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Decompositions of E* which satisfy a uniform
Lipschitz condition are factors of &

by
Ralph J. Bean* (Knoxyille, Tenn.)

1. Introduction. Bing has developed a technigue which has been
modified by several authors (see [1], [2], [3], [4]) to show that many
spaces, not homeomorphic to E°, are such that their Cartesian product
with F* is JE*. The spaces considered are decompositions of E°. The -
strongest theorem to date is contained in Bailey’s thesis (University of
Tennessee) which states that if @ is an upper semi-continuous decom-
position of E°® whose non-degenerate elements are a Cantor set times an
_.interval, then E’/G xH* = B* In this paper we prove a much stronger
result. ;

2. Notation. The notation is standard. A collection ¢ of compact
subsets of a space X is an upper semi-continuous decomposition of X if
and only if

(1) @ is a partition of the space X;

(2) it g € @ and. U is an open subset of X with g C U, then there is
an open get V, gCV C U so that if ¢' ¢ ¢ and g'~V # @, then y'C U.

The decomposition space, X/G, is the space whose points are the
elements of G and for which a set W is open if and only if uwg is open

ge

in X. @ is monotone if and only if each ¢ e @ is connected. We use = to
denote the natural map from X to X/G. Let H denote the collection of
non-degenerate elements of a decomposition & and let H* denote their
union. @ is compact 0-dimensional if w(H) is compact and 0-dimensional
in X/@.

We will consider B® to be the o = 0 level in

= {(», y;z, )| #,9,%, w e Reals} .

Throughout this paper all decompositions of F* will be monotone, upper
semi-continuous, and compach 0-dimensional. If & is such a decompos-
ition there is a map s: B°~[0,1] which takes each non-degenerate
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element of @ to a distinet point of [0,1]. Then s*: B*—E* defined by
M, y,2, 0)=(2,9,2,8(,9;2)+ ) is a homeomorphism and lifts each
non-degenerate element of ¢ to a different level in the «-direction. We
will use E2 to denote {(x,y, ¢, ®)| #,¥, 2 ¢ Reals, » = a}. Let ¢ be a 3-cell
in E® which cortains each element of H in its interior. Then ¢, will de-
note € x {a}. We will index H by {s(¢)}yen, -6, H = {g.] ¢ e s(H)}- o
will denote s*(g.).

A subset X of B is cellular if and only if for any &> 0 there is
a 3-cell D in B* with X CIntD C D C 8(X). Suppose D is a cell which
contains X in its interior in E°. A map 7: D x[0,1)—D will be called

& cellularity map of D around X if and only if the following conditions

are satisfied: )

(1) 7| D+ {0} = identity, ‘

(2) 7|D x 7 is a homeomorphism for 7 ¢[0, 1),

(3) r(BdD xX1) nr(BdD x7') =@ for = # 7/,

(4) X CIntr(D x7) for all 7e[0,1), and

() Ve> 0, 8> 0 so that (D x1)C 8(X) for 7 e[1—46, 1).

The maps are very much like the maps required for strong cellularity,
however, here we don’t have the map defined for the closed interval [0, 1].

Leyma 1. X C B is cellular if and only if for any cell D with X C Int Dy
there is a cellularity map of D around X, r: D x[0,1)—~D.

Proof. This lemma follows easily from Bing’s Approximation Theorem
and the Annulus Theorem.

Suppose @ is an upper semi-continuous decomposition of E® which
is compact, 0-dimensional, and cellular (each element is cellular). Let C
be a 3-cell such that H* CIntC. Then it is clear that we can get a col-
lection {rs: Cax[0,1)~>Coluesry Of cellularity maps of C, around G,
however, we need a stronger condition. The collection {ra}sesm Will be
called a uniform collection of cellularity maps if and only if for each &> 0
and each a e s(H) there is 2 § > 0 and an % < [0, 1) so that for any o’ with
Jo'—a| < & wehave for all # ¢ C, p (ra(s*(2) x 17)) = p (ru(s*(m) x 17)) (where p
is the projection of E* onto F?) and ra(Ca x 1) C 8{Ta)-

LeMma 2. If @ is an upper semi-continuous, compact, 0-dimensional,
cellular decomposition of B then there is a uniform collection of cellularity
maps. . .

Proof. Simply construct these maps.

_ We start in the obvious way. Take a sequence {e;} so that lime; = 0.
Vo, there is a cellularity map f, which pulls ¢, into 8,(g.). Once we
are inside 8,,(F.) we will stop and call the cell fi(Ch).

We thicken each fi(C.) less than g, and so that the boundary of the
resulting 4-cell misses every §, ¢ s*(H). Their interiors form an open cover
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so finitely many will do. We can assume these ara disjoint. Then each g is
in one such cell and we can define 7,: €, x [0, ] to follow the function f
which defined this 4-cell. We can iterate this process to define 7,: Ca %
%[0, 1)—C.. We now claim that this collection of maps {r.} is uniform.
The proof of this claim is a simple application of upper semi-continuity.

We need one more definition before we can proceed with the state-
ment of the theorem. We will say that the decomposition satisfies
a uniform Lipschitez condition if and only if there is a uniform collection
of cellularity maps {Foleesen and an integer M so that for each ¢ and for
each pair of points z,y e C., then

Ira(, 7) —raly, )] < Mlo—y]

for each ve[0,1).
The condition on a decomposition that it be uniform Lipschitz is
quite strong. It has essentially two effects. First, it is a restriction on
the type of non-degenerate elements; a pseundo-arc is not permitted.
Second, it restricts the way in which the non-degenerate elements fit
together. For example, if there is a sequence of tame arcs in @& which
1
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converge to a tame arc (as shown in Figure 1), where the members of the
converging sequence twist more and more as you move through the
sequence and the twists do not shrink, then the decomposition is mot
uniform Lipschitz. )

3. The main theorem.

THEOREM. If G is an upper semi-continuous decomposition of E? which
is compact 0-dimensional, cellular, and satisfies the uniform Lipschitz
condition then EP|G x B = B*.

A word about the proof. The method used is a combination
of Bing’s technique [2] and Bryant’s modification of Bing’s method [3].

8*
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We will use the uniform-collection of cellularity maps and the uniform
Lipschitz condition to find a nested finite sequence of finite collections
of 4 cells' which contain H in their intersection and are themselves within
any preassigned neighborhood. We will then stack collections like this
in B* as Bing does and shrink as Bryant does.

The unfortunate fact about this technique is that it still uses, in an
essential way, the idea of Bing, that one must be able to shrink the non-
degenerate elements in two ways, that there must be sort of two ends.
Bryant’s modification of Bing’s technique still needs this idea, used
three times, so there are six directions to move. A great contribution
could be made to this entire study by someone who could develop an
entirely new method, for I believe the above theorem is essentially at
the limit of the ability of this technique.

4. Finding the cells. We will show that E°/G xE' is B* by showing .

the following lemma.
LemmA 3. There is a pseudo-isotopy F: E*x[0,1]-E* satisfying
1) f(z,0) ==,
2) for each 1, <1, f(z,1,) is a homeomorphism of B* onto B

(3) f(z, 1) takes B* onto ilself and each element of G onto a distinct
point of B, where @' is the decomposition of E* defined by the decomposition
G of EB® taken at each level of E*.

The proof of this lemma parallels the proof of Bing’s Theorem 3 of [2].
We need a sequence of lemmas.

LmumA 4. Let ¢> 0 be given. Then there is a finite collection K of
mutually disjoint 4-cells such that

(1) H* CIntK,

(2) s* takes each componem of K onito a 3-cell times an interval of the
form (ra(Ca X 1)) X [a, b] for some a, n, a and b.

(3) K C8.(H*).

‘ PI"OOf. This lemma follows from a gimple application of the uniform
Lipschitz -cogdition and the uniform continuity of s*. Any collection
of 4-cells s&tlsf_ymg condition (2) will be called an allowable collection.

The collection {X;}3%; is called a defining sequence for G iff each X

is the union of finitely many mutually disjoint 3-manifolds with boundary,
X1 CInbX;, and the non-degenerate elements of G are precisely the

components of QlXi. It iy well known that every monotone compact

0-dimensional decomposition of E* has a defining sequence.

Decompositions of B 113

LieMma 5. If {X;)i21 is a defining sequence for @ in E° and m is given
then there is an inmteger w > m, an allowable collection of 4-cells K, and
four numbers p_s < Pp_1 <0< py < Py S0 that '

X X [Pz, po] D EDInt KD X X [P, p1] -

LeMMA 6. If {X 37, is a defining sequence for G in E® and m and X are
given then there is a sequence m < iy <y < oo < N, G SEQUENCE of allowable
collections of 4-cells {Kl}l and numbers p W) <P-N<.<Pp1<0
<Py < e < Pyy1 S0 that

X X [Pty sn), Py1] D Ky D Int Ky D Xy X [y, 2]
DK, DIntK,D..D Ky
DInt Ky D Xiy X [P-1, p1] .

5. The shrinking map. We will denote by X* the image of a set X
under s*. Thus, if K is an allowable collection of 4-cells, then K* iy em-
bedded in the nicest possible way; i.e., each member of K* is a product,
76(Ca X 1) X [a, b] for some a, 7, a, and b.

If we had the ability to insure that all of the cells given to us by
Lemma 6 were “long and skinny’® we would be finished with the proof of
the theorem, for then Bing’s technigue nsed on the Dogbone coupled with
the existence of small ehambers (given to us by the uniform Lipschitz
condition) would show us how to perform the shrinking. However, since
we don’t have this ability we will have to resort to Bryant’s method of
shrinking. The thing which makes this methpd work is the following
lemma.

Lemva 7. If {K)7 is a sequence of nested allowable collections of
4-cells we may find -another sequence (K such that K, = Kn and
for each cell Tje K, there is precisely one cell T ¢ Kipy contained in it
(i=1,..,m—1).

Proof. We simply define K; by defining K*. Each cell in Ki* is
split, in the obvious way, into a finite number of cells, one for each
member of Kji.; contained in it.

We will now show how we can determine the length of the sequence
of allowable collections of cells and indicate how we cut up the

cells in this collection into chambers so that we can define the shrink-
ing map.

Let U Dbe a neighborhood of the non- degenerate elements and let
£> 0 be given. Lift E® x 0 by s*. Cover the lifted non-degenerate elements
by a collection of 4-cells, each within s*(I/) and each of the proper form.
ie., 7o(Cax %) % [a, b] for some «a, n, a, b.
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By uniform continuity we know that given ‘any 8> 0 there ig
a 8> 0 so that if #,yer(Ccxn) and [#—y| < ¢’ then there is an 2’
and a ¢’ in C, with |#'—9'| < é and @ = 72" X n), ¥y = 1y’ X n). We can
pick 6 > 0 so small that for any %' and any #',y' e Gy with [2'—y'| < 6
we have |ro(2' X ') —1a(y X 7')| < e.

Thus we see that if we subdivide 74(C. X ) into chambers of diameter
less than &', then at each later stage of the retraction of C,, these chambers
will have diameter less than e.

Subdivide r.(0. x %) as though it were a cube being cut by planes
parallel to the sides, an equal number of planes in each direction, and
so that the resulting chambers are of diameter less than ¢’. The number
of planes required determines the length of the finite sequence of col-
lections of 4-cells that we need to do our shrinking. This length we call N
then use Lemma 6 to obtain the sequence. Lemma 7 allows us to make
this sequence nice, in that the members nest properly. We will now define
the final chambers we need. Let 75 be a member of K. T} = ry(Ca X 1) X
x [a, b] for some a, 4, a, b. In T there is one cell T7 of Ky,

TV = r(Cux 7') X [0/, b'] .

We define the chambers in 7.(C,x#') by simply retracting those
chambers we have in 7,(C,x 7). Some of these chambers intersect
Bd(ra(Gax n’)) in a 2-cell and each of the chambers of - this type will be
enlarged by adding to it the space swspt out by this 2-cell in reversing
the retraction from 7' to 7.

The final chambers we end with in 7.(C. X %) can be expanded in the
w-direction so we obtain chambers for the 4-cells.

The rest of the proof of this theorem is exactly like Bryant's theorem
applied finitely often with one additional comment. We do have exactly
his conditions save one. Our cells are broken into chambers just like hig
except for size. Recall that the size of the image of the non-degenerate
elements is determined by the number of chambers it ends up in. We see
that in our case all of the chambers are small except those which we
caused to grow outside the central cell. The reason Bryant’s proof works

in our ease is that at no time does any move cauge points of the central
cell to leave that cell.
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