

On the space of BV-w functions

by

M. C. Chakrabarty (West Bengal, India)

1. Introduction. Let $\omega(t)$ be non-decreasing on [0,1] and outside the interval it is defined by $\omega(t)=\omega(0)$ for t<0 and $\omega(t)=\omega(1)$ for t>1. Let S denote the set of points of continuity of $\omega(t)$ and D the set of its points of discontinuity. We use the following notations:

$$S_0 = igcup_i (lpha_i, eta_i) \,, \quad S_1 = \{lpha_1, eta_1, lpha_2, eta_2, ...\} \,,$$
 $S_2 = S \cap S_1 \quad ext{and} \quad S_3 = [0, 1] \cap S - (S_0 \cup S_2) \,,$

where $\{(a_i, \beta_i)\}$ is the set of pairwise disjoint open intervals in [0, 1] such that $\omega(t)$ is constant on each of them.

R. L. Jeffery [2] has defined the class $\mathbb U$ of functions x(t) in the following way: x(t) is defined on $[0,1] \cap S$ such that x(t) is continuous at each point of $[0,1] \cap S$ with respect to the set S. If $a \in D$, then x(t) tends to limits as t tends to a+ and to a- over the points of the set S. For t < 0, x(t) = x(0+) and for t > 1, x(t) = x(1-). x(t) may or may not be defined at the points of the set D.

A set of points $0 \le t_0 < t_1 < t_2 < ... < t_n \le 1$ with $\omega(t_i) < \omega(t_{i+1})$ (i = 0, 1, ..., n-1) is said to be an ω -subdivision [1] of [0, 1]. Let x(t) be defined on [0, 1] and be in class U. The least upper bound of the sums

$$\sum_{i=1}^{n} |x(t_i+) - x(t_{i-1}-)|$$

for all possible ω -subdivisions t_0, t_1, \ldots, t_n of [0,1] with $t_i \in E \subset [0,1]$ is called the *total variation* of x(t) on E relative to ω [1] and is denoted by $V_{\omega}(x; E)$. If $V_{\omega}(x; E) < +\infty$, then x(t) is said to be of bounded variation relative to ω , BV- ω , on E.

In the present paper we assume that if α , β (> α) be any two points of D, then $\omega(\alpha) < \omega(t) < \omega(\beta)$ for all t in (α, β) . We denote by X the set of all functions x(t) in $\mathbb U$ such that x(t) is defined and continuous

On the space of BV-w functions

on D with respect to the set S and BV- ω on [0,1]. To each pair x,y of X we associate the real number d(x,y) defined by

$$d(x,y) = \int\limits_0^1 |x(t)-y(t)| \, d\omega + |T(x)-T(y)|$$

where the integral is taken in Lebesgue–Stieltjes sense and T(x) stands for $V_{\omega}(x;[0,1])$. Since d(x,y)=0 implies that x(t)=y(t) ω -almost everywhere in [0,1], d is a pseudometric for X and (X,d) is a pseudometric space.

The purpose of the present paper is to study some properties of the space (x, d). Whenever we speak of completeness of (x, d), we make it a metric space by writing x = y if x(t) = y(t) ω -almost everywhere in [0, 1] and T(x) = T(y).

2. Preliminary lemmas.

LEMMA 2.1. Let $x(t) \in \mathbb{Q}$ and let x(t) be BV- ω on [0,1]. If $c \in S_3 \cap (0,1)$, then

$$V_{\omega}(x;[0,1]) = V_{\omega}(x;[0,c]) + V_{\omega}(x;[c,1])$$
.

The lemma can be proved in the usual way.

LEMMA 2.2. Let $x(t) \in \mathbb{U}$ and let x(t) be BV- ω on [0,1]. Then x(t) can be expressed as $x(t) = \pi(t) - v(t)$, where $\pi(t)$ and v(t) are non-decreasing and continuous on S_{τ} .

Proof. We define the function $\pi(t)$ on [0,1] as follows:

$$\pi(0) = 0$$
, $\pi(t) = V_{\omega}(x; [0, t])$ for $0 < t \le 1$.

Let t_1 and t_2 (> t_1) be any two points on S_3 . By lemma 2.1, we have

$$V_{\omega}(x; [0, t_2]) = V_{\omega}(x; [0, t_1]) + V_{\omega}(x; [t_1, t_2])$$

0ľ

$$\pi(t_2) = \pi(t_1) + V_{\omega}(x; [t_1, t_2]) \geqslant \pi(t_1)$$
.

Therefore the function $\pi(t)$ is non-decreasing on S_3 . Next, we define the function $\nu(t)$ on [0,1] by

$$v(t) = \pi(t) - x(t) .$$

Let t_1 and t_2 (> t_1) be any two points of S_3 . Then

$$\begin{split} \nu(t_2) - \nu(t_1) &= \{\pi(t_2) - x(t_2)\} - \{\pi(t_1) - x(t_1)\} \\ &= \{\pi(t_2) - \pi(t_1)\} - \{x(t_2) - x(t_1)\} \\ &= V_{\omega}(x; [t_1, t_2]) - \{x(t_2) - x(t_1)\} \geqslant 0 \;. \end{split}$$

We now show that $\pi(t)$ is continuous on S_3 . Let a be a point of $S_3 \cap (0, 1)$ such that a is a limit point of S_3 , on the right. Choose $\varepsilon > 0$ arbitrarily. Take an ω -subdivision

$$a = t_0 < t_1 < t_2 < ... < t_n \leq 1$$

of [a, 1] such that

(1)
$$\sum_{i=1}^{n} |x(t_i+)-x(t_{i-1}-)| > V_{\omega}(x; [\alpha, 1]) - \varepsilon.$$

Since the sum on the left of (1) does not decrease on adding new points of ω -subdivision of $[\alpha, 1]$ belonging to the set S_3 and since such points can be taken arbitrary close to α we may suppose that $t_1 \in S_3$ and

$$|x(t_1)-x(t_0)|<\varepsilon.$$

Hence from (1),

$$\begin{aligned} V_{\omega}(x; [\alpha, 1]) &< 2\varepsilon + \sum_{i=2}^{n} |x(t_i+) - x(t_{i-1}-)| \\ &\leq 2\varepsilon + V_{\omega}(x; [t_1, 1]), \end{aligned}$$

 \mathbf{or}

$$V_{\omega}(x; [\alpha, t_1]) < 2\varepsilon$$

or

$$\pi(t_1) - \pi(\alpha) < 2\varepsilon$$
.

Letting $t_1 \to \alpha +$ over the points of the set S_3 and noting that $\varepsilon > 0$ is arbitrary we obtain $\pi(\alpha +) = \pi(\alpha)$. If α is a limit point of S_3 on the left, then we can show that $\pi(\alpha -) = \pi(\alpha)$. So $\pi(t)$ is continuous on S_3 . Since $r(t) = \pi(t) - r(t)$, it follows that r(t) is also continuous on S_3 . This proves the lemma.

LEMMA 2.3. Let x(t) be defined on [0,1] and let $x(t) \in U$. If the set $E \subset [0,1]$ is such that (i) $S_2 \cup D \subset E$, (ii) $E \cap S_3$ is dense in S_3 , and (iii) $E \cap S_0$ is dense in S_0 , then

$$V_{\omega}(x; E) = V_{\omega}(x; [0, 1])$$
.

Proof. We first suppose that $V_{\omega}(x;[0,1])$ is finite. Let D_{ω} : (t_0,t_1,t_2,\ldots,t_n) be any ω -subdivision of [0,1].

(i) If $t_0, t_1, t_2, ..., t_n$ all belong to E, then

(2)
$$V = \sum_{i=1}^{n} |x(t_i+) - x(t_{i-1}-)| \leq V_{\omega}(x; E).$$

(ii) Let none of $t_0, t_1, ..., t_n$ belong to E.

Then none of $t_0, t_1, ..., t_n$ belong to $S_2 \cup D$. Hence corresponding to $\varepsilon > 0$, chosen arbitrarily, we can find points

$$egin{aligned} & \xi_0 \ \epsilon \ (t_0, \, t_1) \cap S \cap E \ , \\ & \xi_1 \ \epsilon \ (\xi_0, \, t_1) \cap S \cap E \ , \\ & \xi_2 \ \epsilon \ (t_1, \, t_2) \cap S \cap E \ , \\ & \ddots & \ddots & \ddots & \ddots \\ & \xi_n \ \epsilon \ (t_{n-1}, \, t_n) \cap S \cap E \ , \end{aligned}$$

where $\omega(\xi_0) < \omega(\xi_1) < \omega(\xi_2) < ... < \omega(\xi_n)$, and such that

$$|x(t_i)-x(\xi_i)|<\varepsilon/2n$$
.

The choice of the points ξ_0 and ξ_n remains the same whether t_0 and t_n do or do not coincide with the points 0 and 1 respectively.

We have, for each $i = 1, 2, 3, \dots, n$

$$\begin{aligned} |x(t_i) - x(t_{i-1})| &= |x(t_i) - x(\xi_i) + x(\xi_i) - x(\xi_{i-1}) + x(\xi_{i-1}) - x(t_{i-1})| \\ &\leq |x(\xi_i) - x(\xi_{i-1})| + \varepsilon/n \ . \end{aligned}$$

Then.

$$V = \sum_{i=1}^{n} |x(t_i) - x(t_{i-1})| \leqslant \sum_{i=1}^{n} |x(\xi_i) - x(\xi_{i-1})| + \varepsilon.$$

Since the points $\xi_0, \xi_1, \xi_2, ..., \xi_n$ form an ω -subdivision of [0, 1] we see that

$$V \leqslant V_{\omega}(x; E) + \varepsilon$$
.

This implies that

$$(3) V_{\omega}(x;[0,1]) \leqslant V_{\omega}(x;E) .$$

(iii) If D_{ω} does not satisfy (i) and (ii), then some of the t_i 's belong to E and some do not belong to E.

Without loss of generality we may suppose that only the point t_1 does not belong to E. Choose $\varepsilon > 0$ arbitrarily. Then we can find a point $\xi \in (t_0, t_1) \cap S \cap E$ such that

$$|x(\xi)-x(t_1)| < \varepsilon/2$$
 and $\omega(t_0) < \omega(\xi) < \omega(t_0)$.

We have

$$|x(t_1)-x(t_0-)|+|x(t_2+)-x(t_1)|<|x(\xi)-x(t_0-)|+|x(t_2+)-x(\xi)|+\varepsilon.$$

Since the points $t_0, \xi, t_2, ..., t_n$ form an ω -subdivision of [0, 1] we see that

$$(4) V_{\omega}(x;E) + \varepsilon.$$

From (2), (3) and (4) it follows that

$$V_{\omega}(x;[0,1]) \leqslant V_{\omega}(x;E)$$
.

But it is clear that

$$V_{\omega}(x; E) \leqslant V_{\omega}(x; [0, 1])$$
.

Hence we obtain

$$V_{\omega}(x; E) = V_{\omega}(x; [0, 1])$$
.

If $V_{\omega}(x;[0,1])$ is infinite, we can show as above that $V_{\omega}(x;E)$ is also infinite. This completes the proof.

DEFINITION 2.1. Let x(t) be an element of X and D': $(t_0, t_1, ..., t_n)$ be any ω -subdivision of [0,1]. We denote by B(t) = B(t; x, D') the function whose graph is the polygonal line joining the points $(t_t, x(t_i))$ (i = 0, 1, 2, ..., n). We call B(t) a polygonal function associated with x(t).

LEMMA 2.4. Let x(t) be an element of X, then for every $\varepsilon > 0$ there is a polygonal function B(t) in X associated with x(t) such that $d(x, B) < \varepsilon$.

Proof. Let x(t) be an element of X and $\varepsilon > 0$ be chosen arbitrarily. There is an ω -subdivision D_{ω} : $(t_0, t_1, ..., t_p)$ of [0, 1] such that

$$\sum_{i=1}^{p} |x(t_i+)-x(t_{i-1}-)| > V_{\omega}(x;[0,1]) - \varepsilon/2.$$

Let E be an enumerable subset of $S_3 \cup D \cup D_{\omega}$ containing the set $D \cup D_{\omega}$ such that $E \cap S_3$ is dense in S_3 . We now choose a sequence of ω -subdivisions

$$D_{\omega}^{(n)}$$
: $(0 \leqslant t_0^{(n)} < t_1^{(n)} < t_2^{(n)} < \dots < t_{r_n}^{(n)} \leqslant 1)$

of [0, 1] such that

(i)
$$E = \bigcup_{n=1}^{\infty} D_{\omega}^{(n)}$$
,

(ii)
$$D_{\omega} \subset D_{\omega}^{(n)}$$
,

(ii)
$$D_{\omega}\subset D_{\omega}^{(n)}$$
,
(iii) $D_{\omega}^{(n)}\subset D_{\omega}^{(n+1)}$, $(n=1,2,...)$.

Write $B_n(t) = B(t; x, D_{\omega}^{(n)})$. Since $D_{\omega} \subset D_{\omega}^{(n)}$ for all n we have

$$V_{\omega}(B_n;[0,1]) \geqslant \sum_{i=1}^{p} |x(t_i+)-x(t_{i-1}-)| > V_{\omega}(x;[0,1]) - \varepsilon/2$$
.

But,

$$V_{\omega}(B_n; [0, 1]) \leqslant V_{\omega}(x; [0, 1])$$
.

So,

$$|T(x)-T(B_n)|<\varepsilon/2$$
.

It is clear that $B_n(t) \rightarrow x(t)$ at each point of E. We show that $B_n(t) \rightarrow x(t)$ at all points of $S_3 \cup E$. Let $\xi \in S_3 = E$. Choose $\eta > 0$ arbitrarily. By Fundamenta Mathematicae, T. LXX

lemma 2.2 we can choose two points ξ' , ξ'' in $E \cap S_3$ with $\xi' < \xi < \xi''$ such that

$$V_{\omega}(x; [\xi', \xi'']) < \eta/2$$
.

We can find the positive integer N such that $\xi' \in D_{\omega}^{(n)}$ when $n \geqslant N$. Then for all $n \geqslant N$,

$$|x(\xi) - B_n(\xi)| \leq |x(\xi) - x(\xi')| + |x(\xi') - B_n(\xi')| + |B_n(\xi') - B_n(\xi)|$$

$$\leq V_{\omega}(x; [\xi', \xi'']) + V_{\omega}(B_n; [\xi', \xi''])$$

$$\leq 2V_{\omega}(x; [\xi', \xi'']) < \eta.$$

So, the sequence $\{B_n(t)\}$ converges to x(t) ω -almost everywhere in [0,1]. Also the sequence is uniformly bounded on [0,1] because x(t)is bounded on [0,1].

Hence

$$\lim_{n\to\infty}\int\limits_0^1|x(t)-B_n(t)|\,d\omega=0.$$

So, there is a positive integer m such that

$$\int\limits_0^1 |x(t) - B_n(t)| \, d\omega < \varepsilon/2 \quad \text{ when } n \geqslant m \; .$$

Take any n > m and write $B(t) = B_n(t)$. Then

$$d(x, B) < \varepsilon$$
.

3. The space (X, d).

THEOREM 3.1. The space (X, d) is separable.

Proof. Let E be an enumerable set in [0, 1] containing $S_2 \cup D \cup \{0, 1\}$ such that $E \cap S_3$ is dense in S_3 and $E \cap S_0$ is dense in S_0 . We denote by X_0 the set of all polygonal functions P(t) in (X, d) with corners at points (t, r) where $t \in E$ and r, rational numbers. Then clearly X_0 is an enumerable set. The proof of the theorem will be complete if we can show that X_0 is dense in (X, d).

Let x(t) be an element of (X, d). Choose $\varepsilon > 0$ arbitrarily. By lemma 2.4, there is a polygonal function B(t) in X associated with x(t)such that $d(x, B) < \varepsilon$. Denote the abscissae of the corners of B(t) by t'_0, t'_1, \ldots, t'_m . Then t'_0, t'_1, \ldots, t'_m form an ω -subdivision of [0, 1]. We choose an $\eta > 0$ such that $4m\eta < \varepsilon$. We can choose a polygonal function P(t)in X_0 with corners having abscissae at points $t_0, t_1, ..., t_m$ such that

$$|P(t)-B(t)| < \eta$$
 for all t in $[0,1]$,

and

$$|B(t_i)-B(t'_i)| < \eta$$
 for $i = 0, 1, 2, ..., m$.

We take the points $t_0, t_1, ..., t_m$ such that they also form an ω -subdivision of [0, 1].

Now.

$$\int\limits_{0}^{1}\left|x(t)-P(t)\right|d\omega\leqslant\int\limits_{0}^{1}\left|x(t)-B(t)\right|d\omega+\int\limits_{0}^{1}\left|B(t)-P(t)\right|d\omega<\varepsilon+\left|\left[0\,,\,1\right]\right|_{\omega}\cdot\varepsilon$$

and

$$|T(P) - T(B)| \leqslant |T(P) - \Sigma| + |\Sigma - T(B)|,$$

where
$$\Sigma = \sum_{i=1}^{m} |B(t_i) - B(t_{i-1})|$$
.

$$|T(P) - \mathcal{E}| = \left| \sum_{i=1}^{m} |P(t_i) - P(t_{i-1})| - \sum_{i=1}^{m} |B(t_i) - B(t_{i-1})| \right|$$

$$\leq \sum_{i=1}^{m} \{|P(t_i) - B(t_i)| + |P(t_{i-1}) - B(t_{i-1})| \}$$

$$\leq 2mn < \varepsilon/2.$$

$$|T(B) - \Sigma| = \Big| \sum_{i=1}^{m} |B(t_i) - B(t_{i-1})| - \sum_{i=1}^{m} |B(t'_i) - B(t'_{i-1})|$$

$$\leq \sum_{i=1}^{m} \{|B(t_i) - B(t'_i)| + |B(t_{i-1}) - B(t'_{i-1})|\}$$

So,
$$|T(P)-T(B)| < \varepsilon$$
, and

$$|T(x)-T(P)| \leq |T(x)-T(B)|+|T(B)-T(P)| < 2\varepsilon$$
.

Therefore.

$$\begin{split} d(x,P) &= \int\limits_0^1 |x(t) - P(t)| \, d\omega + |T(x) - T(P)| \\ &< \varepsilon + \varepsilon \cdot |[0\,,1]|_\omega + 2\,\varepsilon = K \cdot \varepsilon \,. \end{split}$$

Since $\varepsilon > 0$ is arbitrary, it follows that X_0 is dense in (X, d).

 $< 2mn < \varepsilon/2$.

THEOREM 3.2. If there is an interval $[a,b] \subset [0,1]$ such that $\omega(t)$ is strictly increasing on [a,b] then (X,d) is not complete and no closed sphere in it is compact.

Proof. Let M be any closed sphere in (X, d) with centre at a and radius r. Take a number c in $(a, b) \cap S$ and choose a positive integer n_0 with $c+(1/n_0) < b$. We define the sequence $\{a_n(t)\}\ (n \ge n_0)$ on [0,1] as follows:

$$a_n(t) = egin{cases} 0 & ext{for} & 0 \leqslant t \leqslant c \ Kn(t-c) & ext{for} & c < t \leqslant c + (1/n) \ K & ext{for} & c + (1/n) < t \leqslant 1 \end{cases},$$

 $n \geqslant n_0$ and K > 0.

Let us write $x_n(t) = a_n(t) + a(t)$ for all t in [0, 1]. Then $x_n(t)$ is an element of X $(n \ge n_0)$.

We have

$$egin{aligned} d(x_n, lpha) &= \int\limits_0^1 |x_n(t) - lpha(t)| \, d\omega + |T(x_n) - T(lpha)| \ &\leqslant \int\limits_0^1 |lpha_n(t)| \, d\omega + T(x_n - lpha) \ &\leqslant K \cdot [\omega(1) - \omega(0)] + K \,. \end{aligned}$$

If we take $K < r/\{\omega(1) - \omega(0) + 1\}$, then $d(x_n, \alpha) < r$. So $x_n \in M$ $(n \ge n_0)$. If possible, let M be compact. Then there is a subsequence $\{x_{n_i}\}$ which converges to an element x of M.

We have

$$d(x_{n_i}, x) = \int_0^1 |x_{n_i}(t) - x(t)| d\omega + |T(x_{n_i}) - T(x)|.$$

This implies that for any two numbers λ , μ in [0, 1],

$$\int_{1}^{\mu} |x_{n_{i}}(t) - x(t)| d\omega \to 0 \quad \text{as } i \to \infty.$$

Since

$$\int\limits_{a}^{c}\left|x_{n_{t}}(t)-x(t)\right|d\omega=\int\limits_{a}^{c}\left|a\left(t\right)-x(t)\right|d\omega\;,$$

letting $i \rightarrow \infty$ we have

$$\int_{a}^{c} |\alpha(t) - x(t)| d\omega = 0.$$

Since a(t) and a(t) are continuous on [a, c] and a(t) is strictly increasing on [a, c] we obtain

(5)
$$x(t) = a(t)$$
 for $a \leqslant t \leqslant c$.

Choose $\varepsilon>0$ arbitrarily with $c+\varepsilon< b$ and take a positive integer i_0 such that $1/n_{i_0}<\varepsilon$. Then for all $i\geqslant i_0$

$$\int\limits_{c+\varepsilon}^{b}\left|x_{n_{4}}(t)-x(t)\right|d\omega=\int\limits_{c+\varepsilon}^{b}\left|K+a(t)-x(t)\right|d\omega\;.$$

Letting $i \rightarrow \infty$ we get

$$\int_{a+s}^{b} |K+a(t)-x(t)| d\omega = 0,$$

which gives that

$$x(t) = K + a(t)$$
 for $c + \varepsilon < t \leq b$.

Since $\varepsilon > 0$ is arbitrary we obtain

(6)
$$x(t) = K + a(t) \quad \text{for } c < t \leq b.$$

From (5) and (6) we see that x is not an element of X. Thus we arrive at a contradiction. Hence M is not compact.

Next, we show that (X,d) is not complete. For this we consider the sequence $\{a_n\}$ defined above. For any two positive integers m and n, $(m>n\geqslant n_0)$

$$d(a_m, a_n) = \int_0^1 |a_m(t) - a_n(t)| d\omega + |T(a_m) - T(a_n)|$$

$$= \int_c^{c+\frac{1}{n}} |a_m(t) - a_n(t)| d\omega$$

$$\leq K[\omega(c + (1/n) +) - \omega(c)] \to 0 \quad \text{as } n \to \infty$$

Hence $\{a_n\}$ is a Cauchy sequence in (X, d). Assuming that $\{a_n\}$ converges to a limit x in (X, d) we can show as above that

$$x(t) = \begin{cases} 0 & \text{for} & a \leqslant t \leqslant c, \\ K & \text{for} & c < t \leqslant b. \end{cases}$$

This contradicts the fact that x is an element of (X, d). Hence the space (X, d) is not complete.

We now show by an example that for some $\omega(t)$, the space (X, d) is complete and every closed sphere in it is compact.

EXAMPLE 3.1. Let $\omega(t) = 0$ for $0 \le t \le a$ and $\omega(t) = 1$ for $a < t \le 1$, where 0 < a < 1.

We first show that the space (X, d) is complete. Let $\{x_n\}$ be any Cauchy sequence in (X, d). Since

$$d(x_m, x_n) = \int_0^1 |x_m(t) - x_n(t)| d\omega + |T(x_m) - T(x_n)|$$

= $|x_m(a) - x_n(a)| + |T(x_m) - T(x_n)|$,

it follows that $\{x_n(a)\}\$ and $\{T(x_n)\}\$ are Cauchy sequences.

On the space of BV-w functions

23

Let

$$\lim_{n\to\infty} x_n(a) = l$$
 and $\lim_{n\to\infty} T(x_n) = P$.

We define the function x(t) on [0,1] as follows:

$$x(t) = Pt + l - Pa$$
 for $0 \le t \le 1$.

Then x(t) is continuous on [0,1] and T(x) = P. Clearly $x \in X$. We have

$$d(x_n, x) = \int_0^1 |x_n(t) - x(t)| d\omega + |T(x_n) - T(x)|$$

$$= |x_n(\alpha) - x(\alpha)| + |T(x_n) - P| \rightarrow 0$$

as $n \to \infty$. Hence the space (X, d) is complete.

Next, we show that every closed sphere in (X, d) is compact. Let M be any closed sphere in (X, d) with centre at x_0 and radius K. Take any sequence $\{x_n\}$ in M.

We have

$$d(x_n, x_0) = \int\limits_0^1 |x_n(t) - x_0(t)| \, d\omega + |T(x_n) - T(x_0)|$$

$$= |x_n(a) - x_0(a)| + |T(x_n) - T(x_0)|...$$

This gives that

$$|x_n(\alpha)| \leq K + |x_n(\alpha)|$$
 and $T(x_n) \leq K + T(x_n)$ for all n .

Hence we can choose a subsequence $\{x_{n_i}\}$ such that $\{x_{n_i}(\alpha)\}$ as well as $\{T(x_{n_i})\}$ converges.

Let

$$\lim_{i\to\infty} x_{n_i}(a) = l$$
 and $\lim_{i\to\infty} T(x_{n_i}) = P$.

We define x(t) as in the previous case.

Then $x \in X$. Also x(a) = l and T(x) = P.

We have

$$d(x_{n_i}, x) = |x_{n_i}(\alpha) - x(\alpha)| + |T(x_{n_i}) - T(x)| \rightarrow 0$$

as $i \to \infty$. Thus $\{x_{n_i}\}$ converges to x. Again

$$d(x, x_0) \leqslant d(x, x_{n_i}) + d(x_{n_i}, x_0)$$
 for all i .

So letting $i\to\infty$ we have $d(x,x_0)\leqslant K$ which gives that $x\in M$. Hence the sphere M is compact.

I am grateful to Dr. P. C. Bhakta for his kind help and suggestions in the preparation of the paper.

References

- P. C. Bhakta, On functions of bounded ω-variation, Rev. Math. Univ. Parma (2), 6, 1965.
- [2] R. L. Jeffery, Generalised integrals with respect to functions of bounded variation, Can. J. Math. 10 (1958), pp. 617-628.

DEPARTMENT OF MATHEMATICS, KALYANI UNIVERSITY, West Bengal, India

Reçu par la Rédaction le 29. 7. 1969