEFINITION 2.3. A compactum X iy an Approvimative Absolute
Retract (AAR) provided that for every homeomorphism » mapping X
onto a subset h[X] of a metric space M, h[X] is. an approximative re-
tract of M. X is an Approvimative Absolute Neighborhood Retract (AANR)
provided that for every homeomorphism h mapping' X onto a subset
of a metric space M, h[X] is an approximative neighborhood retract of M.

Two useful characterizations of AARs and AANRg are the following:

THEOREM 2.1 ([12]). A space X is an AAR (respectively AANR) if
and only if X is homeomorphic to a closed approzimative retract (respectively
approximative neighborhood retract) of the Hilbert cube Q.

It should be noted that when the dimension of X is finite, @ can be

replaced in this theorem by a Euclidean space of sufficiently high di-
mension.

THEOREM 2.2 ([12]). 4 space X is an AAR (respectively AANR) if
and only if X ds a compactum with the property that for any & > 0, given
a mapping f from a closed subset A of a metric space M into X, there is
a mapping fi M—>X (respectively a meighborhood U = Ul(e) of A in M
and a mapping f: U—~X) which satisfies d(fs(a),f(a)) <e for each a e A.

Theorem 2.2 makes it easy to prove the following sufficient condition
for a space to be an AAR or an AANR. We have

) TrroREM 2.3. Let X be a compactum. Suppose that for each positive
integer n, X contains a subset X, such that X, is an AAR (respectively
AANR) and there is a mapping v,: X —~X, such that for e X, d(""n(ﬁﬂ), a)
<1/n. Then X is an AAR (respectively AANR)
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Tt is clear that every compact metric ANR (AR) X is an AANR (AAR),
for a retraction mapping r is an e-retraction for every positive number &.

From this and Theorem 2.3 it follows that Example 2.1 below is
an AANR, and Example 2.2 is an AAR.

Exampin 2.1. In F?, let
Ap = {(, y)l (97 —1/%)2+y2 = 1/%2} ’

m =)
Xp=J)An, X=U A4n.
n=1 =1

n=1,2;..

b

Then each Xy is an ANR, and the map

(@, y) = (z,9), it (2,9) e Xm,
Y= 0,0, it (@,9) e X—Xn

satisfies d(r,,.(m, y), (z, y)) < 1/m, so X is an AANR. Note that X is not
an ANR, for it fails to be locally contractible at (0, 0).

Tn [4], Gmurczyk shows that, with his definition of AANR, almost
all homology groups of an AANR are trivial, and each of the non-trivial
groups is finitely generated. This example indicates that the result is
no longer true in the context of our definition of AANR.

Examrre 2.2. In ¥, let

Ay = {(w,y)l y = sin o

57 1@2n+1l) <2 < 1}, n=

1,2, 0,
A= 1{(0,9)] —1<y<1y,

o0
X=\J4n.
n=0
Bach A, is a simple arc in the plane, hence an AR. The _mappings
rm: X —Xm may be defined by collapsing X —mei onto that portlog of X,,.
lying above the interval [(2m+1)"", (2m—1)""]. Theorem 2.3 implies
that X is an AAR. Since X is neither contractible nor locally connected,
it fails to be an AR or an ANR.

3. The metric of continuity. In [1], Borsuk defined the fp]lowing
metric on the class of all nonempty compacta lying in a metric space.
Deprviriow 3.1. Let M be a metric space and A and B nonen:}pty
compact subsets of M. The distance de(4, B) between A and B is defined
as the infimum of the set of numbers # such that there exist maps g: A—B,

h: B—A with
dlg(e),a) <t for each acd,

d(h(b),b) <t for each beB.
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The metric. d, is called the metric of continuity, and we denote by oM
the metric space of nonempty compact subsets of M with the metric d,.

The next theorem indicates the importance of this metric.

TrEOREM 3.1. Let M be a metric space, and (Xna) a sequence of compacta
in M such that each X is an AANR (resp. AAR). Then if X = LimX,
in the metric of continugty, X s an AANR (resp. AAR).

Proof. We use the characterization .of Theorem 2.2. Suppose & is
a positive number, A is a closed subset of ‘a metric space Y, and f is
a mapping from A to X. We may assume de( X, X,) < 1/n. Choose % 80
that 1jn < /4. By definition of d., there are maps g: XXy, b XX
which satisty d(g(2), &) <1/n for z ¢ X, d(h(y), y) <1/nfor y e Xy. Thus
for ze X

1) d(hg(w), z) < 2/n .

Since X, is compact, there is a § > 0 such thaty, z « Xnand d(y,2) <6
imply
(2) dlh(y), k(=) < 2fn .

The map gf: A—>X, is & mapping into an AANR, so by Theorem 2.2

there is a neighborhood U of A in ¥ and a mapping fs: U—X such that
for ae 4,

3) d(fs(a), gf (@) <.
Now define f,: U—~X by fo=Ifs. If a e 4, (3) and (2) imply
@) a(rfia), hef(@) < 2/ ,

and this with (1) yields

d(f:(“)’f(a)) <e.

Tt follows that X is an AANR. The proof in case X is an AAR is
gimilar.

This result shows that the collections of all AANRs and all AARs
in o metric space M form closed subsets of 22

We remark that in general the gpace 27" is not separable. De Groot
verified this in [6], and in the same paper showed that if M is a separable
metric space, then the subspace of 227 consisting of the compact ANRs
X C M is separable. Actnally a larger subspace is sepa;mble: We have

THEOREM 3.2. Let M be separable, and let H be the collection of AANRs
XCM. Then H is a separable subspace of 23,

) T.he proof is a straightforward generalization of de Groot’s, and
is omitted.
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4. LP-spaces. If X is a space and « is a finite open covering of X,
there iy an abstract simplicial complex agsociated with X and «, called
the nerve of «, which is defined as follows: The vertices of the complex
are the members of e, and the simplices are those subcollections of members
of ¢ with nonempty intersection. We denote this complex by ¥(a). By
a vealization of N(a) we mean a geometric complex K in @ or E" with
the property that there is a one-to-one correspondence between the
vertices of N (a) and those of X subject to the condition that if the vertices

gy Gy ey @0 OF N(a) correspond to the vertices a,ay,...,an of K,

gy Gyy -y On PN & simplex of N(a) if and only if ag, ai, ..., an span
a simplex of K. We call the underlying point set of K a polyhedron, and
denote it by |K|. Every abstract simplicial complex has a realization,
and any two realizations of a given abstract complex have homeomorphic
polyhedra. Because of this we shall abuse language somewhat and refer
to a realization of N(a) as simply the nerve of a. .

As Theorem 2.1 indicates, every AANR may be considered as.
a closed subset of the Hilbert cube. It will be useful to consider an AANR
X and nerves of certain open cpverings of X simultaneously in Q.

DermNITION 4.1. Let X be a compact subset of @. Then X is an
LP-space if there is a sequence (Pn) of polyhedrain @ such that X = Lim P,
in the metric of continuity in 2¢. )

Remark. When the dimension of X is finite, @ can be replaced by
& Euclidean space of sufficient dimension in the previous definition and
the following lemmas.

Tt ¢ is a finite open covering of a subset X of a metric space, we say
the diameter of a is less than a positive pumber 6 (written diame < 6)
provided that for each Ueq, diamU < 5. The following lemmas are
simple to verify. ’ ‘

Levma 4.1. Suppose X is compact, ¥ is open in @, X CV and 0 8
a positive number such that 6 = (X, Q—7V). Let a be a finite open covering
of X of diameter less than 6/2, and let N (a) have the property that if © is the
vertex of N(a) associated with the set Uea, then d(z,U) <6/2. Then
IN()|CV.

Levma 4.2. Suppose M is a melric space, X is compact, V 1is open
in M and XCV. For e 0, let 71 V—~X be an s-retraction of V into X.
Then there is an open set U in M with X C U CV such that for all we U
d(r(z), @) <e.

The last lemmas of this section make use of the technique of mapping
a compact metric space X into the nerve of o finite open covering of X.
The proofs are modifications of those tound in [11], and are omitted.

LeMMA 4.3. Suppose X is compact, V is open in Q and XCV. Then
Jor any &> 0 there is a polyhedron PCV and a mapping g: X—P such
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that for each © <X, d(g(w),x) <e. Moreover if X is connecied, P is con-
nected.

It is possible to obtain a form of this lemma which is algo useful.
If X is a compact space of dimension <n—1, every open covering « of X
has a finite open refinement g of order <, so that |V (8)] has dimension
<n—1. Using this information, it is not difficult to alter the proof of
the previous lemma to obtain the next result.

LemMA 4.4, Suppose X is a compact space of dimension <n, V is
open in @ and X CV. Then for any s> 0 there is a polyhedron P CV of
dimension < n and @ mapping ¢: X —P such that for each x eX, d(g(m), .x) <e.

We are now in a position to obtain a useful characterization of the
class of AANRs. We have seen that if X is the limit in the metric of
continuity of a sequence of AANRs, then X itself is an AANR. Actually
& much stronger statement can be made, for it is possible to characterize
the class of AANRs in terms of limits of sequences in the metric of
confinuity. Every AANR can be obtained as a limit of a sequence of
polyhedra. In terms of LP-spaces, we may state this more précisely as

TeROREM 4.5. 4 space X is an AANR if and only if X is an LP -space.

Proof. Suppose X is an AANR. Without loss of generality we may
assume that X is a subset of the Hilbert cube Q. It suffices to show that
given a positive number ¢, there is a polyhedron P such that d,(X, P) < e.
Let &> 0 be given. There is an open set D X in @ and an e-retraction
r: U~X. By Lemma 4.2, we may assume that U has been chosen so
that for 2 ¢ U, d{r(z), ) < e. By Lemma 4.3 there is a polyhedron PC U
and a mapping ¢: X—~P such that

(1) dglo), ) <& for meX.
Define f: P—X by f= 7|P. Then for y ¢ P
@) af@),y) <e,

since P C U. But then do(X,P) < ¢ follows from the definitions of the

metric of continuity and (1) and (2). Hence X is an LP-space.
Conversely, if X is an LP-space, then X is a compact subset of Q,

and there is a sequence of polyhedra, (Ps) which converges to X in the

metric of continuity. Every polyhedron is an ANR, hence an AANR, so
that by Theorem 3.4 X is an AANR.

Remark. Lemma 4.3 together with this proof imply that if X is

a connected AANR, then X = Lim P, where each P, is a connected
polyhedron.

"Borsuk has shown [1] that the collection of compacta having di-
mension <k in a metric space M forms a closed subset of 2?1

i : : . Hence
if X=LimP, in the metric of continuity and dim P,

< k for each n,
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we may conclude that dimX < k. Conversely if dimX <%, by using:,
Lemma 4.4 we may choose the polyhedra P in the p‘roof of Theorem 4.5
so that dimP < k. We summarize this in the following ooroll.a,ry: )

CoROLLARY. A space X 8 an AANR of dimension glﬁ? if a?zd only
if X is an LP-space obtained as o limit of polyhedra each of dimension <k.

We may use Theorem 4.5 to verify that each of (a) ‘Eh:e Cantor set,
(b) the Sierpiriski Universal Plane Curve, (¢) the Menger Universal Curve
is an AANR. ‘ .

(a) Let the Cantor set ¢ in [0, 1] be written as the 1ptersect}on of
2 countable sequence of closed sets A,, where each 4, is a um9n of
o™ digjoint closed intervals. Then eaeh A, is a polyhedron, and € = leA,,
in the metric of continuity.

(b) The Sierpinski Plane Curve 8 may be described as follows: Let.

Dup = {te[0,1]] 237" <t < (2k+1)-37"}
for n=1,2,..., and k=0,1,...,(3"~1)/2, and
D= U{Duw k=0,1,..,(3"—1)2},
‘H'nz[(),l]_l)'n, Fnzl)nmmt

Then §=[0,1]x [0,‘1]~HL;JI(Hn X Hay).,

Tt we set An= 8 ~ ((Fax[0,1]) v ([0,1] XAF".))’ each A is a poly-
hedron, and S = Lim 4, in the metric of contmulfcy. N .1s a ?onn?u]zucll
which fails to be locally contractible at each f)f its points, in marke:
contrast to the local contractibility at each _pomt of an ANR.

(¢) The Menger Curve is a one-dimensional locally connf.mted Acon-l
tintum  which contains homeomorphie imag(.as of all one‘a-dlmenslﬁx_u:nh
continua. It may be defined as the set of all points of T;he un}t 01.1}31 w Ul];,i_
project in each of the three directions (of the edges) mtf) Sierpins 1f o
versal Plane Curves, constructed as in (b), on the various faces BZ 'er
cube. A construction analogous to that in (b) shows that the Meng
Curve is an AANR. o )

For AARs the problem of using the metric of'eqnmnmgr. to é)bl;z;xf
a characterization seems more difficult. The following sullicien
dition is an immediate application of Theorem 3.1. . B0

THEOREM 4.6. A compactum X is an AAR if there 1shats§uifn,£ei 151 1;,”
of ‘polyhedra, each of which is an Absolute Retract, such tha =
in the metric of continuity. . R

5. The fixed point property. If f is a mapping of a S};fchced Ll;nt of 1
and for some z ¢ X, f(«) =, the point @ I8 ca]led.a ixe eft A
A, topological space X is said to have the fixed point property (i.
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if every mapping of X into itself has a fixed point. We wish to consider
next the relation of AANRs to this property. The class of ARs has the
fixed point property, and Noguchi [12] showed that this property also
holds for the larger class of AARs.

One cannot hope to show that each AANR has the f.p.p., since there

are already ANRs which admit maps into themselves without fixed

points. One result for AANRs was obtained by Noguchi. A mapping f on
a metric space X is an ¢-map if for each # e f[X], the diameter of f™*(x)
is less than s

‘We then have

THEOREM 5.1 (Noguchi [12]). Let X be an AANR. Suppose that for
each ¢ > 0 there is a space Y having the fized point property and an &-map
of X onto Y. Then X has the fized poimt property.

In connection with the f.p.p. and the metric of continuity, Borsuk [1]
proved that if in a metric space M one considers the collection of all
compacta X C M having the fixed point property, then this collection
forms a closed subset of 227, This gives the following result for AANRs.

THEOREM 5.2. Suppose (X,) is a sequence of compacta each having
the fized point property and X is an AANR such that X = Lim X, in the
metric of continuity. Then X has the fived point property.

The major result of this section is the generalization of the Lefschetz
fixed point to a suitable class of AANRs. In this respect it should be
noted that A. Granas [5] has proved this result for the type of AANR
considered by Noguchi. However since our definition of AANR enlarges
this class of spaces, our result would appear to have independent interest.
Moreover, the techniques used by Granas in his work do not apply here,
50 our approach is quite different.

We make use of some recent material by Knill [9], in which he has
developed a theory to give a unified treatment of the Lefschetz theorem
on fixed points. We begin by introducing some of Knill’s terminology.

DErINITION 5.1. Let p be a class of spaces. A compact subset K
of a space X is approachable by y if for every open covering a of K by
open sets from X there is a space ¥ ¢y and maps

f: K—>Y, g: YX

such that for each z ¢ K, gf(z) and o are in a common set U, e .

Knill considers a class of spaces which he calls @Q-simplicial (the @ has
no relation to our notation for the Hilbert cube; it refers to a coefficient
field). He observes that the quasi-complexes of Lefschetz are always
Q-simplicial, so in particular every polyhedron is Q-simplicial. Knill
obtains two results which are relevant to our discussion.” We will state
them in terms most useful to us, not in their most general form.
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THEOREM 5.3 [9]. A compact meiric space s Q-simplicial if it is
approachable by a class of polyhedra.

The link between AANRs and Q-simplicial spaces is the following:

THEOREM 5.4. Bvery AANR is Q-simplicial.

Proof. Let X be an AANR, K a compact subset of X, and « covering
of K by open sets from X. Let o' = a v {X—K}. Since X is compact,
there is a positive number ¢ such that if #,y ¢ X and d(#, y) < 4, then =
and y lie in a common element of ’. Next let & < 6/_2. Denote by yp the
class of all polyhedra in the Hilbert cube. There is 2 Peyp guch that
do(X, P) < e. Thus there are maps

fi X—>P, g P=>X
such that for ze X, ge P,
e, f@) <e, alg,9(@) <e.

Denote also by f the restriction of f to K. Let x < K. Evidently
f: E~P, g: P—~K and

a(gf (@), 2) < dgf (@), f@) +a(fl@), 7} <26 <.

Thus # and gf(#) lie in a common element of a'. Since « ¢ K, they
must lie in a common element of a; therefore X is approachable by ye,
and is @-simplicial.

We consider Cech homology with rational coefficients, so the hqmo-
logy groups are vector spaces. We will say that a .spafzel X has finitely
generated homology if each of its homology groups is finitely generatfad,
and all but a finite number are trivial. For such a space, a mapping
f: X X induces for each n a vector space homomorphism f«, folr W%uch
the trace of fx, is defined. The Lefschetz number of the map f is given
by the formula .

0

Af) = D) (—1)" Trace (fr,) -

@ n=0

We now state a second result of Knill’s as

THEOREM 5.5 [9]. Let X be a compact metric space with Fimitely generated
homology, and suppose X is Q-simplicial. Then if f: X X satisfies A(f) # 0,
f has a fized point.

This result together with Theorem 5.4 yields a generalization of the
Lefschetz result to AANRs.

TEEOREM 5.6. Let X be an AANR with finitely generated homology,
and f: X—X a mapping with 2(f) # 0. Then f has a fized point. ‘

An important class of AANRs then always has the fixed point
property.

i 9
Fundamenta Mathematicae, T. LXX
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CoROLLARY. Hwery acyclic AANR has the £.p.p.

_ This corollary extends the class of acyelic compacta which are known
to have the £.p.p. There are examples ([2], [8]) which show that one cannot
extend fixed point theorems of this type to arbitrary compacta.

The last result of this section is a generalization of another theorem
by Noguchi on fixed points and AANRs. He has proved [12] that every
null-homotopic map of a finite dimensional AANR into itself has a fixed
point. In faet, a stronger result is true.

THEOREM 5.7. Dvery nullhomotopic map of an AANR X into stself has
a fized point.

. Proof. Assume X to be contained in @, let f: X —X be null-homotopic,
and assume f hag no fixed points. Then there is a ¢ > 0 such that for each
% eX,d(x,f(x)) > 5. Since X is an AANR, there is a polyhedron P such that
do(X , P) < 8/4. Hence there are maps g: X P, h: P-+X such that for
weX, geP, dlz,g(x) < /4, d(q, h(g) < 6/4. The mapping gfh: PP is
nulthomotopie, since f is. It follows from the Lefschetz theorem that any
such map has a fixed point, say a. But

0 <8< d(fha), hw) < d(fb(a), gfh(@) +dgfh(a), o)+ d(a, h(a)) < 52 ,

since gfh(a) = a. This is a contradiction, and it follows that f has a fixed
point.

6. AANRs and the spaces C(X) and 2~, For this section we restrict
our attention to compact metric continua. We denote by 2% the collection
of nonempty closed subsets of X.

DeFINITION 6.1. Let A, B € 2%, and set

@4, B) = MAX {(MAX d(a, B), MAX (5, A)} .

ds is a metric on 2* and is called the Hausdorff metric.

We call the space 2% with the Hausdorff metric the hyperspace of
closed subsets of X. The subspace O(X) of 2%, congisting of all nonempty
subcontinua of X we call the hyperspace of subcontinua of X. )

X is locally connected it and only if 2% (or (X)) is an Absolute
Retracet [7]. Since every ANR X is locally connected, for thege spaces 2%

: andYC’(X) are ARs. We next show that in the case X is an AANR, each
of 2 and C(X)is an AAR. To do this we first prove the following lemma.

Lmwwa 6.1. Suppose X = Lim X, in the metric of comtinuity where
X, X, X,, ..., are subsets of @ metric space M. Then in the metric of
continuity, 2% = Lim2™ and ¢(X) = Lim € (X,).

Proof. We give the proof for ¢ (X); it is the same for 2%, As usnal
we denote by d the metric on M and by d. the metric of continuity on 2;‘[.

The space (M) is metrized with the Hausdorff metric d;. Denote the
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metric of continuity on the space 922D by D.. The spaces C(X), C(X,),
41x,), ..., are subsets of C(M). We will show that C(X)= Lim ((X,)
in the metric of continuity on 280 Let &> 0 be given. Since X = Lim X,,
in 22 we can choose N such that for » >N, do( X, Xp) < e. Fix 2> N,
There are maps f: X —Xg, g: Xp—>X such that for all 3¢ X, y e Xy,

1) MAX{d(w, f(@), dly; g@)} <e-

The maps f and g induce maps F: G(X) — 0 (X,) and G: 0(X,)—C(X)

defined for A ¢ ¢(X) and Be C(X,) by
F(4)=fl4], G(B)=g[B].

Tt is not difficalt to show from (1) that for A e C(X), BeC(X,) .
we have
(2) A4, F(d)) <=, &(B, G(B)) <c¢.

Thus for this # we have by (2) and the definition of the metric of
continuity that .
(3) De(0(X), O(Xn)) <& -

But the choice of #> N was arbitrary, so (3) holds ‘for. all » >C(%g ,
and it follows that Lim ¢(Xy) = €(X) in the metric of continuity on 2™

We can now prove Theorem 6.2. N

THEOREM 6.2. Let X be a connected AANR. Then each of 2~ and C(X)
is an AAR. o .

Proof. Since X is a connected AANR, X is the limit in the me‘r%"lc
of continuity of a sequence (P,) of connected polyhedra. ]_Sy Lemmaﬁ.l
this means Tim O(Py)= C(X) in the metric of continuity, and since
each P, is a locally connected continuum, C'(Fr) iir an AR. By Theorem 3.1,
C(X) is an AAR. Similarly 2™ is an AR, so 27 is an AAR.

Since AARs have the fixed point property, we have .

TEEOREM 6.3. If X is a connected AANR, both C(X) and 27 have the
fixed point property. N ‘ .

For any compact metric continuum X, each of 27 and C(X) is acyclic
(see [7] for 9%, [13] for O(X)). It then follows from the co.ro]lary to
Theorem 5.6 that whenever either of 2% or C(X) is an AA}TR, it also }jas
the fixed point property. It is not true that C(X) is .always an AA}:R.
Tt can be shown that if X is the pseudo arc [10], C(X) fails to be an AANR.

-
i

7. Some properties of AANRs. In this section, Whenex.rer it is con-
venient, we shall assume the AANRs to be subsets of t-h_e Hﬂbert cubg Q.
A space X is an AR if and only if X is an ANR which is conﬁmctﬂ){e

in itself. Example 2.2 shows that an AAR need not be contra.w‘mble. We
can show, however, that the converse here iy true: A contractible AA,NIi
9
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ig an AAR. This result follows from a generalization of a theorem of
Borsuk [3].

Lmwnts 7.1, Let X be a dlosed subset of X' and Y an AANR, Suppose

F: X x[0,1]-Y is continuous, and F(-,0) admits a continwous extension

- 0 F'(+,0): X’ =Y. Then for any ¢ > 0 there is amapping F: X' x[0,1]->7
such that for (z,8) e X x[0,1]w X' x {0},

dF (@, 1), F'(m,t) <e.

The proof is omitted. It follows at- once from Theorem 2.2 and the
techniques of Borsuk’s proof.

THEOREM 7.2. If X 4s a contractible AAN R, then X is an AAR.

Proof. X contractible implies that there exist 4 ¢ X and F: X x
x{0,1]->X such that F(z,1) = x, F(z,0)=a.

Then ¢ = X x [0, 1] w @ x {0} is closed in @ x [0, 1]. Define f: ( =X by

a, if¢t=0,
F(x,t), otherwise.

fla, 8 = {

For any &> 0 there is by Lemma 7.1 a map F: Q x[0,1]-X such
that for (2,1) ¢, d(F(m,t),f(ac,t)) <e Now define r.: QX by r(x)
= F(z,1). Then for any zeX, gsince fl®,1)=F(v,1) = x, we have

dfru(), o) = a(F(2,1), 2) = d(F(a, 1),f(@,1) <s.

Thus 7, is an s-retraction of ¢ into X, and since X is compact, X is a closed
e-retraction of @ for each ¢ > 0. By Theorem 2.1, X is an AAR.

Every neighborhood retract of an ANR is itself an ANR. For AARs
and AANRs we have two results of 2 similar nature.

TBEOREM 7.3. Suppose A is a closed approwimative retract of an AANR

(resp. AAR) X. Then A is an AANR (resp. AAR).

Proof. Let :> 0 be given. There is 3 mapping 7: X->4 such that
for ae 4, d(rya), a) <ef2. 1 is uniformly continuous on X, so there is
& 0> 0 such that a,be¢X with d(a,b) < 4 implies d(ry(a), ry(b)) < &f2.

Also there is a neighborhood T of X in @ and a mapping 7y: U~X
which i3 a §-retraction. Define 7s: U4 to be 7, = r,r,. Then for a < 4,
d(rya), a) < 8, 50 d(rda), a) < d(ryry(a), 7(a)) +d(ra), o) < g2 +ef2= e
Thus 7, is an e-retraction of T into A. A is closed in X , 80 A4 is compact.
By Theorem 2.1, 4 is an AANR,

If X is an AAR, the map 7, may be taken with domain @, from which

it follows that 7, is an e-retraction of @ into 4. ence 4 ig an AAR by
Theorem 2.1, and thig completes the proof,

THEOREM 7.4. Hvery closed approximative retract A of an ANR X is
an AANR.

Benlat iahb
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Proof. Assume A C X CQ, so A is closed in §. There if’ a ne?ghbor.
hood U D X in @ and a retraction »: U—X. For &> 0 there is Ejlnelghbo{-_
hood ¥V of A in X and an e-retraction r,;: V4. Set W="r V1. W is
a neighborhood of 4 in @, and if r; = 7|W, the map f, = r.r; is the desired
e-retraction of W into A. ‘ ‘

Remark. Let us call an AANR of the type cons@ered by Noguf:hl
and Gmurezyk an AANR'. In [4], Gmurezyk .shoys that given an AANR'A4,
there is an ANR X such that 4 is an approxlrpatlYe retract of X. Fx:om 7 ;4
we then have that A is an AANR' if and only if A4 is a closed approximative
retml‘z“?nglfl a’nw‘iN]Evfithe following result which says that a connected
AANR ]151;:5;y iarge locally connected subcontinua. More precisely, we have

THEOREM 7.5. Suppose X is a connected AANR. Then foT' each & > XO
there is a locally connected subcontinuum K, of X such tha? fo¢ ;ach z lel R
d(w, K.) < s. Moreover, if dimX =n, then for all sufficiently small e,

i = n. .

dlmf);oof. Since X is a connected AANR, W:? h'av.e X = L}ml’m s Whelje
each P is a connected polyhedron, and the limit is taken in 1l;he mi’]clmi
of continuity on 22 Tet ¢> 0 be given, and choose m s; argg thzt
do(X, Pp) < &/2. Then there are map§ f: X—>Pn, ¢: Pm{a . szginuum
alw, f@) < ef2, d(p, g(p) <ef2. Pm is & locally econnec gt continn X,
hence K,= g[Pm] is a locally connected continuum contain .
Also if 2 e X,

) d(@, K) < dfz, ¢f ) < Ao, f@) +8(F (@), gf(@)) <e,

which proves the first part of Theorem 7.5. To prove the secc{nd, note
that by (1), ¢f is an e-displacement of X into X. If dl'IIlX =, it fo]llows
from a result in [11] that for all sufficiently small ¢, dimgf[X] > n. Since
imK, = n.
X]C K.CX, we may conclude that dimK, . )
L .]A eontinm;m X is said to be indeco_mposable. if it caJnn'ot be W-nttﬁn
as the union of two nondegenerate proper subcontu.ma, %m.d is heretha;ly
indecomposable if each of its nondegenerate subcontinua Iy indecomposable.
It is easy to show that an indecomposable continuum is not locally con-
nected. This yields the following: S
COROLLARY. A connected AANR is not hereditarily indecomposable.
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On the topology of curves II
by
A. Lelek (Warszawa)

Tn the present paper we investigate two clagses of curves which we
call Suslinian and finitely Suslinian, respectively (see § 1). To motivate
the terms which have been chosen, let us point out that the properties
attached to them resemble a property of ordered sets introduced by
M. Ja. Suslin and related to the famed Suslin problem. Our properties
ave intended to complete the well-known classification of curves (see [4],
p. 96, and [5], p. 99) in which the notion of rational curves plays an es-
sential role. Rational curves possess a decomposition property (see [2],
p. 211), and an analogue for Suslinian curves is suggested here; it is,
however, proved only in the case of hereditarily unicoherent curves
(see § 2). We also prove the existence of Suslinian curves which are not
rational (see § 3). A part of the material covered by this paper was
mimeographed in [3].

§ 1. The concept of Suslinian cuxves. A curve X will be called Suslinian
provided each collection of pairwise disjoint subeurves of X is count-
able (1). A curve X is called hereditarily decomposable provided each
subeurve ¥ of X is decomposable, i.e. representable as the union of two
proper subcurves of Y.

1.1. Bach Suslinian curve is hereditarily decomposable.

Proof. This is because an indecomposable continuum has uncount-
ably many pairwise disjoint composants and each of them iy dense.
Composants of a curve are countable unions of some subecurves (see [2],
p. 147). :

A space is called ponctiform
it is degenerate. :

1.2. If a curve X admits a decomposition X=PuQ where P is
ponctiform and Q is countable, then X is Suslintamn.

provided each continuum contained in

() We recall that, in our terminology, a continuum means a compact connected
metric space, and a curve means a 1-dimensional continuum. Therefore the curves are
non-degenerate sets. A subecurve means a curve which is contained in a curve under
consideration. :
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