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Structure and embedding theorems
for unique normal decomposition lattices

by

E. W. Johnson (Towa City, Ia.), J. A. Johnson (Houston, Tex.),
and J. P. Lediaev (lowa City, 1a.)

In [2] we characterized those distributive Noether lattices which
can be represented as the lattice of ideals of a Noetherian ring. Those
lattices have the property that every element has a unique normal primary
decomposition involving only powers of primes. In this paper we consider
a broader class of multiplicative lattices, namely those which satisfy
the less restrictive condition that every element has a unique normal -
decomposition. For such & lattice £ we obtain a structure theorem
(Theorem 1), and a characterization in terms of a “dense” embedding of
the lattice of ideals of a suitable Noetherian ring (Theorem 2). We also
give a condition under which £ can be represented as the lattice of ideals
of some Noetherian ring (Theorem 3).

A (commutative) multiplicative lattice is a complete lattice in which
there is defined a commutative, associative and join-distributive multipli-
cation for which the greatest element, denoted by I, is the multiplicative
identity. An element M in a multiplicative lattice £ is a joén-principal
element if (AvVBM): M = A:MvB for all A,Bef. Bach principal
ideal in a commutative ring R is a join-principal element in the lattice
of ideals of R [1].

Throughout this paper, L will denote a commutative multiplicative
lattice in which each element is a join (not necessarily finite) of join-principal
elements and in which I is compact.

An element Q is primary for a prime element P (or @ is P-primary)
if P" < Q < P for some integer # and the relation AB < @ implies that
A<Q or BLP. An irredundant decomposition A4 = @, A...AQx is
a normal decomposition of A if @ is primary for, say, P; and the P; are
distinet. £ is a unique normal decomposition lattice (or UND lattice) if
each element of £ has a unigue normal decomposition. )

‘We will first prove the Krull Intersection Theorem for £.
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LeMMA 1. Let © be a lattice in which each element has a normal de-
composition. Let F denote the greatest lower bound of the collection of maximal

elements of €, and let B be an element of £ such that B < . Then k/—\1(A vB¥

= A for each A ef.
Proof. It suffices to prove that if M is a join-principal element

such that M < ;’i (4 vB"), then M < A. Hence, let M be a join-principal

k=1
0
element which satisfies the relation M <k/\1(A VB®, Tet A = Q,A...AQn
e a normal decomposition of 4 where @ is P;-primary, and let AvBM
= T, A...A T be anormal decomposition of 4 v BM where T; is §;- primary.
Sinee T'; is S;-primary, we have that for each i (1 <7< m), either M < T
or B¥ < T for some integer k;. In the latter case the relations T'; > AvBH
>k7\ (AVB®) > M hold. Thus, in either case M < T; for each i, and so
=1

M <AvVBM and AVM = AvBM. Since M is join-principal, we have
A:MyB= (AVBM): M = (AvM): M = I. From this and from the
relation B < ¥, we conclude that 4: M £ P; for each ¢=1, ..., n. Since
(A: M)M < A <Qi, we have M <@ for each =1, .., n. Therefore,
M <A

LemmA 2. If D and M are elements of € such that M™ < D < M for
some integer m and if M is a mawimal element in L, then D is M -primary.

Proof. Suppose that AB < D but B¢ M. Then (M vB)" = I, hence
A=AMVB"=AM™VABM™ 'v..VAB™ 'MvAB™. Since M™ <D
and AB < D, it follows that A < D. ‘

If € has only one maximal element, £ is quasi-local. If £ has only one
prime element, £ is primary. € is said to be one-dimensional if there exists
at least one pair of distinct primes which are comparable but no three
distinet primes are pairwise comparable. The following lemma, which
extends a known ring theoretic result to multiplicative lattices, classifies
the quasi-local UND lattices. '

Lemva 3. If € is a quasi-local UND lattice, then L is either primary
or L is a one-dimensional lattice in which 0 is prime.

Proof. Assume that £ is not a primary lattice. Let M be the maximal
element of £ and let P be a nonmaximal prime. Let PM = Q,A...AQx
be the normal decomposition of PM where Q; is P;-primary. Then for
each 4, we have PM < @i, so either P <Q; or M < P;. Suppose that
M < Py for some i, say M < P,. Then @, is M -primary, so there is an
integer n such that M™<@,. It follows that (M'VPM)AQA...AQx is
a mnormal decomposition of PM for all *>=n, and hence that @,

< A (M'vPHM). But then, by Lemma 1, M"<Q,<PM < P, which

)
r=1

iom” -

©
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contradicts the fact that M + P. Hence M < P; for all 4, so P < @y for
all i. Tt now follows that P < PM, and hence that P << A\ M" = 0.

Since P was an arbitrary nonmaximal prime in £, this conﬁpietes the
proof of the lemma.

For an arbitrary element D in £, let £/D denote the sublattice of L
which consists of all elements A in £ that satisfy the relation A4 > D.
For A, B eC/D, define A o B= ABvD. With this multiplication, £/D is
a commutative multiplicative lattice in which each element is a join of
join-principal elements in £/D [1].

Suppose that each element of £ has a normal decomposition and
let A= Q;A..AQ, be a mnormal decomposition of AL where @; is
P;-primary. If D is an arbitrary element of £, then {P;| P;vD # I} is an
isolated set of primes of A. Let 4p denote the corresponding isolated
component of A (i.e., Ap= A {Qi P:ivD # I}), and define 4 =B(D) if
and only if Ap= Bp. Dilworth [1] proved that the congruence modD
is a congruence relation on £ which preserves meet, join, multiplication,
and residuation. Let £p denote the multiplicative lattice of congruence
classes. For each element A f, we let {4} denote the congruence class
of A. Since join-principal elements are defined in terms of an equation
involving join, multiplication, and residuation, it follows that the con-
gruence class of a join-principal element in £ is join-principal in £p.
Therefore each element in £p is a join of join-principal elements. The
primes and primaries of £p are precisely the congruence classes determined
by the primes and primaries of £. We are now ready to prove the following
structure theorem for UND lattices.

THEoREM 1. £ is o UND lattice if and only if L is a finite direct sum

* of primary lattices having wilpotent mazimal elements and one-dimensional
lattices in which 0 is prime and in which each nonzero element is greater
than or equal to a product of nonzero prime elements.

Proof. Assume that £ is a UND lattice. Let 0 = @ AQuA...AQuA
APyA...APp be the unique normal decomposition of 0 where each @y is
primary for a maximal element, say M;, and each P; is primary for a non-
maximal prime element. Let M be any maximal element of £ such that
M > P; for some j, and let P; be P-primary. Since the UND property
of £ is inherited by £, Lar is a one-dimensional lattice in which {0} is
prime (Lemma 3). Therefore the primes {0}, {P}, and {M} cannot be
distinet and so {0} = {P} (since {P} % {M}). Consequently P = Py
= 0y < P; <P and so P; is prime. Again by one-dimensionality of fu
we also conclude that P; is the only prime element in £ such that P; < M.
Thus if ¢ + j, then P; and P; are comazimal primes. Since the Q; are
primary for maximal elements, they are pairwise comaximal. Further-
more, we claim that any pair Py, Qx is comaximal. For suppose Piv @ # I,
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and let M be a2 maximal element such that Piv@Qir < M. From {0}
= {P;} <{Qx} we conclude that {Pi} = {P}A{@s} = {P:irQx}, hence
Py = (Pou = (PiAQu)ur = PinQx. This contradicts the irredundancy of
the given mnormal decomposition of 0. Therefore the elements in
{915 s Quy Py, oy P} are pairwise comaximal and £ ~£/0.®..Q@
BLUBLYPL® ... ®L/Pr.

For each Q, £/Q; is clearly a primary lattice in which the maximal
element is nilpotent. For each j, £/P; is one-dimensional since if M is
2 maximal element of £ such that M > Pj, then Ly is one-dimensional
by an ahove argument. Since each element of £/P; has a normal decompo-
sition, it is clear that each nonzero element of £/P; is greater than or
equal to a product of nonzero prime elements. This completes the proof
of the “only if” part of the theorem.

We will now prove that a finite direct sum of lattices which satisfy
the conditions stated in the theorem is a UND lattice. Clearly a primary
lattice having a nilpotent maximal elements is a UND lattice since each
element of such a lattice is primary for the maximal element. Also, the
direct sum of UND lattices is clearly a UND lattice, so we need only
prove that a one-dimensional lattice in which zero is prime, and in which
every nonzero element is greater than or equal to a product of nonzero
prime elements, is a UND lattice. Let £ be such a lattice. Let 4 be a non-
zero element of £, and let Py, ..., P, be distinct nonzero primes such that
Ph. Pk < A for some positive integers k;. If M is a maximal element
such that M > A, then M > P; for some ¢ (since M is prime) and so
M = P;. Thus there are only a finite number of maximal elements which
are greater than or equal to A and they are among the P;. Let { My, ..., M}
be the collection of all distinet maximal elements such that M; > A.
For each M, define Fy = {B ¢£| there exists an element T'¢ £ such that
T M; and BT < A}, and define Qi:B\é«‘ B. Clearly A < @; (take

. eF; .

B = A and T = I). We will now prove that @; is M;-primary. If B is an
element such that BT < A for some element T £ M;, then, since M; is
prime and BT < M;, we have B < M;; consequently @Q; << M;. Since
M, is one of the Py, say M;= P, and since the P; are distinct, we con-
clude that MPT < A but T M; where T = P¥* ... Pi*. By detinition
of Q; it follows that M¥ < @; and so @; is M;-primary (Lemma 2). Let
D = Q,A...AQs and observe that A < D. We will now show that D < 4.
Since the ¢; are primary for (distinet) maximal elements, they are pairwise
comaximal, hence D = Q1 A...AQs = @9, ... Q5. Consequently
D= (B\ééﬁB),.. (B\E/F‘B)= V {B,...Bs| Bi e F; for each i=1,...,8}

where the last equality holds since multiplication distributes over arbi-
trary joins. Let B= B,...B; be an arbitrary product where B;eF;.
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Then, for each 4, there exists an element T < My such that BT < A.
If M is a maximal element of £ such that M is not one of the M;, then
A:B< M (otherwise A << A:B< M) If M= M; for some j, then the
relations BT; < B;T; < A and T« M; imply that A:B < M; (otherwise
T;< A:B < Mj). Thus A:B is not less than or equal to any maximal
element of £, so A:B=1 and B<A. Consequently 4 =D and A
has a normal decomposition. Since A has no embedded primes, this
normal decomposition of A is unique. This completes the proof of the
theorem. B

Let € and £ be multiplicative lattices such that each element of £’
has a normal decomposition. A one-to-one function f mapping £ into £
is & multiplicative lattice embedding if it preserves meets, joins, and
products, and if it maps primes into primes, primaries into primaries,
and 0 into 0. If f also has the property that for each element A’ e £’ which
is not less than or equal to any isolated component of zero there exists
a nonzero A e £ such that f(4) < A’, then f is called a dense muliiplicative
lattice embedding.

TaEoREM 2. Let £ be a lattice in which each element has a mormal de-
composition. L is a UND latiice if and only if there exists a dense embedding
of a lattice of ideals of a finite direct sum of Dedekind domains and homo-
morphic images of regular local rings of altitude one into L such that mazimal
ideals are mapped onto mazimal elements of L. .

Proof. Let £ be a UND lattice. By Theorem 1, £ is a finite direct
sum £ o @ oo DL@®Lnt1® ... ®Ln of lattices, where foreachi=1, .., %,
£; is a primary lattice having a nilpotent maximal element N;, and for
each i = n+1, ..., m, £; is a one-dimensional lattice in which 0 is prime
and each nonzero element of £; is greater than or equal to a product of
nonzero prime elements. Let R be a regular local ring of altitude one
and let NV denote its maximal ideal. Each non-zero ideal of R is a power
of NV [3]. For each =1, ..., m, let k; be the least positive integer such
that N% = 0, let L; denote the lattice of ideals of R/N B let M; denote
the maximal element of L;, and define fi: L —>£; by defining f,(Ml-‘) =N 'f
Clearly f; is a dense embedding.

Now fix an integer i = n+1,..,m and let ufi= {M{“ oo MER| My
is & maximal element of £; and %k; > 0} v {0}. Since £; is one-dimensional,
uf; is a distributive sublattice of £; in which each element is a unique
product of prime elements and in which 0 is prime. Furthermore, for
distinet nongero primes (hence maximal) Mj of uf; and for integers
¢j, f7 = 0, we have the following: ‘

@ ( U M?) (U M-;J) - U ]
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We will now construct a Dedekind domain whose lattice of ideals
can be densely embedded in £;. Let o be the cardinality of the collection
of maximal primes in £;, and let K be a field of cardinality 8 > a. Let 4 be
a subset of K of cardinality o, and let 8 be the compliment in K[z] of
the union of the prime ideals (a--z), @ € 4. Then § is a multiplicatively
closed subset of K[x] which doesn’t meet any of the prime ideals (a+ =),
and which meets every other prime ideal. Hence D; = K{[x]g is a Dede-
kind domain with o maximal prime ideals [4]. Let L; denote the lattice

of ideals of D;. Let f; be a one-to-one correspondence between the maximal

primes of I; and the maximal primes of £, and extend f; to a map f; of I;
onto ufL; by taking 0 to 0 and products to products. Since I; also satisfies
the above properties (a), (b) and (c), it follows that f; is an isomorphism
of I; onto ufi, and hence an embedding into £;. Since each nonzero ele-
ment of £; is greater than or equal to a product of maximal elements,
fi is dense. Therefore there is a dense embedding of L;@® ...@®Ly into
£® ...0Lm. This completes the proof of the “only if” part of the theorem.

Conversely, let I be the lattice of ideals of a ring satisfying the con-
ditions stated in the theorem, and let f be a dense embedding of L into £
such that f maps the maximals in L onto the maximals of £. The function f
maps normal decomposition of 0 in I to a normal decomposition of 0'in L.
Let 0 = RyA...AR, be this normal decomposition of 0 in £ where R, is
Py-primary. If Bi< P, then P; is not less than or equal to any isolated
component of 0, and so there exists a nonzero element B ¢ L such that
f(B)< P;. Since Bis a product of maximal elements in L, P, is greater than
or equal to a product of maximal elements in £ and thus P; is maximal

in £. Therefore, each R; is either prime or is a primary for a maximal

element. Consequently, the above normal decomposition of 0 is unique.
From this and from the properties of f we conclude that if D is less than
or equal to an isolated component of 0, then D also has a unique normal
decomposition. If A is not less than or equal to any isolated component
of zero, then A is greater than or equal to a product of maximal elements
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of £ (since f is a dense embedding), and 5o A is less than or equal to only
finitely many distinet maximal elements M; (1 < ¢ < n) in £. For each M;,
we construet a primary component @; of A as we did in the proof of
Theorem 1. Then A = @A..AQ, is the unique normal decomposition
of A. Therefore £ is a UND lattice,

THEOREM 3. Let £ be a UND lattice. Each primary element of L is
a power of a prime if and only if € is represented as a lattice of ideals of
a direct sum of Dedekind domains and homomorphic images of regular
local rings of altitude one.

Proof. By Theorem 1, £ is a finite direct sum £ == £,@ ... L@ ...DLm
of lattices, where for each i=1,...,7n, £; is a primary lattice having
a nilpotent maximal element N;, and for each ¢=n+1,..,m, £; is
a one-dimensional lattice in which 0 is prime and each nonzero element
of £; is greater than or equal to a product of nonzero prime elements.
If the primaries of £ are powers of primes, then £;= {N Hk=1,..,8
where s; is the least positive integer such that N3 = 0} for ¢ =1, ..., n,
and £;= uf; for 1=mn-+1, ..., m: Consequently the embedding in the proof
of Theorem 1 i an isomorphism onto £. The converse of the theorem
is clear.
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