icm

Closed mappings on complete metric spaces
by '
R. Engelking (Warszawa)

In this note we prove the following (%)

THEOREM 1. For every mapping f: X ~Y of a space X metrizable in
a complete manner into a T,-space Y satisfying the first axiom of couni-
ability, the set of all points y at which f is closed is a G -set in Y.

As a consequence of the above theorem we obtain two results of
Vain§tein’s (announced in [5] and proved in [6]):

THEOREM 2. For every mapping f: X —~Y of a space X metrizable in
a complete manner into a Ty-space Y satisfying the first amiom of count-
ability and any set 4 C X such that flA: A—f(A) is closed, there ewists
a @y-set BC X such that ACB and f|B: B—>f(B) is closed.

TeEOREM 3. If there exists a closed mapping f: X—~Y of a space X
metrizable in a complete manner onto a metrizable space Y, then ¥ is metriz-
able in a complete manner

Let us notice that the proof of Theorem 2 given in [6] was somewhat
involved and that our proof of this result is shorter and simpler (although
some ideas of the original proof are applied in it).

For any mapping f: X—~Y¥ we denote by O(f) the subget of ¥ con-
sisting of all points y at which f is closed, i.e. of such points y ¢ ¥ that
for every open W C.X containing f '(y) there exists a neighbourhood
VCY of y satistying f71(V) C W. It is well-known (see for ex.mple [3],
P. 117), that f is closed if and only if O(f) - ¥. .

Let f: XY bz o« mupping of u metrizable space X into a T,-spuce ¥
satisfying the first axiom of countability and let ¢ be a metric in the
space X. We shall prove three lemmas about f; Lemma 1, as well as
Lemma 4 below, were proved in [6], we give here the proofs for the sake
of completness. '

(*) We adopt the terminology of [1], in particular mapping means a continuons
function.
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Lmvra 1. For every y € O(f) the set F = Frf (y) is compact.

Proof. Let {VaJa-i be a base at y. Take an A = {m,a,,.}CF
such that A = s,, for every # pick a point =y, ¢ f(Va)\f (y) such that
o(@n, ) '<% and denote by A’ the set {x1,s,...}. As y e O(f), the get
W=X\4'Df y) is not open, and A'® % 0. Xt is easily seen that
0% A%CAY, henee the set F' is compact.

Let Wi( f) denote for ¢=1, 2, ... the subset of ¥ consisting of all

points y ¢ ¥ which have such a neighbourhood VC Y that every et
ECf (V) satisfying the conditions

(1 g(m,m’)z% and  f(») # f(z for o, 0" e K, & # &'
ig finite. Obviously, the sets Wi(f) are open.

LemMa 2. O(f) CW(f) for i=1,2, ..

Proof. Suppose that there exists a point y ¢ ¢ (FNW(f) and let
{Valn=1 be a base at y. Choose for #» = 1, 2, ... an infinite subset K = K,
of f7V,) satistying conditions (1). From Lemma 1 it follows that there
exists a finite set of points ay, @y, ..., ax ¢ ' = Frf "(y) such that

& 1 . . 1 E 1 s
lf’CjL:JlB(a;, ﬂ) (3) It is easily seen that B(F, ‘E)C jL=J1B<aj, ﬂ) Since
by (1) every term of the last union containg at most one point from K,

for n=1,2,.., it follows that for n=1,2,.. there exists a point
e K, C f"l(Vn such that

(2) flaw) #y " and %.qu( Jltb)

The first part of (2) implies that the set 4 = {z,, Ty, o} 18 dlSJomt
to Intf (y), and the second part implies that 4 is disjoint to 7' = Fr, f
Then W = X\4 is open and contains f~(y). As y € C(f), we have f )
CW for some n. But this is impossible, because z, ¢ 4 ~ f ( . The
contradiction proves that C(f) C Wi(f).

Lmwia 3. If the metric o is complete, then (Y Wi(f) C O(f).
=l

Proof. Let y be an arbitrary point of ﬁWi( f) and let {Vi}i.. be
i=1

(®) Bla,r) = {weX: g(a,n) < r} and B(4,7r) = UB(a,,'r) for ACX,
acd
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a base at y such that V;; CV;for i =1, 2, ... Without loss of generality
we can suppose that

(3) every set- K Cf (V) satistying (1) isfinite .

Suppose that y ¢ C(f); there exists then an open set WC X con-
taining f'(y) such that for ¢=1,2,... one can find points y; e V; and
;e X\W, where @;e¢f "(y5). As y #y; for i=1,2,.. and {F}2, is
a bage at y, there exists an infinite sequence 4y, 14, ... such that f(xi,)
# f(oy) i js# k TFor every k almost all elements of the set
A = {r4,, ©1,, ...} belong to the set f (V) and (3) implies that 4 contains
a finite subset Ax such that every point in A is within a distance less

than —1—<E from a point of 4;. It follows that A is totally bounded,

and that A is compact (see [1], Theorem 14, p. 191). Then f(4) is also
compact and closed in ¥, as f(4d)~nV:# 0 for ¢=1,2,.., we have
y ef(A). But A CX\W, hence 4 C X\W and A ~fy) = 0. This contra-
diction proves that y e C(f), ie. that (| Wi(f) C O(f)-
i=1
Theorem 1 is an immediate consequence of Lemmas 2 and 3.

LEMMA 4. For every mapping f: X—Y of a normal space X inlo
a T,-space Y and a dense subset A of X we have C(f|A)C C(f), where
fld: A—f(A) is the restriction of f.

Proof. Let y e C(fl4) and W be an oben subset of X such that
F(y) C W. By virtue of normality of X, there exists an open set W, C X
such that f~(y) C W, C W,C W. For a neighbourhood ¥ C ¥ of y we have

FA) TV AfA) = T)n ACW,~ 4.
Since f)(V) is open in X and A is dense
N CF M =f (V) nACW, ~4d = W,CW,

ie. y e C(f).

The definition of the set C(f) immediately implies the following
two leramas.

Levwva 5. For every mapping f: XY, any set ¢ C Y and the restric-
tion fo: FH(C)—~C of f we have G ~ O(f) C O(fo)-

LEmma 6. For every mapping f: X —Y we have C(f) ~ (FXN\F(X)) = 0.

Proof of Theorem 2. Without loss of generality we can suppose
that 4 = X. From Lemms 4 it follows that f(4)= C(fl4)C C(f). By
virtue of Theorem 1, C(f) is a Gs-set in ¥. Hence B =f'(C(f)) is
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a Gs-set in X, moreover ACff(4)CB. Putting O = C(f) in Lemma 5
we see that f O(f) C O(fon)s then foa: FHOUN) ~0(F), and also
- fIB: B~f(B) are elosed.

Proof of Theorem 3. We can suppose (see [1], Theorem 10, p. 190),
that Y is a dense subspace of a complete metric space Z; let g: X7
denote the composition of f and of the embedding of ¥ 1111;0 Z. By Theo-
rem 1, C(g) is a Gs-set in Z. From Lemma 6 it follows that O(g)C ¥,
and from Lemma 4 that Y = O(f) = C(g|X)C C(g). Hence ¥ = C(g)
and Y is metrizable in a complete manner (see [1], Theorem 9, p. 189).

TLet us finish with a few remarks.

1. For the embedding f: QR of the set of rationals @ into the

reals R we have O(f) = @, hence in Theorem 1 the assumption of com-.

:pletness of X is essential.

9. In Theorem 2 one can replace “clogsed” by “perfect’”. In fact,
if fl4 iy perfect, then f|0: ¢—f(0) is perfect for ¢ = 4 ~ B.

3. The assumption of metrizability of ¥ in Theorem 3 i3 equivalent
to the agsumption that Y satisfies the first axiom of countability (see [1],
Problem U, p. 204). Non-metrizable closed images of complete metrie
spaces are mot necessarily complete in the sense of Cech: the quotient
space Y obtained by identification of the #-axis in the plane X = R*
to a point does not satisty the first axiom of countability (ef. [1], Example 2,
p. 115) but has a countable grid, and hence (see [1], Problem T, p. 166)
is not complete in the sense of Cech.

4. For open mappings an extension theorem analogous to Theorem 2
was proved by Mazurkiewicz in [4] for separable metric spaces X and ¥
(a simpler proof was given by Hausdorff in [2]). Whether this theorem
holds without the agsumption of separability is still an unsolved problem.

5. We say that a mapping f: X—Y is open at a point y ¢ ¥ if for
every A C X, the condition y e f(Int.4) implies that y e Tutf(4). One can
eagily show, that the set O(f) C Y of all points ¥ at which f ig open is
a Gs-set if X is compact and a CA set (analytic complement) if X is
separable and complete (the last evaluation cannot be improved and
neither separability nor completness can be ommited). The Mazurkiewicz
theorem (even in the case of compact X) cannot be proved by the method
applied here, because no counterpart of Lemms 4 is valid for open
mappings.
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