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On the space of BV-o functions

by
M. C. Chakrabarty (West Bengal, India)

1. Introduction. Let w(f) be non-decreasing on [0,1] and outside
the interval it is defined by w(f) = 0 (0) for { < 0 and o(f) = (1) for
t> 1. Let 8 denote the get of points of continuity of w(t) and D the set
of its points of discontinuity. We use the following notations:

8= L{J(‘ah Ba)y  Bi={o1, By cay fay o} s
8,=8~8 and 8=[0,1]~n8—(8v 8,

where {(ai, Bi)} i8 the set of pairwise disjoint open intervals in [0, 1] such
that o(t) is constant on each of them.
~ R. L. Jeffery [2] has defined the class U of functions w() in the
following way: ®(t) is defined on [0,1] ~ 8 such that »(?) is continuouns
at each point of [0, 1] ~ § with respect to the set . If « e D, then ()
tends to limits as ¢ tends to e+~ and to a— over the points of the set 8.
For t <0, x(f) = 2(0+) and for ¢t>1, #(f) = x(1—). 2(f) may or may
not be defined at the points of the set D. )
A set of points 0<ly<th <fp<..<ta <1 With o) < o(tu)
(t=10,1,..,n—1) is said to be an w-subdivision [1] of [0,1]. Let @(t).
be defined on [0, 1] and be in class Us. The least upper bound of the sums

n

D) lolti+) —a(tes—)|

fam]
for all posslble - gubdivisions #, fyy .., ta of [0,1] wWith & e EC[0;1]
iy called the total variation of ®(t). on B relative to  [1] and is denofed
by Vaa; B). It V(w; B) < +oo, then x(f) is said to be of bounded vari- -
ation relative to w, BV-w, on E.

In the present paper we assume that if a, § (>«) be any two points

of D, then w(a) < w(f) < w(f) for all ¢ in (a,ﬁ) ‘We denote by X the
set of all functions @(t) in W such that x(s) is defined and continuous
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on D with respect to the set § and BV-w» on [0,1]. To each pair z,y
of X we associate the real number d(wz, y) defined by

d(@,9) = [ o)~y ()| dow+ |T(2) - T(y)|

where the integral is taken in Lebesgue-Stieltjes sense and T'(z) stands
for Vu(z;[0,1]). Since d(z,y)=0 implies that x(f)=y(f) w-almost
everywhere in [0, 1], d is a pseudometric for X and (X, d) is a pseudo-
metric space.

The purpose of the present paper is to study-some properties of the
space (z, d). Whenever we speak of completeness of (x, d), we make it
a metric space by writing # =y if #(¢) = y() w-almost everywhere in
[0,1] and T(z)= T(y).

2. Preliminary lemmas.

LEmma 2.1. Let #(8) € U and let #(t) be BV-w on [0, 1]. If ¢ € 85 ~ (0,1),
then :

Vola; [0, 1]) = Vaulw; [0, ¢])+Vo(w; [¢, 1]) .
The lemma can be proved in the usual way.

Levwa 2.2. Let #(t) ¢ W and lot (1) be BV-0 on [0,1]. Then x(t)
- can be expressed as x(1) = w(t)—v»(1), where m(t) and »(t) are non-decreasing
and continuous on 8.

Proof. We define the function z(¢) on [0,1] as follows:
z(0) =0, =(t)=V.z;[0,t]) for 0<it<1.
Let ¢, and 7, (>t,) be any two points on .§,. By lemma 2.1, we have
Vol(@; [0, ]) = Vu(; [0, t.])+-Va(@; [t1, 1)) -
or )
w(ty) = 7 (t) +Volw; [t 2a]) = m(t) .

Therefore the function (t) is non-decreasing on S,. Next, we define the
funection #(#) on [0, 1] by

(1) = n(t)—x(t).
Let #, and ¢, (>1,) be any two points of ;. Then
Y(h)—v() = {n(t) —@(%)} — {7 (8) —a(t)}
= {#ll) —m(0)} —~{®(2,) —2(1,)}
= Val@; [, b)) — {&(t) —2(5)} > 0.

@
Im© On the space of BV-o functions 15

We now show that n(f) is continuous on §,. Let « be a point of
8; ~ (0, 1) such that a is a limit point of §;, on the right, Choose ¢ > 0
arbitrarily, Take an o-subdivision

a=th<h <t <..<t, <1
of [a,1] such that

n
Y D 10(tit) =0 (tim—)]| > Vla; [a, 1)) ¢ .
=
Since the sum on the left of (1) does not decrease on adding new points
of w-subdivision of [«, 1] belonging to the set S; and since such points
can be taken arbitrary close to o we may suppose that ¢, ¢ §; and -

; [(t) —a(ty)| <e.
Henee from (1),

V(@ [a, 1) < 26+ ) [o(tit) —a(tia—)|

< 2e+Vo(@; (4, 1])
or

Valw; [a, 4]) < 2,
or

() —m(a) < 2.
Letting ¢,-»a- over the points of the set S; and noting that ¢> 0 is
arbitrary we obtain n(a-+) = n(a). If « is a limit point of S; on the left,
then we can show that m(a—)= =(a). So =(t) is continuous on S;. Since
»(t) = m(t)—u(t), it follows that »(t) is also continuous on S,. This proves
the lemma. . .

LEmMmA 2.3. Let x(t) be defined on [0,1] and let (1) e W. If the set
EC[0,1] i3 such that (i) 8, v DCE, (ii) E ~ 8, 18 dense in 8;, and (iii)
E ~ 8, is dense in 8,, then

Vali; B) = Vafa; [0,1]) .

Proof. We firgt suppose that V.(w;[0,1]) is finite. Let D.:
(fy B2y tay ey tn) be any o-subdivision of [0, 1].

(i) If 5,3, tyy ..., 2n all belong to H, then

n

@) V=D lw(tit) —o(t-1—)| < Vale; B).

=1

(i) Let none of %, ?, ..., t» belong to B.
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Then none of 4,1, ..,% belong to 8, D. Hence corresponding
to ¢> 0, chosen arbitrarily, we can find points
L el t)nS~E,
Lelfph)nSnE,
Leltt)nSnE,

bne(lpryta) nS B,
where (&) < o(é) < (&) < ... < w(és), and such that

| (ts) —m(&:)] < &/2m .
The choice of the points & and &, remains the same whether ¢, and t,
do or do not coincide with the points 0 and 1 respectively.
We have, for each i=1,2,3,.,n '
[@(t) —a (1) = |2(t) —@(E0) + 2(80) ~ 2 (Esm1) + & (Eia) — 2 (ts-1)]
< |w(&s) —@ (1) +e/n .

Then,
V= 21’ ke(t) —a(tima)| < ) [0(6) —0(Esy)| 4o -
i= i=1

Bince the points &, &, &, .., & form an o-subdivision of [0,1] we

see that
V< Vu2; E)+e.
This implies that :
(3) Vol®; [0, 1]) < Va(w; B) .
(iii) If D, does not satisty (i) and (ii), then some of the #s belong
to E and some do not belong to FE. ' '

Withont loss of generality we may suppose that only the point ¢
does not belong to E. Choose & > 0 arbitrarily. Then we can find a point
Ee(to,t1) 8~ E such that '

(@ —2t) <e2 and  wll) < of) < w(b).

We have
[2(t)—@(to—)|+ |2(l+) —@(t)] < |2(8) ~o(ty—)|+ @t +)—z(£)] +e .
Since the points %, &,1,, ..., &, form an «-subdivision of [0, 1] we see that
(4) V< Vo(x; E)y+e. '
From (2), (3) and (4) it follows that
Volw; [0,1]) < Vala; B) .

icm®
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But it is clear that
Volz; B) < Vaolw; [0,1])
Hence we obtain
Volz; B) = Vm(w; [09 1)) -
If V(e;[0,1]) is infinite, we can show as above that V.(z; E) is also
infinite. This completes the proof.

DEFINITION 2.1. Let (f) be an element of X and D': (ty, 1, ..., tn)
be any o-subdivision of [0,1]. We denote by B(i)= B{t; 2, D’) the
funetion whose graph is the polygonal line joining the points (tl, #(t))
(6=0,1,2,..,n). We call B(t) a polygonal function associated with x(t).

LEMMA 2.4. Let 2(t) be an element of X, then for every &> 0 there is
a polygonal function B(f) in X associated with x(t) such that d(s,B) <e.

Proof. Let #(t) be an element of X and &> 0 be chosen arbitrarily.
There is an w-subdivision Dy (fy, 2y, ..., Tp) 0f [0, 1] such thab

»
N o) =t —)] > Vol [0, 1) —5/2 .
4=1
Let B be an enumerable subset of 83w D w Dy containing the set D v Dy
such that B ~ 8, is dense in S;. We now choose a sequence of w-sub-
divisions )
D™ (0 < < <t < ... <L)
of [0, 1] such that
oo
M B=UDP,
n=1
(ii) D, C DY,
(iii) DP C DG,
Write Ba(f) = B(t; z, D). Since D, C DS? for all n we have

(m=1,2,..).

b
ValBa 10,11 = D lo(ti+) —a(tiza—)] > Vola; [0, 1) —e/2

But,
Vol Bn; [0,1]) < Vala; [0,1]) -
So,
T (@) — T (Ba)] < ¢/2 .
It is clear that Ba(f)—u(t) at each point of E. We show that Ba(t)—z (%)
at all points of S;v B. Let & eS){% Choose 7> 0 arbitrarily. By

Fundamenta Mathematicae, T. LXX 2
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lemma 2.2 we can choose two points &, & in B ~n S, with & < &< &”
such that

Vol@; [£, £7]) < n/2.

We can find the positive integer IV such that &' e DY when n = N. Then
for all » > N,
(&) — Ba(&)| < 12(8) —@ (&) + @ (&) —Ba(&)| + | Bu(é") —Balé)]

< Vol [E E" + Vol Bn; [£', §7])
< 2Valw; [§, 8 <.

So, the séquence {B,(t)} converges to x(f) w-almost everywhere
in [0, 1]. Also the sequence is uniformly bounded on [0, 1] because #(?)
is bounded on [0, 1].

Hence

. .
lim [ () —Ba(t)|dew = 0.
W—POOO

So, theré is a positive integer m such that

[ 1#(t)—Ba(t))do < &2 when n=m.
1]

Take any n > m and write B(f) = By(t). Then

(@, B)<s.

3. The space (X, d).

TaEOREM 3.1. The space (X, d) is separable.

Proof. Let E be an enumerable set in [0, 1] containing 8, v D'v {0,1}
such that B ~ 8; is dense in §; and E ~ §, is dense in S,. We denote
by X, the set of all polygonal functions P(t) in (X, d) with corners at
points (¢,r) where t ¢ E and r, rational numbers. Then clearly X, is an
enumerable set. The proof of the theorem will be complete if we can
show that X, is dense in (X, d).

Let #(tf) be an element of (X, d). Choose &> 0 arbitrarily. By
lemma 2.4, there is a polygonal function B(Z) in X associated with x(f)
such that d(x, B) < e. Denote the abseissae of the corners of B(f) by
19y t1y «oey Im. Then 1, 11, ..., i, form an w-subdivision of [0, 1]. We choose
an 7> 0 such that 4mn <e We can choose a polygonal function P(z)
in X, with corners having abscissae at points #, %, ..., m such that

[P(t)—B(®)| <7 for all ¢ in [0,1],
and

|[B(t)—B(t)l <n for i=10,1,2,..,m

icm
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. 'We take the points %, %, ...,
division of [0, 1].
Now,

tm such that they also form an w-sub-

[l —P(t)do < [ o) —B®)do+ [ 1BH—P(H)]do < e+][0,1]|,-¢

and

T(P)—T(B)| < |T(P)—Z |+ Z ~T(B)|,

where 5 = 2 |B(:) —B(ti-1)l:
T(P)—Z| = | D |Pt)—P(ti)|— D, IB(ti)"B(ti—l)ll
i=1 i

< D {IP(t)—Bta)|+ [P (te-s) —B(ts-n)l
<2mn<egf2.

\7(B)— EI—IZIB 1) —B(tia) | — ZIB(t;-)—B(ze_o

i=1

< D UIB (1) —B()|+ |B (fi-1) —B(t-s)]}

i=1
< 2mn<egf2.
So, |T(P)—T(B)| < ¢ and

\T(2)—T(P)| < |T(2)—T(B)|+|T(B)—T(P)| < 2.

Therefore,

(@, P) = [ |o(t)—P ()| do+|T(2)—T(P)|

<ete[0,1]ot+2e=K-&.

Since &> 0 is arbitrary, it follows that X, is dense in (X, d).
THEOREM 3.2. If there is an interval [a, b] C[0,1] such that o(t) is
strictly increasing on [a, b] then (X, d) is not complete and no closed sphere
n it i8 compact. '
Proof. Let M be any closed sphere in (X, d) with centre at o and
radius r. Take a number ¢ in (a,b) ~ § and choose a positive integer 7,
2%
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with ¢+ (1/ne) < b. We defme the sequence {aa(t)} (%> n,) on [0,1] a8

follows:
|0 for 0<Li<e,
an(t) = \En(t—c) for o¢<i< c+(1/n),
K for e¢t+(ln)<t<Ll,

n>=n, and K > 0.

Let us write @a(f) = an(t)--a(t) for all ¢ in [0,1]. Then 2a(t) is an
element of X (n > n).

‘We have

. .
A(@n, @) = [ an(t) —a(t)| do+ |T (@0) —T(a)]
0
1

< f |om(t)| oo+ T (2 —a)

< E-fo)—o(0)]+K.

T we take K < 7f{ow{1)—w(0)+1}, then d(xs, a) < 7. S0 2n e M (0 = ).
If possible, let M be compact. Then there is a subsequence {wn} which
converges to an element 2 of M.

‘We have ’

1

(@ 7) = [ [E0(t) — @) doo+| T (@0) —T ()] -

This implies that for any two numbers 4, ¢ in [0, 1],

a8 1—>co .

[ 12lt) —0(8) | o >0
) ,
Since

J 1zt —2@ldeo = [ la()—2(®)do,

letting i~>c0 we have

fla(t

Sinee «(t) and z(f) are continuous on [a, ¢] and «(#) is strictly increasing
on [a,¢] we obtain
(5) () = ()

Choose & > 0 arbitrarily with ¢+ < b and take a positive integer 4, such
that 1/ni < e. Then for all i >4,
b

f!wm Wldo = [ B+ a@)—o(1)|de .

cte cte

z(t)|do = 0.

for a <t e
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Letting i—>oc0 we get

b
[ 1K +at)

cts

—z(f)|do =0,

which gives that

x(t) = K+ alt)
Since &> 0 is arbitrary we obtain
(6) o(t) = K+ a()

From (5) and (6) we see that @ is not an element of X. Thus we arrive
at a contradiction. Hence M is not ecompact.

Next, we show that (X, d) is not complete. For this we consider
the sequence {a} defined above. For any two positive integers m and #,
(m > n = n)

for e+e<t<bh.

for e <t <b.

A{am, on) = f]o:m(t)—an(t)lclw—l-[T(am)—T(an)]

1
et
n

= [ |an(t) —anlt)|do

< K[w(o—}-(l/'n)—[—)‘—w(

Hence {a,} is a Cauchy sequence in (X, d). Assuming that. {us} converges
to a limit # in (X, d) we can show as above that

o(t) = {0 for
T |\E for

This contradicts the fact that » is an element of (X, d). Hence the space
(X, d) is not complete. ’

‘We now show by an example that for some w(t), the space (X, d)
is complete and every closed sphere in it is compaet.

ExamMPiE 3.1. Let o(f)=0for 0 <t<aand w(t)=1fora<i<1,
where 0 < a<1.

We first show that the space (X d) is complete. Let {¥,} be any
Cauchy sequence in (X, d). Since

o)) =+0 a8 m>oco.

at<ece,
e<<t<b.

A(@my @) = [ am(t) — @a(t)| do+ | T (m) — T (2a)]
) .

—(@)|+ T ()~ T (0],

it follows that {zs(a)} and {T(xs)} are Cauchy sequences.

= |#m(a)
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Let

limag{a) =1 and lmT(zs)=P.
N->00 :’lr-)DQ

We define the function x(¢) on [0, 1] as follows:

o(t)=Pt+1—Pa for 0<i<1.

Then #(t) is continuous on [0,1] and T'(z) =

f Jont)

= |zn(a) —2(

P. Clearly » ¢ X. We have

&(@n, #) = — (1)) do+ |T(2n)—T(®@)]

o)+ |7 () —P| 0

as n—>co. Hence the space (X, d) is complete.

Next, we show that every closed sphere in (X, d) is compact. Let M
be any closed sphere in (X, d) with centre at z, and radius K. Take any
sequence {#,} in M. :

‘We have
A{tn, 00) = [ on(t)—@o(t)| de> + | T (@) — T ()]
= |g(a) = vo(a)| + | T (@n) ~T(@)] - .
This gives that '
oa(a)] < K+ logla)] and  T(wm) < KE-+T(w) for all m.

Hence we can choose a subsequence {wm} such that {zn(a)} as well as
{T (%)} converges.
Let

lim zp(a) =1 and ~lm T(w,)=P.

‘We define #(#) as in the previous case.

Then ze X. Also #(a) =1 and T(z)= P.
‘We have

— ()| + | T (n) —T (%

as i—»oo.. Thus {®,} converges to x. Again

A (Bnyy @) = |Tngla) ) =0

a<¢ @) < A, Toy) + A (Tngy 2)

So letting i—>oo we have d(z,z) <
the sphere M is compact.

for all ¢ .

< K which gwes that x ¢« M. Hence
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