

Accumulation functions on the ordinals

bv

Arthur L. Rubin and Jean E. Rubin (Lafayette, Ind.)

§ 1. Introduction. For each ordinal a, we calculate $T(a) = \sum_{\xi < a} \xi$ and $\Gamma(a) = \prod_{0 < \xi < a} \xi$, and then extend these functions to the higher operations of Doner and Tarski [1]. The notation used is that given in [1]. For convenience we shall repeat several of the definitions and theorems given in the Doner-Tarski paper. When referring to a theorem, lemma, etc. in their paper we shall prefix the numeral by the symbol "D-T".

We shall use the following notation: α , β , γ , ξ , η , ... are variables whose ranges are all ordinal numbers; n, m, p, q, ... are variables whose ranges are all finite ordinal numbers; ω is the smallest infinite ordinal; ω is the class of all ordinals; and ω is the empty set. The reader is referred to Sierpinski [4], Chapter 14, and Rubin [3], Chapters 8 and 9, for the traditional properties of ordinal arithmetic used in this paper.

DEFINITION 1.1. HIGHER OPERATIONS. [D-T 1]

(i)
$$\alpha O_0 \beta = \alpha + \beta$$
.

(ii) If
$$\gamma > 0$$
, $\alpha O_{\gamma} \beta = \bigcup_{\eta < \beta, \zeta < \gamma} (\alpha O_{\gamma} \eta) O_{\zeta} \alpha$.

COROLLARY 1.2. [D-T 2]

(i)
$$\alpha O_{\gamma} 0 = 0 O_{\gamma} \alpha = 0$$
, if $\gamma > 0$.

(ii)
$$\alpha O_{\gamma} 1 = 1 O_{\gamma} \alpha = \alpha$$
, if $\gamma > 0$.

(iii)
$$2O_{\gamma}2 = 4$$
.

THEOREM 1.3. [D-T 3]

(i)
$$\alpha O_1 \beta = \alpha \cdot \beta$$
.

(ii) If
$$\alpha \neq 1$$
 and $\beta \neq 0$ then $\alpha O_2 \beta = \alpha^{\beta}$.

(iii) If
$$\alpha \neq 1$$
 then $\alpha O_3(1+\beta) = \alpha^{\alpha^{\beta}}$.

THEOREM 1.4. MONOTONICITY LAWS.

(i) If
$$\beta \geqslant \beta'$$
 then $\alpha O_{\nu} \beta \geqslant \alpha O_{\nu} \beta'$. [D-T 4(i)]

(ii) If
$$\alpha \geqslant 1$$
 and $\beta > \beta'$ then $\alpha O_{\gamma} \beta > \alpha O_{\gamma} \beta'$. [D-T 4(ii)]

(iii) If
$$a \geqslant a'$$
 then $a O_{\gamma} \beta \geqslant a' O_{\gamma} \beta$. [D-T 6]

(iv) If $\gamma \geqslant \gamma'$ and either $\alpha, \beta \geqslant 2$ or $\gamma' \geqslant 1$ then $\alpha O_{\gamma} \beta \geqslant \alpha O_{\gamma' \rho}$. [D-T 8]

(v) If $\beta \geqslant 1$ then $aO_{\gamma}\beta \geqslant a$. [D-T 5(i)]

(vi) If $\alpha \geqslant 1$ and $\beta \geqslant 2$ then $\alpha O_{\gamma} \beta > \alpha$. [D-T 5(ii)]

THEOREM 1.5. [D-T 9]

• If $\alpha \geqslant 2$ and $\beta \geqslant 1$ then

$$\alpha O_{\gamma+1}(\beta+1) = (\alpha O_{\gamma+1}\beta) O_{\gamma} \alpha.$$

THEOREM 1.6. $\alpha O_{\gamma} \beta$ is a limit ordinal if any one of the following conditions hold.

- (i) $\gamma \geqslant \omega$, $\alpha, \beta \geqslant 2$, and $\alpha = \beta = 2$ does not hold.
- (ii) $2 \leqslant \gamma < \omega$, $a \geqslant 2$ and $\beta \geqslant \omega$.
- (iii) $3 \leqslant \gamma < \omega$, $\alpha \geqslant \omega$ and $\beta \geqslant 2$.

Proof. [2], Lemma 7.

THEOREM 1.7. [D-T 27 (i)]

If $\alpha \geqslant 2$, $\beta \geqslant 1$, and $\gamma = \bigcup \gamma \neq 0$ then

$$\alpha O_{\gamma}(\beta + \beta') = (\alpha O_{\gamma}\beta) O_{\gamma}(1 + \beta')$$
.

THEOREM 1.8, [D-T 32]

If $\beta, \beta' \geqslant 1$ and $\gamma \neq 1$ then

(i) if $\beta' = \bigcup \beta' \neq 0$ and $\alpha \geqslant 2$, then

$$\alpha O_{2\nu}(\beta + \beta') = (\alpha O_{2\nu}\beta) O_{2\nu}\beta'.$$

(ii) if $\alpha = \bigcup a$ or if $\alpha \geqslant 2$ and $\beta' = \bigcup \beta' \neq 0$ then

$$\alpha O_{2\gamma+1}(\beta+\beta') = (\alpha O_{2\gamma+1}\beta) O_{2\gamma}(\alpha\cdot\beta')$$
.

DEFINITION 1.9. MAIN NUMBERS.

- (i) If 0 is a binary operation from $\Omega \times \Omega$ to Ω then $\delta \geqslant \omega$ is a main number of 0 iff for all $\alpha, \beta < \delta$, $\alpha O \beta < \delta$. [D-T 38]
 - (ii) M(0) denotes the class of all main numbers of O. [D-T 38]
- (iii) $\mu(\eta, O)$ is the η th successive main number of O. ($\mu(0, O)$ is the smallest main number of O.) [D-T 40]

(iv) If
$$\gamma = \bigcup \gamma \neq 0$$
 then $M_{\gamma} = \bigcap_{\eta \leq \gamma} M(O_{\eta})$. ([2], 4(iii))

(v) If $\gamma = \bigcup \gamma \neq 0$ then $\mu_{\gamma}(\eta)$ is the *n*th successive element of M_{γ} . The main numbers of O_{γ} are its fixed points. That is, Theorem 1.10.

- (i) δ is a main number of O_r iff $\delta\geqslant 3$ and $\alpha O_r\delta=\delta$ for all $\alpha,2\leqslant \alpha<\delta$. [D-T 46]
- (ii) If $\gamma\geqslant 2$, then for all $a,\ 2\leqslant a<\delta,\ \delta\in M(O_{\gamma})$ iff $aO_{\gamma}\delta=\delta$. [D-T 47]

Thus, for example, the main numbers of O_0 (addition) are positive powers of ω ; the main numbers of O_1 (multiplication) are all ordinals in the form ω^{ω^0} ; and the main numbers of O_2 (exponentiation) are ω and the epsilon numbers.

Theorem 1.11. If $\beta = \bigcup \beta \neq 0$ then

- (i) $a O_{\gamma} \beta = \bigcup_{\eta < \beta} a O_{\gamma} \eta$.
- (ii) $\mu(\beta, O_{\gamma}) = \bigcup_{\eta < \beta} \mu(\eta, O_{\gamma}).$
- (iii) $\mu_{\gamma}(\beta) = \bigcup_{\eta < \beta} \mu_{\gamma}(\eta).$

Proof. Part (i) is D-T 15(iii); (ii) is D-T 41(i); and (iii) follows from (i) and D-T 55.

THEOREM 1.12. [D-T 48(ii)]

If $\alpha\geqslant 2,\ \gamma\geqslant 1,\ and\ \mu(\lambda,\,O_{2\gamma})$ is the least main number of $O_{2\gamma}$ exceeding a then

$$\mu(\lambda+\eta, O_{2\gamma}) = \alpha O_{2\gamma+2}[\omega(1+\eta)].$$

Thus, the function $\psi_{\gamma}(\eta)=2\,O_{2\gamma+2}[\omega(1+\eta)]$ enumerates the elements of $M(O_{2\gamma})$.

THEOREM 1.13. [D-T 54]

If $\alpha \geqslant 3$ and $\gamma = \bigcup \gamma \neq 0$ then $\xi \in M_{\gamma}$ and $\xi > \alpha$ iff there is an η so that $\xi = \alpha O_{\gamma}(2 + \eta)$.

THEOREM 1.14. [D-T 37]

If $\gamma = \bigcup \gamma \neq 0$ then $2O_{\gamma}(3+\eta) = 3O_{\gamma}(2+\eta)$.

It follows from 1.12 and 1.13 that if $\gamma = \bigcup \gamma \neq 0$, $2O_{\gamma}3 = \mu_{\gamma}(0)$ is the smallest element of M_{γ} , and if $a \geqslant 3$, $aO_{\gamma}(2+\eta)$ is the η th element of M_{γ} exceeding a. Moreover, the function $\psi(\eta) = 3O_{\gamma}(2+\eta)$ enumerates the elements of M_{γ} .

THEOREM 1.15.

- (i) If $\gamma \geqslant 1$ then $M(O_{2\gamma}) = M(O_{2\gamma+1}) \supseteq M(O_{2\gamma+2})$. [D-T 52(i)]
- (ii) If $\gamma = \bigcup \gamma \neq 0$ then $M(O_{\gamma}) \subseteq M_{\gamma}$. [D-T 57]
- (iii) If $\lambda \in M(O_{\nu})$ then $\lambda = \bigcup \lambda \neq 0$. [D-T 42(i)]

DEFINITION 1.16. ACCUMULATION FUNCTIONS.

- (i) $\Xi_0(0) = \Xi_0(1) = 0$.
- (ii) If $\gamma > 0$, $\mathcal{E}_{\nu}(0) = \mathcal{E}_{\nu}(1) = 1$.
- (iii) If $\alpha > 0$, $\Xi_{\gamma}(\alpha+1) = \Xi_{\gamma}(\alpha) O_{\gamma} \alpha$.
- (iv) If $a = \bigcup a \neq 0$, $\Xi_{\gamma}(a) = \bigcup_{\beta < a} \Xi_{\gamma}(\beta)$.

Thus, for example, $\Xi_0(a) = \sum_{\xi < a} \xi$ and $\Xi_1(a) = \prod_{0 < \xi < a} \xi$.

DEFINITION 1.17. CONTINUOUS.

If F is a function from Ω to Ω then F is said to be continuous iff for all a such that $a = \bigcup a \neq 0$, $F(a) = \bigcup_{\beta \neq a} F(\beta)$.

It follows from 1.16 and 1.4, the monotonicity laws for O_{γ} , that for every γ , \mathcal{E}_{γ} is a continuous non-decreasing function and

LEMMA 1.18. If $2 \leqslant a < \beta$ then $\Xi_{\gamma}(a) < \Xi_{\gamma}(\beta)$.

Theorem 1.19. If $a \geqslant 4$ then $a \leqslant \mathcal{Z}_{\gamma}(a) \leqslant a O_{\gamma+1} a$.

Proof. The proof is by transfinite induction on α . First suppose $\alpha=4$ and $\gamma=0$. Then $\mathcal{E}_0(4)=6$ and $4\cdot 4=16$ so $\alpha\leqslant\mathcal{E}_{\gamma}(\alpha)\leqslant\alpha\,O_{\gamma+1}\,\alpha$ in this case. Next suppose $\alpha=4$ and $\gamma>0$ then

$$\begin{split} a &= 4 = 2 \, O_{\gamma} 2 & [1.2 \, (\text{iii})] \\ &< 2 \, O_{\gamma} 3 & [1.4 \, (\text{ii})] \\ &= \mathcal{E}_{\gamma} (4) & [1.16 \, (\text{iii})] \\ &< 4 \, O_{\gamma} 4 & [1.4 \, (\text{ii}), \, (\text{iii})] \\ &\leqslant 4 \, O_{\gamma+1} 4 & [1.4 \, (\text{iv})]. \end{split}$$

Suppose the theorem is true for all $\beta < \alpha$ and $\alpha = \beta + 1 > 4$. Then

$$\alpha = \beta + 1 \leqslant \Xi_{\gamma}(\beta) + 1 \qquad [Ind. Hyp.]$$

$$< \Xi_{\gamma}(\beta) + \beta$$

$$\leqslant \Xi_{\gamma}(\beta) O_{\gamma}\beta \qquad [1.4 (iv)]$$

$$= \Xi_{\gamma}(\beta + 1) \qquad [1.16 (iii)]$$

$$\leqslant (\beta O_{\gamma + 1}\beta) O_{\gamma}\beta \qquad [Ind. Hyp. 1.4 (iii)]$$

$$= \beta O_{\gamma + 1}(\beta + 1) \qquad [1.5]$$

$$\leqslant (\beta + 1) O_{\gamma + 1}(\beta + 1) \qquad [1.4 (iii)]$$

Finally, if $a = \bigcup a \neq 0$, the theorem follows from 1.16 (iv) and the monotonicity law, 1.4.

THEOREM 1.20. If $a \geqslant 4$ and $\mathcal{E}_{\gamma}(a) = a$ then $a = \bigcup a \neq 0$.

Proof. Suppose $a = \beta + 1 > 4$. Then

$$\begin{split} \mathcal{Z}_{\gamma}(\beta+1) &= \mathcal{Z}_{\gamma}(\beta)\,O_{\gamma}\beta &\quad \text{[1.16 (iii)]} \\ &\geqslant \mathcal{Z}_{\gamma}(\beta) + \beta &\quad \text{[1.4 (iv)]} \\ &> \mathcal{Z}_{\gamma}(\beta) + 1 \\ &\geqslant \beta + 1. &\quad \text{[1.19]} \end{split}$$

If $\alpha=4$, $\mathcal{Z}_{\gamma}(\alpha)=\mathcal{Z}_{\gamma}(3)\,O_{\gamma}3$, and it follows from 1.1 and 1.16 that $\alpha<\mathcal{Z}_{\gamma}(\alpha)$. Thus, we have shown that if $\alpha\geqslant 4$ is not a limit ordinal, then $\alpha<\mathcal{Z}_{\gamma}(\alpha)$.

In what follows we frequently use the following well-known result. Theorem 1.21. For each $a \in Q$, $a \neq 0$, there is a unique $n \in \omega$, $n \neq 0$, unique ordinal numbers $a_0, a_1, ..., a_n$ such that $a_0 > a_1 > ... > a_n$, and unique natural numbers $a_i \neq 0$, i = 0, 1, ..., n, such that

(*)
$$a = \omega^{a_0} a_0 + \omega^{a_1} a_1 + ... + \omega^{a_n} a_n$$
.

The form (*) is called the normal form of α . For a proof of 1.21 see, for example, Sierpinski [4], pp. 319–323.

In the next section we discuss the function Ξ_0 . In section 3, we consider Ξ_1 , Ξ_2 , and Ξ_3 . Then, in the last section, we consider Ξ_γ with $\gamma > 3$.

§ 2. The function $T(\alpha)=\sum_{\xi<\alpha}\xi$. An ordinal number of the form $\sum_{\xi<\alpha}\xi$ is called triangular. (This terminology is used by Sierpinski [4], p. 289. Sierpinski calculates all infinite triangular numbers $\leqslant \omega^3$.) Clearly, if $0<\alpha<\omega$, then $\sum_{\xi<\alpha}\xi=\frac{1}{2}\alpha(\alpha-1)$. In this section we shall calculate all infinite triangular numbers.

DEFINITION 2.1. $T(a) = \sum_{\xi < a} \xi = \Xi_0(a)$.

Theorem 2.2. If $a \geqslant 4$, $\alpha \leqslant T(a) \leqslant a^2$.

Proof. 1.19 and 1.3 (i).

THEOREM 2.3. $T(\alpha+\beta) = T(\alpha) + \sum_{\xi < \beta} (\alpha+\xi)$.

Proof. 2.1.

THEOREM 2.4. If $0 < n < \omega$ and $\alpha \geqslant \omega$ then

$$T(a+n) = T(a) + a \cdot n + (n-1).$$

Proof. 2.3 and traditional properties of ordinal arithmetic.

Theorem 2.5. If $a>0,\ \beta=\bigcup\ \beta\leqslant\omega^{a+1},\ and\ 0< m<\omega$ then $\sum_{\xi<\beta}\left(\omega^am+\xi\right)=\omega^a\beta.$

Proof. First we have

$$\omega^{lpha}eta=\sum_{\xi .$$

Since the theorem is clearly true if $\beta=0$ we can assume β is a limit ordinal. Then,

$$\sum_{\xi < \beta} (\omega^a m + \xi) = \bigcup_{\eta < \beta} \sum_{\xi < \eta} (\omega^a m + \xi)$$
.

Therefore, if $\gamma \in \sum_{\xi < \beta} (\omega^a m + \xi)$ then there is an $\eta < \beta$ such that $\gamma \in \sum_{\xi < \beta} (\omega^a m + \xi)$.

Moreover,

$$\sum_{\xi < \eta} \left(\omega^a m + \xi \right) \leqslant \sum_{\xi < \eta} \left(\omega^a m + \eta \right) = \left(\omega^a m + \eta \right) \eta \; .$$

If $\eta = \bigcup \eta$ then by [3], Theorem 9.1.6, $(\omega^a m + \eta) \eta = \omega^a \eta < \omega^a \beta$. On the other hand, if $\eta \neq \bigcup \eta$, then there is an $n, 0 < n < \omega$, and $\eta' = \bigcup \eta'$ such that $\eta = \eta' + n$. Moreover, since $\eta < \beta \leq \omega^{a+1}$, there is a $k \in \omega$ and $\eta'' < \omega^a$ such that $\eta = \omega^a k + \eta''$. Then again using [3], Theorem 9.1.6, we obtain

$$(\omega^{\alpha}m+\eta)\eta=\omega^{\alpha}\eta'+\omega^{\alpha}(k+m)n+\eta''<\omega^{\alpha}\beta$$
.

In either case, we obtain $\gamma \in \omega^a \beta$ which implies $\sum_{\xi < \beta} (\omega^a m + \xi) \leqslant \omega^a \beta$, and completes the proof of the theorem.

Theorem 2.6. If a > 0, $\beta = \bigcup \beta \leqslant \omega^{a+1}$, and $0 < m < \omega$, then

$$T(\omega^{a}m+\beta)=T(\omega^{a}m)+\omega^{a}\beta$$
.

Proof. 2.3 and 2.5.

Now it follows from 1.21, 2.4, and 2.6, that to calculate all infinite triangular numbers, it is sufficient to calculate $T(\omega^a m)$ for all $\alpha > 0$ and $m \in \omega$.

THEOREM 2.7. If a > 0 and $0 < m < \omega$ then

$$T(\omega^a m) = T(\omega^a) + \omega^{a \cdot 2}(m-1)$$
.

Proof.

$$\begin{split} T(\omega^a m) &= T\left(\omega^a + \omega^a (m-1)\right) \\ &= T(\omega^a) + \omega^a \left(\omega^a (m-1)\right) \quad [2.6] \\ &= T(\omega^a) + \omega^{a\cdot 2} (m-1) \; . \end{split}$$

Now, it remains to evaluate $T(\omega^a)$ for $\alpha > 0$.

THEOREM 2.8. $T(\omega^{a+1}) = \omega^{a \cdot 2+1}$.

Proof.

$$egin{align} T(\omega^{a+1}) &= T(\omega^a + \omega^{a+1}) \ &= T(\omega^a) + \omega^{a\cdot 2+1} \ &= \omega^{a\cdot 2+1}. \end{align}$$

The last case to consider is the value of $T(\omega^a)$ when α is a limit ordinal. In this case, there exist $\beta > 0$ and γ such that $\alpha = \omega^{\beta}(\gamma + 1)$.

Theorem 2.9. $T(\omega^{\omega^{\beta}(\gamma+1)}) = \omega^{\omega^{\beta}(\gamma\cdot 2+1)}$

Proof. The proof is by transfinite induction on β . If $\beta=0$ the theorem follows from 2.8. Suppose the theorem is true for all $\delta < \beta$, and $\beta=\delta+1$.

$$T(\omega^{\omega^{\delta+1}(y+1)}) = T(\omega^{\omega^{\delta}(\omega y + \omega)})$$

$$= \bigcup_{n < \omega} T(\omega^{\omega^{\delta}(\omega y + n)})$$

$$= \bigcup_{n < \omega} T(\omega^{\omega^{\delta}(\omega y + n) + 1})$$

$$= \bigcup_{n < \omega} \omega^{\omega^{\delta}(\omega y + n) + 1} \qquad [2.8]$$

$$= \omega^{\omega^{\delta}(\omega y + 2 + \omega)}$$

$$= \omega^{\omega^{\delta+1}(y + 2 + 1)}$$

If $\beta = \bigcup \beta \neq 0$, then

$$egin{align*} T(\omega^{\omega^{eta}(\gamma+1)}) &= T(\omega^{\omega^{eta}\gamma+\omega^{eta}}) \ &= igcup_{\xi$$

Thus, it follows by transfinite induction that the theorem holds. If $n < \omega$ then $T(n) = \frac{1}{2}n(n-1)$. Thus, for $n \in \omega$, T(n) = n if and only if n = 0 or n = 3. For infinite values of α , we obtain the fixed points of $T(\alpha)$ from 2.4, 2.6, 2.7, 2.8, and 2.9. We get the following result.

THEOREM 2.10.

$$\{a: \ T(a) = a\} = \{\omega^{\omega^{\beta}}: \ \beta \in \Omega\} \cup \{0, 3\}$$

= $M(O_1) \cup \{0, 3\}$.

§ 3. The functions \mathcal{Z} , $\gamma=1,2,3$. In this section we study the functions \mathcal{Z}_1 , \mathcal{Z}_2 and \mathcal{Z}_3 . \mathcal{Z}_1 is the factorial or gamma function.

DEFINITION 3.1.
$$\Gamma(\alpha) = \prod_{0 \le k \le \alpha} \xi = \Xi_1(\alpha)$$
.

THEOREM 3.2. If $a \geqslant 4$ then $a \leqslant \Gamma(a) \leqslant a^a$.

Proof. 1.19 and 1.3 (ii).

Theorem 3.3.
$$\Gamma(\alpha+\beta) = \Gamma(\alpha) \prod_{\xi < \beta} (\alpha+\xi)$$
, if $\alpha \neq 0$.

Proof. 3.1.

Theorem 3.4. If $a = \bigcup a \neq 0$ and $0 < n < \omega$ then

$$\varGamma(\alpha + n) = \varGamma(\alpha) \, \left[\alpha^n + \alpha^{n-1}(n-1) + \alpha^{n-2}(n-2) + \ldots \right. \, + \alpha \right] \, .$$

Proof. 3.3 and traditional properties of ordinal arithmetic. Theorem 3.5. If a > 0, $\beta = \bigcup \beta \leqslant \omega^{a+1}$ and $0 < m < \omega$ then

$$\prod_{\xi<\beta}(\omega^{a}m+\xi)=\omega^{a\beta}.$$

Proof. The proof is similar to the proof of 2.5—replace " \sum " by " \prod " and use Theorems 9.1.7 and 9.1.8 of [3].

Theorem 3.6. If a > 0, $\beta = \bigcup \beta \leqslant \omega^{a+1}$, and $0 < m < \omega$ then

$$\Gamma(\omega^a m + \beta) = \Gamma(\omega^a m) \cdot \omega^{a\beta}$$
.

Proof. 3.3 and 3.5.

THEOREM 3.7. If a > 0 and $0 < m < \omega$ then

$$\Gamma(\omega^a m) = \Gamma(\omega^a) \, \omega^{a \cdot \omega^a (m-1)}$$
.

Proof. $\Gamma(\omega^a m) = \Gamma(\omega^a + \omega^a (m-1)) = \Gamma(\omega^a) \cdot \omega^{a \cdot \omega^a (m-1)}$ [3.6].

Theorem 3.8. $\Gamma(\omega) = \omega$.

Proof. $\Gamma(\omega) = \prod_{0 < n < \omega} n = \bigcup_{m \in \omega} \prod_{0 < n < m} n = \omega$.

THEOREM 3.9. If a > 0 then $\Gamma(\omega^{a+1}) = \omega^{a \cdot \omega^{a+1}}$.

Proof.

$$\Gamma(\omega^{a+1}) = \Gamma(\omega^a + \omega^{a+1})$$

$$= \Gamma(\omega^a) \cdot \omega^{a \cdot \omega^{a+1}} \qquad [3.6]$$

$$= \omega^{a \cdot \omega^{a+1}}. \qquad [3.2]$$

Corollary 3.10. If $1 < n < \omega$ then $\Gamma(\omega^n) = \omega^{\omega^n}$.

Corollary 3.11. $\Gamma(\omega^{\omega}) = \omega^{\omega^{\omega}}$.

Proof. 3.10 and the continuity of Γ .

Theorem 3.12. If $\gamma > 0$ and $\delta = \omega^{\omega^{\beta}(\gamma+1)}$ then $\Gamma(\delta) = \delta^{\delta}$.

Proof. The proof is similar to the proof of 2.9.

Now, the only case that remains is the value of $\Gamma(\omega^{\omega^{\beta}})$ for $\beta > 1$.

THEOREM 3.13. If $\beta > 0$ then $\Gamma(\omega^{\omega^{\beta}}) = \omega^{\omega^{\omega^{\beta}}}$.

Proof. The proof is by transfinite induction on β . If $\beta=1$ the theorem follows from 3.11. If β is a limit ordinal the theorem follows from the continuity of Γ . Finally, if $\beta=\nu+1$ then

$$\begin{split} \varGamma(\omega^{\omega^{\gamma+1}}) &= \varGamma(\omega^{\omega^{\gamma} \cdot \omega}) \\ &= \bigcup_{n < w} \varGamma(\omega^{\omega^{\gamma} \cdot n}) \\ &= \bigcup_{n < \omega} \omega^{\omega^{\gamma} \cdot \omega^{\omega^{\gamma} \cdot n}} \\ &= \omega^{\omega^{\gamma} \cdot \omega^{\omega^{\gamma} \cdot \omega}} \\ &= \omega^{\omega^{\omega^{\gamma+1}}}. \end{split} \tag{3.12}$$

THEOREM 3.14. $\{a: \Gamma(a) = a\} = M(O_2) \cup \{1\}.$

Thus, the fixed points of Γ larger than 1 are the main numbers of exponentiation— ω and the epsilon numbers.

The function \mathcal{Z}_2 is expressible in terms of the Γ function.

THEOREM 3.15. If $\alpha > 2$ then $\Xi_2(\alpha) = 2^{\frac{1}{2}\Gamma(\alpha)}$.

Proof. 1.16 and 1.3.

Therefore, \mathcal{Z}_2 and Γ have the same fixed points.

Theorem 3.16. $\{a: E_2(a) = a\} = M(O_2) \cup \{1\}.$

The function \mathcal{Z}_3 behaves like the functions $\mathcal{Z}_{2\gamma+1}$ with $\gamma>1$, but some of the theorems used in the next section to derive the results for $\mathcal{Z}_{2\gamma+1}$ with $\gamma>1$ do not hold when $\gamma=1$. Thus we treat \mathcal{Z}_3 as a special case here.

THEOREM 3.17. $\mathcal{E}_3(\omega(1+\delta)) = \mu(\delta, O_2)$.

Proof. The theorem is true if $\delta=0$ since $\mathcal{Z}_3(\omega)=\omega=\mu(0,O_2)$. Suppose $\delta>0$. We shall show first that $\mathcal{Z}_3(\omega(1+\delta))\in M(O_2)$. Suppose $\alpha,\beta<\mathcal{Z}_3(\omega(1+\delta))$. Then by the continuity of \mathcal{Z}_3 there is an η such that $\eta=\bigcup \eta\neq 0, \, \eta<\omega(1+\delta)$ and an $n<\omega$ such that $\alpha,\beta<\mathcal{Z}_3(\eta+n)$. Then,

$$a O_2 \beta = a^{\beta}$$
 [1.3 (ii)]
 $< \mathcal{Z}_3 (\eta + n)^{\mathcal{Z}_3 (\eta + n)}$
 $< \mathcal{Z}_3 (\eta + n + 1)$ [1.3 (iii), 1.16 (iii)]
 $< \mathcal{Z}_3 (\omega (1 + \delta))$. [1.18]

Therefore, by 1.9 (i) it follows that $\mathcal{E}_3(\omega(1+\delta)) \in M(O_2)$. We shall prove next that

(1)
$$\Xi_3(\omega(1+\delta)) \leqslant \mu(\delta, O_2)$$
.

Then, since $\mathcal{Z}_3(\omega) = \mu(0, O_2)$, $\mathcal{Z}_3(\omega(1+\delta)) \in M(O_2)$, and \mathcal{Z}_3 is an increasing function, it follows that $\mathcal{Z}_3(\omega(1+\delta)) = \mu(\delta, O_2)$.

The proof of (1) is by transfinite induction. We have shown above that (1) is true if $\delta = 0$. Suppose it is true for all $\delta' < \delta$. If $\delta = \bigcup \delta \neq 0$ then (1) follows from the continuity of \mathcal{Z}_3 and μ , 1.16 (iv) and 1.11 (ii). Suppose $\delta = \delta' + 1$. Let $\eta = \omega(1 + \delta')$. Then by the induction hypothesis

$$\Xi_3(\eta) < \mu(\delta, O_2)$$
.

Suppose, for $n \in \omega$, $\Xi_3(\eta + n) < \mu(\delta, O_2)$. Then

$$\begin{split} \mathcal{Z}_{3}(\eta+n+1) &= \mathcal{Z}_{3}(\eta+n)\,O_{3}(\eta+n) & \quad [1.16 \text{ (iii)}] \\ &= \mathcal{Z}_{3}(\eta+n)^{\mathcal{Z}_{3}(\eta+n)(\eta+n)}. & \quad [1.3 \text{ (iii)}] \end{split}$$

The elements of $M(O_2)$ are ω and the epsilon numbers. It follows from the definition of an epsilon number (see for example [3], pp. 242–246) that $\mathcal{Z}_3(\eta+n+1)<\mu(\delta,O_2)$. Thus, $\mathcal{Z}_3(\eta+n)<\mu(\delta,O_2)$ for all $n\in\omega$. Since $\mathcal{Z}_3(\omega(1+\delta))=\bigcup\limits_{n<\omega}\mathcal{Z}_3(\eta+n)$ by 1.16 (iv), it follows that $\mathcal{Z}_3(\omega(1+\delta))\leqslant\mu(\delta,O_2)$.

Next, we shall show that the fixed points of Ξ_3 are $M(O_4) \cup \{1\}$.

Theorem 3.18. $\{a\colon \varSigma_{3}(a)=a\}=M(O_{4})\cup\{1\}.$

Proof. By 1.16 (ii), (iii) and 1.2 (ii) we obtain $\Xi_3(0)=\Xi_3(1)=\Xi_3(2)=1$ and $\Xi_3(3)=2$. Thus it follows from 1.20 that if $\Xi_3(a)=a$ then either a=1 or $a=\bigcup a\neq 0$. If a is a limit ordinal then there is a δ such that $a=\omega(1+\delta)$. Suppose, that $a=\omega(1+\delta)=\Xi_3(a)$. Then

$$a = \mu(\delta, O_2)$$
 [3.17]
= $2 O_4 \omega (1 + \delta)$ [1.12]
= $2 O_4 \alpha$.

Therefore, it follows from 1.10 (ii) that $a \in M(O_4)$. The argument is reversible. Therefore the theorem follows.

§ 4. The function Ξ_{γ} , $\gamma > 3$. We consider first the case that γ is a limit ordinal. We shall show that in this case, except for the first few values of α , $\Xi_{\gamma}(\alpha) \in M_{\gamma}$. (See 1.9 (iv)).

Theorem 4.1. If $\gamma = \bigcup \gamma \neq 0$ and $\alpha > 2$ then

$$\Xi_{\gamma}(1+a) = \mu_{\gamma}(T(a)-3).$$

Proof. The proof is by transfinite induction on a. If a=3, $\mathcal{E}_{\gamma}(1+\alpha)=2\,0_{\gamma}3=\mu_{\gamma}(0)=\mu_{\gamma}(T(3)-3)=$ the smallest element of M_{γ} (1.9 (v), 1.13 and 1.14). Suppose the theorem is true for all $\beta<\alpha$. If α is a limit ordinal then the theorem follows from the continuity of \mathcal{E}_{γ} , T, and μ_{γ} (1.16 (iv) and 1.11 (iii)).

Suppose $a = \beta + 1$ and $\beta > 2$.

$$\begin{split} \varXi_{\gamma}(1+\beta+1) &= \varXi_{\gamma}(1+\beta)\,O_{\gamma}(1+\beta) & \quad [1.16 \text{ (iii)}] \\ &= \mu_{\gamma}(T(\beta)-3)\,O_{\gamma}(1+\beta) & \quad [\text{Ind. Hyp.}] \\ &= \mu_{\gamma}\big(T(\beta)-3\big)+\beta\big) & \quad [1.13, \ 1.14] \\ &= \mu_{\gamma}\big(T(\beta)+\beta\big)-3\big) \\ &= \mu_{\gamma}(T(\beta+1)-3) \;. \end{split}$$

Thus, we see that if $\gamma = \bigcup \gamma \neq 0$, and $3 < \alpha < \omega$ then $\mathcal{E}_{\gamma}(\alpha)$ is the $(T(\alpha-1)-3)$ th element of M_{γ} and if $\alpha \geqslant \omega$ then $\mathcal{E}_{\gamma}(\alpha)$ is the $T(\alpha)$ th element of M_{γ} .

THEOREM 4.2. $\mathcal{Z}_{2\gamma+2}(\omega) = \mu(0, O_{2\gamma}).$

Proof. If $\gamma = 0$, $\Xi_{2\gamma+2}(\omega) = \omega = \mu(0, O_{2\gamma})$ (3.15 and 3.8).

Suppose $\gamma > 0$, then by 1.12 and 1.11 (i)

$$\mu(0, O_{2\gamma}) = 2 O_{2\gamma+2} \omega = \bigcup_{n < \omega} 2 O_{2\gamma+2} n.$$

But, by 1.16

$$\Xi_{2\gamma+2}(\omega) = \bigcup_{n<\omega} \Xi_{2\gamma+2}(n+1) = \bigcup_{n<\omega} \Xi_{2\gamma+2}(n) O_{2\gamma+2} n.$$

Thus, it follows from the monotonicity law 1.4 (iii) that $\mu(0, O_{2y}) \leq \Xi_{2y+2}(\omega)$.

Conversely, $\Xi_{2\gamma+2}(0) = \Xi_{2\gamma+2}(1) = 1 < \mu(0, O_{2\gamma}).$

Suppose $\mathcal{Z}_{2\gamma+2}(n) < \mu(0, O_{2\gamma})$ then $\mathcal{Z}_{2\gamma+2}(n+1) = \mathcal{Z}_{2\gamma+2}(n)O_{2\gamma+2}n < \mu(0, O_{2\gamma})$ by 1.12. Consequently, $\mathcal{Z}_{2\gamma+2}(n) < \mu(0, O_{2\gamma})$ for all $n \in \omega$, so $\mathcal{Z}_{2\gamma+2}(\omega) = \bigcup_{n \in \mathbb{Z}} \mathcal{Z}_{2\gamma+2}(n) \leqslant \mu(0, O_{2\gamma})$.

Theorem 4.3. If $\gamma \geqslant 1$ and $\mu(\lambda, O_{2\gamma})$ is the largest element of $M(O_{2\gamma})$ which does not exceed $\mathcal{E}_{2\gamma+2}(\alpha), \ \omega \leqslant \alpha = \omega \cdot \varepsilon + n, \ \text{and} \ \beta = \omega \cdot \delta + m, \ n, m \in \omega, \ then$

$$\begin{split} \mu \big(\lambda + \sum_{\xi < \delta} (\varepsilon + \xi) \, \omega + (\varepsilon + \delta) \, m, \, O_{2\gamma} \big) & \leqslant \mathcal{Z}_{2\gamma + 2} (\alpha + \beta) \\ & \leqslant \mu \big(\lambda + 1 + \sum_{\xi < \delta} (1 + \varepsilon + \xi) \, \omega + (1 + \varepsilon + \delta) \, m, \, O_{2\gamma} \big) \,. \end{split}$$

Proof. The proof is by transfinite induction on β . The theorem is true if $\beta = 0$. Suppose the theorem is true for all $\beta' < \beta$. If β is a limit ordinal then the theorem follows from the continuity of μ and $\Xi_{2\gamma+2}$.

Suppose $\beta = \beta' + 1$ where $\beta' = \omega \cdot \delta + (m-1)$. Then by 1.16 (iii)

(1)
$$\Xi_{2y+2}(\alpha+\beta) = \Xi_{2y+2}(\alpha+\beta') O_{2y+2}(\alpha+\beta')$$
.

By the induction hypothesis,

$$(2) \hspace{1cm} \mu_{0}=\mu\left(\lambda+\sum_{\xi<\delta}\left(\varepsilon+\xi\right)\omega+\left(\varepsilon+\delta\right)\left(m-1\right), \, O_{2\gamma}\right)\leqslant \mathcal{Z}_{2\gamma+2}(\alpha+\beta')$$

and

and (3)
$$\mathcal{E}_{2\gamma+2}(\alpha+\beta')\leqslant \mu\left(\lambda+1+\sum_{\xi<\delta}(1+\varepsilon+\xi)\,\omega+(1+\varepsilon+\delta)\,(m-1),\,O_{2\gamma}\right)=\mu_1$$
.

It follows from 1.12 and 1.4 that for every $\eta>0,~\sigma,~{\rm and}~k\in\omega$

(4)
$$\mu(\sigma+\eta, O_{2y}) \leqslant \mu(\sigma, O_{2y}) O_{2y+2}(\omega\eta+k)$$

and

(5)
$$\mu(\sigma, O_{2\gamma}) O_{2\gamma+2}(\omega \eta + k) \leq \mu(\sigma + 1 + \eta, O_{2\gamma}).$$

Now, $\alpha = \omega \cdot \varepsilon + n$ where $\varepsilon > 0$ and $\beta' = \omega \cdot \delta + (m-1)$. Consequently. using (1), (2), and (4) (in (4) take $\eta = \varepsilon + \delta$ and $\sigma = \lambda + \sum_{i=1}^{\infty} (\varepsilon + \xi)\omega + i$ $+(\varepsilon+\delta)(m-1)$), we obtain

(6)
$$\mu(\lambda + \sum_{\xi \geq \delta} (\varepsilon + \xi) \omega + (\varepsilon + \delta) m, O_{2\gamma}) \leq \mu_0 O_{2\gamma + 2}(\alpha + \beta') \leq \Xi_{2\gamma + 2}(\alpha + \beta).$$

Similarly, using (1), (3), and (5) (in (5) take $\eta = 1 + \varepsilon + \delta$ and $\sigma = \lambda + \delta$ $+1+\sum_{\xi \neq \delta}(1+\varepsilon+\xi)\omega+(1+\varepsilon+\delta)(m-1)),$ we obtain

(7)
$$\Xi_{2\gamma+2}(\alpha+\beta) \leqslant \mu_1 O_{2\gamma+2}(\alpha+\beta')$$

$$\leqslant \mu \big(\lambda + 1 + \sum_{\xi < \delta} \left(1 + \varepsilon + \xi \right) \omega + \left(1 + \varepsilon + \delta \right) m \,, \, O_{2\gamma} \big) \;.$$

The theorem follows from (6) and (7).

In the case that β is a limit ordinal Theorem 4.3 has a simple form. Corollary 4.4. If $\gamma \geqslant 1$ then

$$\mathcal{Z}_{2\gamma+2}ig(\omega(1+\delta)ig) = \muig(\sum_{\xi<\delta}(1+\xi)\,\omega\,,\,O_{2\gamma}ig)\,.$$

Proof. If $\delta = 0$, the corollary follows from 4.2. If $\delta > 0$, in 4.3 let $\varepsilon = 1$, and m = n = 0, then the corollary follows from 4.3 using traditional properties of ordinal arithmetic.

To make 4.4 more meaningful we shall evaluate $\sum_{i=1}^{\infty} (1+\xi)\omega$.

Theorem 4.5. If
$$\delta < \omega$$
 then $\sum_{\xi < \delta} (1 + \xi) \omega = \omega \cdot \delta$.

Proof. The proof is by induction on δ .

Theorem 4.6.
$$\sum_{\xi < \omega} (1 + \xi) \omega = \omega^2$$
.

Proof. 4.5 and continuity.

Theorem 4.7. Suppose $\delta = \omega^{\delta_0} d_0 + ... + \omega^{\delta_n} d_n$ is the normal form of δ . (1.21)

(i) If
$$\delta_0 = \bigcup \delta_0 \neq 0$$
 then $\sum_{\xi < \delta} (1 + \xi) \omega = \omega^{\delta_0} + \omega^{\delta_0 + 1} (\delta - \omega^{\delta_0})$.

(ii) If
$$\delta_0 \neq \bigcup \delta_0$$
 then $\sum_{\xi < \delta} (1+\xi)\omega = \omega^{\delta_0 \cdot 2} + \omega^{\delta_0 + 1} (\delta - \omega^{\delta_0})$.

Proof. In both cases, since $\delta_0 > 0$, $\delta \geqslant \omega$ so

$$\begin{split} \sum_{\xi < \delta} (1 + \xi) \, \omega &= \sum_{\xi < \delta} \xi \omega \\ &= \sum_{\xi < \phi^{\delta_0}} \xi \omega + \sum_{\omega^{\delta_0} \leqslant \xi < \delta} \xi \omega \;. \end{split}$$

Let us look at the second sum first. It follows from [3], Theorem 9.1.6(b) that for all ξ such that $\omega^{\delta_0} \leqslant \xi < \delta$, $\xi \cdot \omega = \omega^{\delta_0 + 1}$. Thus,

It follows by an easy transfinite induction on δ_0 , that the first sum,

$$\sum_{\xi<\omega^{\delta_0}} \xi\cdot\omega = \sum_{\xi<\delta_0} \left(\omega^{\xi+1}\cdot\omega^{\xi+1}
ight)$$
 .

If $\delta_0 = \omega$,

$$\textstyle\sum_{\xi<\delta_0}(\omega^{\xi+1}\cdot\omega^{\xi+1})=\sum_{\xi<\delta_0}\omega^{\xi\cdot2+2}=\,\omega^{\delta_0}.$$

If $\delta_0 = \bigcup \delta_0 > \omega$,

$$\begin{split} \sum_{\xi < \delta_0} (\omega^{\xi+1} \cdot \omega^{\xi+1}) &= \sum_{\xi < \omega} (\omega^{\xi+1} \cdot \omega^{\xi+1}) + \sum_{\omega \leqslant \xi < \delta_0} (\omega^{\xi+1} \cdot \omega^{\xi+1}) \\ &= \omega^{\omega} + \sum_{\omega \leqslant \xi < \delta_0} \omega^{\xi \cdot 2 + 1} \\ &= \omega^{\omega} + \omega^{\delta_0} = \omega^{\delta_0}. \end{split}$$

Suppose $\delta_0 = \varepsilon + n$ where $\varepsilon = \bigcup \varepsilon$ and $0 < n < \omega$. If $\varepsilon = 0$, then

$$\sum_{\xi < \delta_0} (\omega^{\xi+1} \cdot \omega^{\xi+1}) = \sum_{\xi < n} \omega^{\xi \cdot 2+2}$$

$$= \omega^{(n-1)2+2} = \omega^{n \cdot 2} = \omega^{\delta_0 \cdot 2}$$

Finally, if $\varepsilon = \bigcup \varepsilon \neq 0$ then

$$\begin{split} \sum_{\xi < \delta_0} \left(\omega^{\xi+1} \cdot \omega^{\xi+1} \right) &= \sum_{\xi < s} \left(\omega^{\xi+1} \cdot \omega^{\xi+1} \right) + \sum_{\varepsilon \leqslant \xi < \delta_0} \left(\omega^{\xi+1} \cdot \omega^{\xi+1} \right) \\ &= \omega^{\varepsilon} + \sum_{\varepsilon \leqslant \xi < \delta_0} \omega^{\xi \cdot 2 + 1} \\ &= \omega^{\varepsilon} + \omega^{(\varepsilon+n-1)2 + 1} \\ &= \omega^{\varepsilon \cdot 2 + n} = \omega^{\delta_0 \cdot 2} \,. \end{split}$$

Now to complete our discussion of the accumulation functions we consider the function $\mathbb{Z}_{2\nu+1}$.

THEOREM 4.8. $\Xi_{2\gamma+1}(\omega) = \mu(0, O_{2\gamma}).$

Proof. The theorem is true if γ is finite, for in this case $\mathcal{Z}_{2\gamma+1}(\omega)=\omega$ = $\mu(0,\,O_{2\gamma})$.

Suppose $\gamma \geqslant \omega$. Then it follows from 1.6 (i) that for $3 < n < \omega$, $\Xi_{2\nu+1}(n)$ is a limit ordinal. Suppose $\alpha, \beta < \Xi_{2\nu+1}(\omega)$. Then, by the continuity of $\Xi_{2\nu+1}$, there is an n, $3 < n < \omega$, such that $\alpha, \beta < \Xi_{2\nu+1}(n)$. Therefore,

$$\begin{split} a\,O_{2\gamma}\beta &< \mathcal{Z}_{2\gamma+1}(n)\,O_{2\gamma}\big(\mathcal{Z}_{2\gamma+1}(n)\big)(n-1) \\ &= \mathcal{Z}_{2\gamma+1}(n)\,O_{2\gamma+1}n & [1.8\text{ (ii)}] \\ &= \mathcal{Z}_{2\gamma+1}(n+1) & [1.16\text{ (iii)}] \\ &< \mathcal{Z}_{2\gamma+1}(\omega)\;. \end{split}$$

Thus, it follows from 1.9 (i), that $\Xi_{2\gamma+1}(\omega) \in M(O_{2\gamma})$.

Then, by a proof similar to the second part of the proof of 4.2, we obtain that for each $n \in \omega$, $\mathcal{Z}_{2\gamma+1}(n) < \mu(0, O_{2\gamma})$. Consequently, by continuity, $\mathcal{Z}_{2\gamma+1}(\omega) \leq \mu(0, O_{2\gamma})$. But we proved $\mathcal{Z}_{2\gamma+1}(\omega) \in M(O_{2\gamma})$, so we must have $\mathcal{Z}_{2\gamma+1}(\omega) = \mu(0, O_{2\gamma})$.

The proof of the next theorem is similar to the proof of 3.17.

Theorem 4.9. If
$$\gamma > 1$$
 then, $\Xi_{2\gamma+1}(\omega(1+\delta)) = \mu(\delta, O_{2\gamma})$.

Proof. The theorem is true if $\delta = 0$ by 4.8. Suppose $\delta > 0$. Using a proof similar to the proof of the first part of 4.8 it can be shown that

(1)
$$\Xi_{2\gamma+1}(\omega(1+\delta)) \in M(O_{2\gamma}).$$

Next, we shall prove by transfinite induction that for all δ

(2)
$$\mathcal{E}_{2\nu+1}[\omega(1+\delta)] \leqslant \mu(\delta, O_{2\nu}).$$

The theorem follows from (1) and (2) because $\mathcal{Z}_{2\gamma+1}(\omega(1+\delta))$ is a strictly increasing function of δ . (1.18)

If $\delta=0$, then the conjecture (2) holds by 4.8. Suppose (2) holds for all $\delta'<\delta$. If δ is a limit ordinal then (2) follows from the continuity of $\mathcal{Z}_{2\nu+1}$ and μ .

Suppose $\delta = \delta' + 1$. Then

$$(3) \qquad \mathcal{Z}_{2\gamma+1}\big(\omega(1+\delta)\big)=\mathcal{Z}_{2\gamma+1}\big(\omega(1+\delta')+\omega\big)=\bigcup_{n<\omega}\mathcal{Z}_{2\gamma+1}\big(\omega(1+\delta')+n\big)\;.$$

By the induction hypothesis,

$$\mathcal{E}_{2y+1}(\omega(1+\delta')) \leqslant \mu(\delta', O_{2y}) < \mu(\delta, O_{2y}).$$

,

It follows from 1.16 (ii) that for $n \in \omega$,

(5)
$$\mathcal{Z}_{2\gamma+1}(\omega(1+\delta')+n+1) = \mathcal{Z}_{2\gamma+1}(\omega(1+\delta')+n)O_{2\gamma+1}(\omega(1+\delta')+n)$$
.

Since $M(O_{2\gamma}) = M(O_{2\gamma+1})$ (1.14 (i)) and $\omega(1+\delta') + n \leqslant \mathcal{Z}_{2\gamma+1}[\omega(1++\delta')+n]$ (1.18), it follows from (5) and 1.9 (i) that if $\mathcal{Z}_{2\gamma+1}[\omega(1+\delta')+n] < \mu(\delta, O_{2\gamma})$ then so is $\mathcal{Z}_{2\gamma+1}[\omega(1+\delta')+n+1]$. Thus, since (4) holds, it follows by mathematical induction that $\mathcal{Z}_{2\gamma+1}[\omega(1+\delta')+n] < \mu(\delta, O_{2\gamma})$ for all $n \in \omega$. Therefore, it follows from (3) that $\mathcal{Z}_{2\gamma+1}[\omega(1+\delta)] \leqslant \mu(\delta, O_{2\gamma})$.

Thus, it follows from 4.9, that if $\gamma > 1$, the function $\psi_{\gamma}(\delta) = \Xi_{2\gamma+1}(\omega(1+\delta))$ enumerates the elements of $M(O_{2\gamma})$.

We conclude by discussing the fixed points of \mathcal{Z}_{γ} with $\gamma>3.$ First, we prove a preliminary lemma.

LEMMA 4.10.

(i) If
$$\alpha > 1$$
, $\gamma = \bigcup \gamma \neq 0$, and $\alpha = \Xi_{\gamma}(\alpha)$ then $\alpha = T(\alpha)$.

(ii) If
$$a>\omega, \ \gamma>0$$
, and $a=\mathcal{Z}_{2\gamma+2}(a)$ then $\sum_{\xi< a}(1+\xi)\,\omega=a$.

Proof. Part (i) follows from 1.20, 4.1 and 2.9 and part (ii) follows from 1.20, 4.4 and 4.7.

THEOREM 4.11. If $\gamma = \bigcup \gamma \neq 0$ then

$$\{a\colon\thinspace \varXi_{\gamma}(a)=a\}=M(O_{\gamma})\cup\{1\}\;.$$

Proof. If $\gamma = \bigcup \gamma \neq 0$ and $\Xi_{\gamma}(a) = a$ then it follows from 1.16 and 1.20 that either a = 1 or a is a limit ordinal. Suppose then that a is infinite and $\Xi_{\gamma}(a) = a$. By 4.1,

$$a = \mu_{\gamma}(T(a))$$

= $\mu_{\gamma}(a)$ [4.10 (i)]
= $3 O_{\gamma}(2+a)$ [1.13]
= $3 O_{\gamma} a$.

Therefore, it follows from 1.10 (ii) that $\alpha \in M(O_{\gamma})$. The argument is reversible

THEOREM 4.12. If $\gamma > 0$ then

$$\{a: \Xi_{2\nu+2}(a) = a\} = M(O_{2\nu+2}) \cup \{1\}.$$

Proof. The proof is similar to the proof of 4.11. Use 4.4, 4.10 (ii) and 1.12 instead of 4.1, 4.10 (i) and 1.13 respectively.

THEOREM 4.13. If $\gamma > 1$ then

$$\{a: \, \varXi_{2\gamma+1}(a) = a\} = M(O_{2\gamma+2}) \cup \{1\}.$$

Proof. The proof is similar to the proof of 4.11 with 4.1 and 1.13 replaced by 4.9 and 1.12. (See also the proof of 3.18.)

References

- J. Doner and A. Tarski, An extended arithmetic of ordinal numbers, Fund. Math. 65 (1969), pp. 95-127.
- [2] A. L. Rubin and J. E. Rubin, Extended operations and relations on the class of ordinal numbers, Fund. Math. 65 (1969), pp. 227-242.
- [3] J. E. Rubin, Set Theory for the Mathematician, San Francisco 1967.
- [4] W. Sierpiński, Cardinal and Ordinal Numbers, Warszawa 1958.

Reçu par la Rédaction le 27. 1. 1970