Accumulation functions on the ordinals

by
Arthur L. Rubin and Jean E. Rubin (Lafayette, Ind.)

§ 1. Introduction. For each ordinal a, we calculate T(a)= ) ¢ and
t<a

I'(a)= [] & and then extend these functions to the higher operations

0<é<a
of Doner and Tarski [1]. The notation used is that given in [1]. For con-
venience we shall repeat several of the definitions and theorems given
in the Doner—Tarski paper. When referring to a theorem, lemma, ete.
in their paper we shall prefix the numeral by the symbol “D-T”.

We shall use the following notation: e, g, y, & 7, ... are variables
whose ranges are all ordinal numbers; %, m, p, ¢, ... are variables whose
ranges are all finite ordinal numbers; o is the smallest infinite ordinal;
 is the class of all ordinals; and @ is the empty set. The reader is referred
to Sierpinski [4], Chapter 14, and Rubin [3], Chapters 8 and 9, for the
traditional properties of ordinal arithmetic used in this paper.

DEFINITION 1.1. HIGHER OPERATIONS. [D-T 1]

(1) a0yf = a+p.
(ii) It y >0, a0, = {J (a0,7)0;c.

n<pb<y

COROLLARY 1.2, [D-T 2]

(i) 0,0 =00,a =0, if y> 0.

(i) «0,1 =10,a=a, if »> 0.
(iii) 20,2 = 4.
TaeEOREM 1.3. [D-T 3]

(i) a0, = a-B.

(i) If « #1 and B 5 0 then a0,f = o,
(i) If @ 1 then aOy1+p) = o'.
THEOREM 1.4, MONOTONICITY LAWS.

(@) If 8 =8 then a0, > 0,8 [D-T 4(i)]
() If a =1 and B> f' then a0,p> a0,p'. [D-T 4(ii)]
(ili) If a > o then a0,f > a'0,p. [D-T 6]
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(iv) If y= 7" and cither a,$>2 or y' =1 then a0, = alyp.
[D-T 8]
(¥) If =1 then a0, > . [D-T 5(i)]
(VD) If a>1 and B2 then a0yf > a. [D-T 5(ii)]
TeEEOREM 1.5. [D-T 9]
- If a2 and B =1 then
a0ya(B+1) = (a0y41) Oyar.
TaEOREM 1.6. ¢ 0,8 is o limit ordinal if any one of the following con-
ditions hold.
i) y>o0, a,>2, and o= =2 does not hold.
(ii) 2<y<m, a>2 and f > o
(i) 3<y<w, a0 and > 2.
Proof. [2], Lemma 7.
THEOREM 1.7. [D-T 27 (i)]
If a=2, =1, and y=1{Jy #0 then
a0y(f+8") = (20,8) 0,(1+8') .
TaEOREM 1.8. [D-T 32]
If B, =21 and y #1 then
(@) if f'=UB #0 and a>2, then

aOz{B+B") = (a0xp) 0y p'.
(i) if a=Jaor if a2 and §'= | JB' # 0 then
002y 11(f+B") = (202 418) On(a-B')
DEFINITION 1.9. MATN NUMBERS. . -

(i) If 0 is a binary operation from 2xQ to 2 then 6 > w is & main
number of 0 iff for all e, < 8, a0 < 8. [D-T 38]

(ii) 3(0) denotes the class of all main numbers of 0. [D-T 38]

(iii) (9, O) is the nth successive main number of 0. ((0, 0) is the
smallest main number of 0.) [D-T 40]

Av) I y= Uy # 0 then M, =" M(0,). ([2], 4(iii))
<y
(v) It y = Uy # 0 then u,(7) is the nth successive element of M,.

The main numbers of 0, are its fixed points. That is,
THEOREM 1.10.

(i) 6 is a main number of O, iff 6 > 3and a0,6 = ¢ A d.
—_ forall a,2 < a<

> T(ii)7 JIf ¥ 22, then for all o, 2<a<d, 5 M(0,) iff a0,6= 6.

©
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Thus, for example, the main numbers of 0, (addition) are positive
powers of w; the main numbers of 0, (multiplication) are all ordinals
in the form «*’; and the main numbers of 0, (exponentiation) are o and
the epsilon numbers.

TeEOREM 1.11. If f = |JB £ 0 then
(i) «0,8= U a0y
(i) p(8, 0, U #(n, 0
(i) p,(8) = UM(’?-
n<p .
Proof. Part (i) is D-T 15(iii); (ii) is D-T 41(i); and (iii) follows
from (i) and D-T 55.
THEOREM 1.12. [D-T 48(ii)]
If a>2, y =1, and p(R, 0y) is the least main number of O, ex-
ceeding o then
(417, 0s) = aOgyielo(@+n)].
Thus, the function y,(n) = 20y w(1+7)] enumerates the elements
of M(0s). '
THEOREM 1.13. [D-T 54]

Ifaz3and y=Jy #0then Ec M, and £> a szthere is an 7 s0'
that & = a0,(2+ 7).

THEOREM 1.14. [D-T 37]

If y= Uy # 0 then 20,(3+1n) = 30,2+n).

It follows from 1.12 and 1.13 that if y= {Jy # 0, 20,3 = u,(0) is
the smallest element of M,, and if a > 3, a0,(2+7) is the #th element
of M, exceeding a. Moreover, the function y(5) = 30,(2-+-7) enumerates
the elements of M,.

TEEOREM 1.15.
i) If y > 1 then M(0y) = M(Osys) D M (Ozyse). [D-T 52(i)]
(i) If y= Uy 0 then M(0,) ¢ M,. [D-T 57]
'(iii) If AeM(0,) then 2= JA # 0. [D-IT 42(i)]
DEFINITION 1.16. ACCUMULATION FUNCTIONS.
(1) Ey(0) = Ey1) = 0.
(i) It > 0, 55(0) = 5,(1) = 1.
(iii) I a> 0, E(a+1) = E(a)0ya
(iv) If a= Ua #0, Efa) = U (/3)
Zs and Efa) = ¢

Thus, for example, Fye e

14*
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DEFINITION 1.17. CONTINUOUS.
Tt F is a function from Q to Q then F ig said to be continuous itf for

all « such that a= (Ja #0, F(a)= ﬁgF(ﬁ).

Tt follows from 1.16 and 1.4, the monotonicity laws for 0,, that
for every y, &, is a continuous non- deereasing function and

Lenwa 118, If 2 < a< B then Ea) < E,(p).

THEOREM 1.19. If a> 4 then a éuy( } < a0yppa.

Proof. The proof is by transfinite induction on a. First suppose
a=4 and y=0. Then 5,4) =6 and 4-4=16 50 a < 5ya) <alyna
in this ease. Next suppose ¢ =4 and y > 0 then

a=4=20,2  [1.2 (i)
< 20,3 . [1.4(i)]
= 5,(4) [1.16 (iii)]
< 40,4 [1.4 (ii), (iii)]
<40yt [14 (V)]

Suppose the theorem is true for all f < o and a = $-+1 > 4. Then

a=f+1 < 5(f)+1 [Ind. Hyp.]
< E(B)+B
< E(p) 08 (L4 (iv)]
= 8(f+1) [1.16 (iii)]
< (0,180, 8 [Tnd. Hyp. 1.4 (iii)]
= B0,+1(f+1) [1.5]

< (B+1)0pa(f+1)  [1.4 (iil)]

Finally, if a = |Ja 0, the theorem follows from 1.16 (iv) and the
monotonicity law, 1.4.

THEOREM 1.20. If a >4 and 5a)=a then a= |Ja # 0.
Prooi. Suppose a = 41> 4. Then
E,(p-+1) = E,(8)0,f  [1.16 (iil)]
= E(p)+p  [1.4(1v)]
> f+1. [1.19] .

It a=4, 5(a) = 5,(3)0,3, and it follows from 1.1 and 1.16 that

« <u,,(a Thus, we have shown that if o > 4 is not a limit ordinal, then
o< Ba). ‘

. iom®
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In what follows we frequently use the following well-known result.
. THEOR}?JM 1.21. For each a eQ, a + 0, there is a unique n e w, n % Q
anique ordinal numbers d, ay, ..., an such that ay> > .. > ay, and

unique natural numbers a; # 0, 1 =0,1,...,n, such that
(%) a= 0%+ wa+ ... +oday,.

The form. () is called the normal form of a. For a proof of 1.21 see,
for example, Sierpinski’' [4], pp. 319-323.

In the next section we discuss the funetion Z. In section 3, we
consider =y, &,, and Z;. Then, in the last section, we consider £, with y > 3.

§ 2. The function 7(x)= Y& An ordinal number of the form ) &

i<a f<a

is called triangular. (This terminology is used by Sierpinski [4], p. 289.
Sierpinski caleulates all infinite triangular numbers <o) Clearly, if

0 < a < w, then Eé“g = }a(o—1). In this section we shall calculate all
infinite triangular numbers.

DrrINITION 2.1. T(a) =52 &= Eya).

=

THEOREM 2.2. If a4, a < T(a) < &

Proof. 1.19 and 1.3 (i). '

TeEEOREM 2.3. T(a+p) = T(a)+ 3 (a+8).

Proof. 2.1. =

THEOREM 2.4. If 0 <n< o and a> o then

T(a+n)= T(a)+an-t+(n-=1).

Proof. 2.3 and traditional properties of ordinal arithmetic.
TeEOREM 2.5. If a>0, f=UB< 0t and 0 <m <ow then
2 (0m—-§) = of.
E<p
Proof. First we have

wif =Y or < 3 (0mt8).

<p | i<s
Since the theorem is clearly true if § = 0 we can assume f is a limib
ordinal. Then,

2 wm4-&) = J D (wrm1E) .
<p

n<pé<n
Therefore, if e (e®m--£) then there is an 7 <fp such that
§<p
v € X (wrm+-£).
E<n
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Moreover,

3 (@m+8 < 3 (@m-+n) = (@m-tn)y
<n -

§<n

¥ 9=y then by [3], Theorem 9.1.6, (wm-+7u)y = w < wip.
On the other hand, if y 5 | 7, then thereis an #, 0 <2 < w, and o' = | J ¢’
such that 5 = %'+ n. Moreover, since n < f < o+, there is a ke w and
7" < w* such that = wk-+9". Then agam using [3], Theorem 9 1.6,
we obtain

(wom+n)y = @iy’ 4+ 0t (k+m)n+q"’ < wof .
In either ease, we obtain y € w*f which 1mphes Z (wm &) < 0B,
and completes the proof of the theorem.
THEOREM 2.6. If a>0, f=Jf < w™, and 0 <m < w, then

T(e*m+f) = T'(w'm)+wf .
Proof. 2.3 and 2.5.

Now it follows from 1.21, 2.4, and 2.6, that to calculate all infinite

triangular numbers, it is sufflclent to ealculate T(wem) for all o> 0
and m e @.

TEEOREM 2.7. If >0 and 0 < m < w then
T(o'm) = T(w®) +w*2Am—1) .
Proof.
T(wm) = T (0*+ o*(m-1))

= T+ o*{wim—1)) [2.6]

= T(0%) 4+ o*¥m—1) .
Now, it remains to evaluate 7' («?) for a> 0.
THREOREM 2.8, T(0+!) = ge2+1
Proof.

T(0*) = T(w°+ o)
= I'(w")+ o>l [2.6]
= @2+l : [2 2]

" The last case to consider is the value of T(w*) when « is a limit
ordinal. In this case, there exist §> 0 and y such that o= wﬁ( +1).
THEOREM 2.9. T (0v’etD) = gofipa+y,
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Proof. The proof is by transfinite induction on . It B =0 the
theorem follows from 2.8. Suppose the theorem is true for all § <f, and"
p =641

T (o 0+D) = [ (gefter+a))
= |J T{w*Yertn)

n<o

= {J T (woRertn+1)

n<w

= | gofersim+ [2.8]

n<w @
Olory 24
= @yt

6+1(7

= % ..1—1)

I p=1Jp 0, then
T (**0+0) = T(=friof)
= | T{arfri=)
&8
= | T(o*"eFrtD)
£3p

= eUp PR S-SR [Ind. Hyp.]
<

— U wmﬂ~yv2+m$
§<B

— @ofr2+D)

Thus, it follows by transfinite induction that the theorem holds.

Tf n < o then T(n)= in(n—1). Thus, for n ew, T(n)=n if and
only if # = 0 or n = 3. For infinite values of a, we obtain the fixed points
of T(a) from 2.4, 2.6, 2.7, 2.8, and 2.9. We get the following result.

THEOREM 2.10.
{a: T(a)=a} = {0**: pQ}v {0,3}
= M(0,) v {0,3}.
§ 3. The functions £, y=1,2,3. In this gection we study the
funetions &,, 5, and 5. 5 is the factorial or gamma function.
DerrNmroN 3.1 INa) = [] £ = E(a).
0<é<a
THEOREM 3.2. If a4 then o < I'(a) < o
Proof. 1.19 and 1.3 (ii).
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THEOREM 3.3. I'(a+p)= r<a)-EE£(a+£), if a#0.
Proof. 3.1. )
THEOREM 3.4. If a={Ja#0 and 0 <n < o then

I'(a+n) = I'(a)-[e*+ e (n—1)+a2n—2) + ... ~a].

Proof. 3.3 and traditional properties of ordinal arithmetic.
THEOREM 3.5. If a> 0, =B < 0wt and 0 < m < w then

T (0m+ &) = o,
§<p
Proof. The proof is similar to the proof of 2.5—replace “ 3 by “[]»

and use Theorems 9.1.7 and 9.1.8 of [3].
THEOREM 3.6. If a >0, B= |JB < w*ty, and 0 < m < o then

Tlo*mB) = I'(w'm)- w*.
Proof. 3.3 and 3.5.
TEEOREM 3.7. If a> 0 and 0 < m< w then

I'(w'm) = I'(@%) poa“m-1), _
Proof. I'(w"m) = I'(e*+ 0 (m—1)) = I'(w%). p>e%m-1 [3.6].
THEOREM 3.8. I'(w) = .
Proof. IMo)= [[n=) [[n=ow.
(1]

<n<e men d<n<m
TEEOREM 3.9. If 0> 0 then I'(w+) = guo™,
Proof. ‘
DP(0#+) = I'(w" 4 @)
= (w9 0= | [3.6]
= w""”uﬂi [3.2]
CoROLLARY 3.10. If 1< % < o then I'w™) = we",
COROLLARY 3.11. I'(w®) = ¢o®,
Proof. 3.10 and the continuity of I
THEOREM 3.12. If » >0 and § — oo+ then I(8) = &,

Proof. The proof is similar to the proof of 2.9,
Now, the only cage that remains is the value of TI'{w*®) for B> 1.

THEOREM 3.13. If > 0 then I'(0%) = wot.

icm®
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* Proof. The proof is by transtinite induction on 8. B = 1 the theorem
follows from 3.11. If 8 is a limit ordinal the theorem follows from the
continuity of I'. Finally, if ‘f = y41 then

T(0") = (o)
= UT (e

n<w

= U™ [312]
= gota®?e

Lttt

THEOREM 3.14. {a: I'(a) = a} = M(0,) U {1}.

Thus, the fixed points of I" larger than 1 are the main numbers of
exponentiation—w and the epsilon nunbers.

The function Z, is expressible in terms of the I" function.

THEOREM 3.15. If a> 2 then 5ya) = 23@,

Proof. 1.16 and 1.3. . )

Therefore, 5, and I' have the same fixed points.

THROREM 3.16. {a: Zya)= a} = M (0,) v {1}.

The function Z; behaves like the functions Z,.; with y > 1, but
some of the theorems used in the next section to derive the results for
Epy41 With ¥ > 1 do not hold when y = 1, Thus we treat Z; as a special
case here.

THEOREM 3.17. Zyfw(1+8)) = u(8, 0,).

Proof. The theorem is true if §=10 since Zyw)= o= u(0, 0,).
Suppose 6 > 0. We shall show first that Zy(w(1-6)) ¢ M(0,). Suppose
a, B < Syl +8)). Then by the continuity of 5, there is an # such that
n=1J7n%0, 7< o(l-+8) and an n.< o such that a, f < Zy(n-+n). Then,

00,f = of [1.3 (ii)]
< By 4+n)=0tm
< Eyn+n+1) [1.3 (iii), 1.16 (iii)]
< By(w(1+3). [1.18]
Therefore, by 1.9 (i) it follows that Fyw(1-+6)) e M(0,).
We shall prove next that

(1) Byl (1406)) < p(2, 0s) .

Then, since Syw)= u(0, 0s), Zs(w(1+0)) e M(0,), and 5, is an
increasing function, it follows that Hy(w(1-6)) = u(8, 0y).
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The proof of (1) is by transfinite induction. We have shown above
that (1) is true if 6 = 0. Suppose it is true for all 6' < 6. If d=[J 520
then (1) follows from the continuity of Z; and g, 1.16 (iv) and 1.11 (ji).
Suppose 6 = ¢’ +1. Let 7 = w(1+4'). Then by the induction hypothesis

Ey(n) < u(d, 0y) .

Suppose, for n € w, y(n-+n) < u(d, 0). Then

By(n+n+1) = Ey(n+n) Osn+n)  [1.16 (iii)]
— Ey(n+n)®™™ 1 8 i)

The elements of M (0,) are w and the epsilon numbers. It follows
from the definition of an epsilon number (see for example [3], pp. 242-246)
that Zy(nn+1) < u(d, 0,). Thus, Eyn+n) < u(d, 0,) for all new.
Sinee Zz(w(1+6)) = {J Syln+n) by 1.16 (iv), it folléws that Za(w(1-+6))

n<e
< (0, 0y).

Next, we shall show that the fixed points of 5y are M (0,) v {1}.

TEEOREM 3.18. {a: Sya) = a} = M(0,) v {1}

Proof. By 1.16 (ii), (iii) and 1.2 (ii) we obtain 54(0) = Fy(1) = 5y(2) = 1
and Z4(3) = 2. Thus it %ollows from 1.20 that if Fy(a)= « then either

a=1ora=|{Jas0. If ¢is a limit ordinal then there is a & such that
a = o(1+9). Suppose, that « = »(1+6) = Zy(a). Then

a=u(s, 0,) (3.7
=20,0(14+46) [1.12]
=20,a.

Therefore, it follows from 1.10 (ii) that ae M (04). The argument
is reversible. Therefore the theorem follows.

) § 4. The function 5, y > 3. We consider first the case that y is a limit
ordinal. We ‘shall show that-in this cage, except for the first few values
of a, Ey(a) € M,. (See 1.9 (iv)).

THEOREM 4.1. If y =y £ 0 and a> 2 then
E(1+0) = g{T(a)-3) .

Proof. The proof is by transfinite induction on a. If « = 3, E,1+a)
= 20,3 = 15{0) = ,(T(3)—3) = the smallest element of M, (1.9 (v),
1.13 and 1.14). Suppose the theorem is true for all § < a. If ¢ is a limit

ordinal then the theorem follows from the continuity of 5,, T
1 s k) and
(1.16 (iv) and 1.11 (iii)). e v M
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. Suppose o= B+1 and > 2.

E(1+4+1) = E,(1+5)0,(1+p) [1.16 (iii)]
= w|T($)—3)0,(1+p) [Ind. Hyp.]
= w{(T(8)—3)+p) [1.13, 1.14]
= (T(8)+B)—3)
= m(T(B+1)—3).

Thus, we see that if y =)y #0, and 3 < a < o then ZJa) is the
(T(e—1)—3) th element of M, and if a> w then EJa) is the T(a)th
element of If,.

THEOREM 4.2. Sz, 10(w) = u(0, Oy).

Proof. It y = 0, Spyya(w) = o = (0, Os,) (3.15 and 3.8).

Suppose y > 0, then by 1.12 and 1.11 (i)

80, 02y) = 203y 100 = L<J 20zy42m

But, by 1.16

Bypra(0) = U Bpppa(n+1) = U Bpppaln) Ozpram .
n<o n<o

Thus, it follows from the monotonicity law 1.4 (iii) that u(0, Os,)
< Eypof ).

Conversely, Zoy1+2(0) = Hapqa(l) = 1 < p(0, Oz,).

Suppose Egy.l_g(ﬂ) < ,u(O, ()‘_zy) then Egy+2(’/b+1) = Egy.l_g(’n) 027_:_2711
< u(0, 0g,) by 1.12. Consequently, Zs,qe(n) << p(0,0s) for all neaw,
80 Hgypa(w) =nL<J0521»+2(ﬂ) < 4(0, 0).

THEOREM 4.3. If ¥ > 1 and u(A, Os,) is the largest element of M (0Os,)
which does not emceed Hopisa), w < a=w-&+n, and f=o-6+m,
n,me w, then

wPt 2 e 8o+ (s+8)m, 0s) < Bopea(atf)
S pA+14 3 (1 te+E ot (L+eto)m, Os) .
’ E<B .
Prooif. The proof is by transfinite induction on f. The t.l}eorex.n %s
true if f = 0. Suppose the theorem is true for all p' < f. If f is & limit

ordinal then the theorem follows from the continuity of u andWEgﬁg.
Suppose f= f'+1 where ' = w-8+ (m—1). Then by 1.16 (iif)

(1) Epyra(at ) = Bppuola+p) OprolatF) -
By the induction hypothesis,
@) po=plit D e+ ot m—1), 0) < Syalath)
<
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and . : )
8) Esalatp) <pli+i+d (14etEo+(1+etd)(m—1), 0n) = p.

Tt follows from 1.12 and 1.4 that for every >0, 0, and k¢ o

(4) plo+n, 0s) < u(o, 0Oq) 02&4.2(6017 +k)
and ‘
(3) 16(5 Osy) Ogyalon + 1) < p(o-+1 47, Oz) -

Now, a = w-e--n where &> 0 and f' = w-d+ (m—1). Consequently,
using (1), (2), and (4) (in (4) take n= e-+0 and o= Aﬂ[—féjﬁ(g_}_g)w_{_
4 (s+8)(m—1)), we obtain .

(6) ;L(l+=zz’(£+§)w+(6+5)m: Ony) < g Ospse(a+ ') < Spraatf) .

Similarly, using (1), (3), and (5) (in (5) take n=1-4¢+d and 0 = 1+
1143 (4ot o+ (1+etd)(m—1)), we obtain
<8

("N Eyyra(at ) < py Ospro{a+ )
<pltH1+ 20 tetfot(I+eto)m, On) .

The theorem follows from (6) and (7).
In the case that § is a limit ordinal Theorem 4.3 has a simple form.

COROLLARY 4.4. If y > 1 then
Eppaa(w(1-+0)) = ul 5%‘, (L+Ew, O) .

Proof. If §= 0, the corollary follows from 4.2. If > 0, in 4.3
let e=1, and m = n=0, then the corollary follows from 4.3 using
traditional properties of ordinal arithmetic.

To make 4.4 more meaningful we shall evaluate >A+8Ho.
£<d

THEOREM 4.5. If 8 <o then ) (1+&)w = w-4.

<o
Proof. The proof is by induction on 4.

THEOREYM 4.6. 3 (1+8) o = o
é<ao
Proof. 45 and continuity.

THEOREM +.7. Suppose §= ody+ ... +w™d, is the normal form
of 8. (1.21)

() If 6y=Ud £ 0 then X (14+£)w = b+ wotl(§ — wh),
§<6
(i) If 8y # U8y then 2 (14£)w = whot wdi{§ — o),
i<é
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Proof. In both cases, since d> 0, 6 > w 80
J(1+8Ho =2t
<o £<S
= Jtot D fo.

g<abo wdoce<s

Tet us look at the second sum first. It follows from [3], Theorem 9.1.6 (b) .

that for all & such that o® < £ < §, & o= ™. Thus,

St = ot(5— ).

wPE<s
It follows by an easy transfinite induction on &, that the first sum,

D Eo= 2 (ol wftl).

£<w® £<dp

I §) = o,

D) (witt pbtl) = 3wt = g,
§< £<d

If 5= U &> o,
D (wftt wftl) = X (w?+1-m5+1)+ D (wftt ftY)

£<8o <o W<E<S

= @+ 2 Wi+l

w<i<dy

= %+ 0% = o¥%,
Suppose 8 = e+n where s=J¢ and 0 <n< o If ¢=0, then

2 (@t @ft?) = 2 w2+
&<dp ) E<n

N S 1% LIS .
Finally, if e=|J& 30 then

D (bt wft) = ) (@it ofth) 4 > (wftt wfth)
E<dy E<n sE<do

= ot Z w2t

s<E<do

= @i+ @ltn—12+1

= f2tn = wlo,

Now to complete our discussion of the accumulation funetions we

consider the function &s,41.


GUEST


218 A.L. Rubin and J. E. Rubin

THEOREM 4.8. Eg,,+1(cu) = ,LL(O, 02,,).
Proof. The theorem is true if y is finite, for in this case Sy, 41(w) =

= p(0, Oy). .
. Suppose y > . Then it follows from 1.6(i) that for 8 <n <o,

Fyyra(n) is a limit ordinal. Suppose a, f < Bpypi(w). Then, by the con-

tinuity of 5., there is an %, 3 <n < w, such that «a,f <|Egy_|,1(%)_
Therefore,

= Bypia(m) Ozy 1 [1.8 (il)]
= Ezy+1(.’”/+1) [1.16 (iii)]
< Bpypa(w) .

Thus, it follows from 1.9 (i), that 5b,4i(w) € M (0s,).

Then, by & proof similar to the second part of the proof of 4.2, we
obtain that for each 7 ¢ w, pypa(n) < (0, 0s,). Consequently, by con-
tinuity, Sb,.a(w) < p(0, Oy). But we proved Hyyri1(w) € M(0y,), s0 we
must have Zu,.1(w) = u(0, 0s,).

The proof of the next theorem i similar to the proof of 3.17.

THEOREM 49, If y> 1 then, Syy4a(w(1+06)) = 4(d, Oy).

Proof. The theorem is true if § = 0 by 4.8. Suppose ¢ > 0. Using
a proof similar to the proof of the first part of 4.8 it ean be shown that

1) . Epa(w(1+8)) € M(0,,) .
Next, we shall prove by transfinite induction that for all &
@) Fapia(0(14-8) < (8, 0s,) .

The theorem follows from (1) and (2) because Eyypaw(1-+0) is
a strietly increasing function of &: (1.18) .

H §=0, then the conjecture (2) holds by 4.8. Suppose (2) holds
for all &’ < 6. If 6 is a limit ordinal then (2) follows from the continuity
of Zappy and u. .

Suppose 6= §'+1. Then

B Epnlo+0) = Sypu(o1+8)+0) = | Eppra0(14+6) ) .
By the induction hypothesis,

=

(4) Eya(0(L+8)) < p(8, 0s) < u(5, 0y) .

icm®
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It follows from 1.16 (ii) that for # w,
() Epralo@+0)+n+1) = Bl (1+8) +1) Opyaa(o(1+8) +1) .

Since M () = M(0ys2) (L14 (1)) and (1+8)+n < Fyaw(1 4
+6")+n) (1.18), it follows from (5) and 1.9 (i) that it ypr{w (16 +n)
< (6, Oz) then so is 52y+1(w(1+6')—|-n+1). Thus, since (4) holds, it
follows by mathematical induction that Sayi(w(1+6)4n) < p(8, Oy
for all n € o. Therefore, it follows from (3) that Z;,.:(w (1+6)) < p(8, Oy).

Thus, it follows from 4.9, that if »>1, the function ,(6)
= Hop1a(w(1-0)) enumerates the elements of M (0y,).

We conclude by discussing the fixed points of &, with y > 3. First,
we prove a preliminary lemma.

Liemwa 4.10.

(@) If a>1, y=Jy #0, and a= Fya) then a = T(a).

(i) If a> w, ¥y >0, and a= Fy,ys(a) then 3 (14w = a.

é<a
Proof. Part (i) follows from 1.20, 4.1 and 2.9 and part (i) follows
from 1.20, 4.4 and 4.7. ’

TeworEM 411, If vy = {Jy 5 0 then
{a: Bfa) = a} = M(0,) v {1}.

Proof. If y = (Jy # 0 and 5,(a) = « then it follows from 1.16 and
1.20 that either a= 1 or o is a limit ordinal. Suppose then that  is in-
finite and Z,(a) = a. By 4.1,

o= ,u,,(T(a)) )
= wla) [4.10 ()]
=30,2+a) [1.13]
=30,a.

Therefore, it follows from 1.10 (ii) that a e M(0,). The argument
is reversibley

ToEoREM 4.12. If y > 0 then
{(l: Ez,,+2(a) = a} == .M(Ozy.}.z) v {l} .
Proof. The proof is similar to the proof of 4.11. Use 4.4, 4.10 (ii)
and 1.12 instead of 4.1, 4.10 (i) and 1.13 respectively.
TrEOREM 4.13. If y > 1 then
{ar Boypa(a) = a} = M(Ogyys) © {1}.
Proof. The proof iy similar to the proof of 4.11 with 4.1 and 1.13
replaced by 4.9 and 1.12. (See also the proof of 3.18.)
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