The following theorem on the uniqueness of BTS is a consequence of the above results:

(5.5) Theorem. For any pair \((C, E)\) where \(E: C \to EC\) is a projection functor from an \(E\)-category \(C\) into a semi-classical category \(EC\) there exists a unique continuous BTS \((C, EC, SC, E, F)\). It is unique in the following sense: if \((C, EC, SC, E, F')\) is another continuous BTS (and \(F = F' \circ E\)), then there exist functors (which are uniquely determined) \(H: SC \to SC\) and \(H': SC \to SC\) such that

\[
H \circ H': SC \to SC \quad \text{and} \quad F = F' \circ H'.
\]

are identity functors and

\[
F' = H \circ F \quad \text{and} \quad F = H' \circ F'.
\]

(5.6) Remark. We can say that a continuous functor of shape is a Dedekind section between the functors of shape and the continuous functors.

(5.7) Remark. It is clear that Theorem (5.1) holds for the contravariant functors \(G, G'\) also.

(5.8) Example. Given an arbitrary BTS \((C, EC, SC, E, F)\), let \(Y \times E \text{-Ob} C\). Then, by Definition (2.4), \(M_{K0} \times E: C \to \text{Ens}\) is a continuous contravariant functor. Then, by Theorem (5.1), there exists a contravariant functor \(H\) such that \(M_{K0} = H \circ E\). It is easy to see that it must be \(H = H_{K0}\).

(5.9) Example. Let \(H: C \to HC\) be the homotopy functor from the topological category of compact pairs \(C\) to the homotopy category of compact pairs \(HC\). Then \(H\) is a projection functor and \(C\) is an \(H\)-category. The Čech homology and cohomology functors \(\eta^*\) and \(\eta_*\) are \(H\)-invariant and continuous on \(C\). Thus they are shape-invariant in the sense of Theorem (5.1) (see [3] and compare [3] and Example (5.8)). \(H\)-objects are precisely the pairs homotopically dominated by polyhedral pairs.

References

Some results on fixed points — III

by

R. Kannan (Calcutta, Ind.)

Recently many authors have proved fixed point theorems (see for example [1], [4], [5], [6]) for operators mapping a Banach space \(X\) into itself. In each of these theorems it has been assumed that the mapping is non-expansive i.e., if \(\phi\) maps the Banach space \(X\) into itself, then

\[
\|\phi(x) - \phi(y)\| \leq \|x - y\|, \quad \text{for } x, y \in X.
\]

(5.1)

The main purpose of the present paper is to prove some fixed point theorems for operators mapping a Banach space into into itself which, instead of the non-expansive property, possess the following: if \(\phi\) is a mapping of a Banach space \(X\) into itself, then

\[
\|\phi(x) - \phi(y)\| \leq \frac{1}{2}(\|x - \phi(x)\| + \|y - \phi(y)\|), \quad \text{for } x, y \in X.
\]

(5.2)

It may be noted that condition (a) implies the continuity of the operator in the whole space while condition (b) has no such implications. Moreover, it is known [6] that (a) and (b) are independent. For relevant works on fixed point theorems for operators mapping a metric space \(M\) into itself which satisfy condition (b) on \(M\), one may refer to [6] and [7].

Before going into the theorems, we state the following well-known definitions and results.

Definition ([2], p. 27). A norm in a normed linear space \(X\) is **uniformly convex** if

\[
\|x_n\| = \|y_n\| = 1 \quad (n = 1, 2, \ldots), \quad \lim_{n \to \infty} \|x_n + y_n\| = 2
\]

imply

\[
\lim_{n \to \infty} \|x_n - y_n\| = 0 \quad \text{for } x_n, y_n \in X.
\]

Theorem A ([2], p. 28). Let \(X\) be a uniformly convex normed linear space and let \(\varepsilon, M\) be positive constants. Then there exists a constant \(\delta\) with \(0 < \delta < 1\) such that

\[
\|x\| < M, \quad \|y\| < M, \quad |x - y| > \varepsilon
\]

imply

\[
\|x + y\| < 2M \max(|x|, |y|).
\]
THM 3 [12]. Every uniformly convex Banach space is non-reflexive.

THM 4 [11]. A necessary and sufficient condition that a Banach space X be reflexive is that:
Every bounded descending sequence (transfinite) of non-empty closed convex subsets of X has a non-empty intersection.

We are now in a position to prove our theorems.

THM 1. Let X be a reflexive Banach space and let K be a non-empty closed convex bounded subset of X. If φ is a mapping of K into itself such that

(i) $|\varphi(x) - \varphi(y)| \leq \frac{1}{2} (|x - \varphi(x)| + |y - \varphi(y)|)$, $x, y \in K$

and

(ii) $\sup_{x \in K} \|\varphi(x) - y\| \leq \frac{\delta(H)}{2}$, where H is any non-empty convex subset of K which is mapped into itself by φ and $\delta(H)$ is the diameter of H, then φ has a unique fixed point in K.

For any non-empty closed convex set F of K we define the following:

$$r_F = \inf_{x \in F} \|x - \varphi(x)\|, \quad x \in F,$$

and

$$r_f(F) = \inf_{x \in F} \|x - \varphi(x)\|, \quad x \in F,$$

and

$$F_x = \{x \in F: r_F(x) = r(F)\}.$$

We first prove the following lemma.

LEMMA 2. F is non-empty, closed and convex.

Proof of the lemma. For positive integer n, let

$$F(x, n) = \{x \in F: \frac{|x - \varphi(x)|}{n} \leq r(F) + \sup_{x \in F} |x - \varphi(x)| \}.$$

and let $C_n = \bigcap_{x \in F} F(x, n)$.

It then follows that $\{C_n\}$ is a decreasing sequence of non-empty, closed, convex and bounded sets. Since X is reflexive, it follows by Theorem C that $F_x = \bigcap_n C_n$ is non-empty, closed and convex. This proves the lemma.

Proof of the theorem. Let \mathcal{F} denote the family of all non-empty, closed and convex subsets of K, each of which is mapped into itself by φ. By the result of Smulian [11] and Zorn's lemma it follows that \mathcal{F} has a minimal element, which we denote by F^*. Some results on fixed points — III

Let $x \in F^*$, the non-emptiness of F^* being a consequence of the lemma.

Then

$$|\varphi(x) - \varphi(y)| \leq \frac{|x - \varphi(x)|}{2} + \frac{|y - \varphi(y)|}{2}, \quad y \in F$$

$$\leq \sup_{x \in F} |x - y| + \sup_{x \in F} |y - \varphi(y)|$$

$$= r_F = r(F).$$

So, $\varphi(F)$ is contained in a closed spherical ball \bar{U} centred at $\varphi(x)$ and radius $r(F)$. Therefore $\varphi(F) \subset F \subset U$ and hence, by the minimality of F, we get $F \subset U$. Hence for $y \in F$, $|\varphi(x) - y| \leq r(F)$.

So,

$$\sup_{x \in F} |\varphi(x) - y| \leq r(F).$$

Now

$$r_\varphi(F) = \sup_{x \in F} |\varphi(x) - y| + \sup_{x \in F} |x - \varphi(x)|$$

$$\leq \frac{r(F)}{2} + \sup_{x \in F} |\varphi(x) - x|$$

So,

$$r_\varphi(F) \leq \frac{r(F)}{2} + \sup_{x \in F} |\varphi(x) - x|$$

(by (A)).

Also

$$\sup_{x \in F} |\varphi(x) - x| = \sup_{x \in F} |\varphi(x) - x| + \sup_{x \in F} |x - \varphi(x)|$$

$$\leq \frac{r(F)}{2} + \sup_{x \in F} |\varphi(x) - x|, \quad \text{by condition (ii)}$$

$$= \sup_{x \in F} |\varphi(x) - x|.$$}

So,

$$\sup_{x \in F} |\varphi(x) - x| \leq \frac{r(F)}{2} + \sup_{x \in F} |\varphi(x) - x| + \sup_{x \in F} |x - \varphi(x)|$$

$$= \sup_{x \in F} |\varphi(x) - x| + \sup_{x \in F} |x - \varphi(x)|$$

$$= r_F = \frac{r(F)}{2}.$$

So, from (B), $r_\varphi(F) \leq r(F)$, which implies that

$$r_\varphi(F) = r(F)$$

i.e., $\varphi(x) \in F$.

(C) Hence φ maps F^* into itself.
We now show that if \(F \) contains more than one element, \(F_* \) is a proper subset of \(F \). Otherwise, let \(F_* = F \). Then for \(x, y \in F \)

\[
\tau_F(F) = \tau_F(F) = \tau_F(F) .
\]

So, \(\sup_{x \in F} \|x - \ell\| = \sup_{y \in F} \|y - \ell\| \) for \(x, y \in F \). This implies that \(\sup_{x \in F} \|x - \ell\| = M \), a constant, for all \(x \in F \). Hence \(\delta(F) = \sup_{x \in F} \|x - \ell\| = M \), where \(\delta(F) \) denotes the diameter of \(F \). This, however, implies for \(x \in F \) that

\[
\sup_{x \in F} \|\varphi(x) - \ell\| = \delta(F) .
\]

Again,

\[
\|\varphi(x) - \varphi(y)\| \leq \frac{\|x - \varphi(x)\|}{2} + \frac{\|y - \varphi(y)\|}{2}, \quad y \in F
\]

\[
\leq \frac{\delta(F)}{2}, \quad \text{by condition (ii)}.
\]

Proceeding in the same manner as in obtaining (A), we now get

\[
\sup_{x \in F} \|\varphi(x) - y\| \leq \frac{\delta(F)}{2},
\]

which contradicts (D) because \(F \) contains more than one element.

Hence we infer that if \(F \) contains more than one element, then \(F_* \) is a proper subset of \(F \). But this, in view of (C), contradicts the minimality of \(F \). Hence \(F \) contains only one element. Since \(\varphi \) maps \(F \) into itself, \(\varphi \) has a fixed point in \(K \).

The unicity may be proved as follows.

Suppose that \(\varphi(x) = x, \varphi(y) = y \), where \(x, y \in K \). Then

\[
\frac{\|\varphi(x) - \varphi(y)\|}{2} + \frac{\|y - \varphi(y)\|}{2} = 0 .
\]

Hence \(\varphi(x) = \varphi(y) = y \). This completes the proof.

Note. Kiry [8] has proved a fixed point theorem with the help of Theorem C and using the concept of normal structure (which is defined in [3]) where, however, the unicity is not guaranteed.

Theorem 3. Let \(K \) be a non-empty, bounded, closed and convex subset of a uniformly convex Banach space \(X \). Let \(\varphi \) be a mapping of \(K \) into itself such that

(i) \(\|\varphi(x) - \varphi(y)\| \leq \frac{\|x - \varphi(x)\|}{2} + \frac{\|y - \varphi(y)\|}{2}, \quad x, y \in K \)

and

(ii) \(\sup_{x \in F} \|x - \varphi(x)\| \leq \frac{\delta(F)}{2}, \quad \text{where } F \text{ is any non-empty convex subset of } K \text{ which is mapped into itself by } \varphi. \)

Then the sequence \(\{x_n\} \), where \(x_{n+1} = \frac{x_n + \varphi(x_n)}{2} \), converges to a fixed point of \(\varphi \) in \(K \), where \(x_0 \) is any arbitrary point of \(K \).

Note. One may refer to a theorem of Krasnoselski (22, p. 30 and 9), where the same conclusion as above is obtained under different assumptions.

Proof. The existence of the fixed point of \(\varphi \) in \(K \) is given by Theorem 1. We consider the sequence \(\{x_n - \varphi(x_n)\} \). Two cases arise.

Case I. There exists an \(\varepsilon > 0 \) such that \(|x_n - \varphi(x_n)| \geq \varepsilon \) for all \(n > N \).

Let \(y \) be the fixed point of \(\varphi \) in \(K \). Now

\[
\|x_n - y\| - \|\varphi(x_n) - y\| = |x_n - \varphi(x_n)| \geq \varepsilon, \quad n > N .
\]

Since \(K \) is uniformly convex and \(x_n \in K \), we have

\[
\|x_{n+1} - y\| \leq \frac{x_n + \varphi(x_n) - y + \varphi(y)}{2} .
\]

\[
\leq \delta \max \{\|x_n - y\|, \|\varphi(x_n) - y\|\}, \quad n > N, \quad 0 < \delta < 1 .
\]

Now

\[
\|\varphi(x_n) - y\| \leq \frac{\|x_n - y\| + |\varphi(x_n) - y|}{2} .
\]

\[
\leq \frac{\|x_n - y\| + |\varphi(x_n) - y|}{2} + |\varphi(x_n) - y| .
\]

So,

\[
\|\varphi(x_n) - y\| < |\varphi(x_n) - y| .
\]

Hence \(|x_{n+1} - y| < \delta |x_n - y|, \quad n > N, \quad 0 < \delta < 1 .
\]

\[
\|x_{n+1} - y\|, \quad n > N, \text{ is a monotone decreasing sequence tending to zero.}
\]

Hence \(\lim x_n = y \) and this proves the theorem.

Case II. There exists a sequence of integers \(\{n_k\} \) such that

\[
\lim_{k \to \infty} \|x_{n_k} - \varphi(x_{n_k})\| = 0 .
\]

Now

\[
\|\varphi(x_{n_k}) - \varphi(x_{n_k})\| \leq \frac{|x_{n_k} - \varphi(x_{n_k})|}{2} + \frac{|x_{n_k} - \varphi(x_{n_k})|}{2} .
\]

\[
\leq \frac{|x_{n_k} - \varphi(x_{n_k})|}{2} + \frac{|x_{n_k} - \varphi(x_{n_k})|}{2} .
\]

\[
= \frac{|x_{n_k} - \varphi(x_{n_k})|}{2} + \frac{|x_{n_k} - \varphi(x_{n_k})|}{2} .
\]

\[
\leq \|x_{n_k} - \varphi(x_{n_k})\| + |\varphi(x_{n_k}) - \varphi(x_{n_k})| .
\]

\[
\leq |u - \varphi(u)| = 0 .
\]

Thus \(\{x_{n_k}\} \) is a Cauchy sequence and hence it converges, say, to \(u \). So \(\lim x_{n_k} = \lim \varphi(x_{n_k}) = u \).

Also

\[
\frac{|x_{n_k} - \varphi(x_{n_k})|}{2} \leq \frac{|x_{n_k} - x_{n_k}|}{2} + \frac{|x_{n_k} - \varphi(x_{n_k})|}{2} + \frac{|\varphi(x_{n_k}) - \varphi(x_{n_k})|}{2} .
\]

\[
= \frac{|x_{n_k} - \varphi(x_{n_k})|}{2} + \frac{|x_{n_k} - \varphi(x_{n_k})|}{2} .
\]

\[
= \frac{|x_{n_k} - \varphi(x_{n_k})|}{2} + \frac{|x_{n_k} - \varphi(x_{n_k})|}{2} .
\]

\[
\leq |u - \varphi(u)| = 0 .
\]

So,

\[
\frac{|x_{n_k} - \varphi(x_{n_k})|}{2} \leq |u - x_{n_k}| + |x_{n_k} - \varphi(x_{n_k})| + |\varphi(x_{n_k}) - \varphi(x_{n_k})| .
\]

\[
\leq |u - \varphi(u)| = 0 .
\]

for each positive integer \(k \).

This implies that \(u = \varphi(u) \), i.e., \(u \) is the fixed point of \(\varphi \) in \(K \).

Fundamenta Mathematicae, T. LXX, 12
Also
\[
\|x_{n+1} - u\| = \|x_n + \phi(x_n) - u + \phi(u)\| \\
\leq \|x_n - u\| + \|\phi(x_n) - \phi(u)\|.
\]

But
\[
\|\phi(x_n) - \phi(u)\| \leq \frac{\|x_n - u\|}{2} + \frac{\|u - \phi(u)\|}{2}.
\]

Therefore \(\|\phi(x_n) - \phi(u)\| \leq \|x_n - u\|\).

\[\therefore \|x_{n+1} - u\| \leq \|x_n - u\|,\]

and since \(\lim x_n = u\), we have \(\lim x_n = u\). This proves the theorem.

Theorem 3. Let \(X\) be a uniformly convex Banach space and let \(\phi\) be a mapping of \(X\) into itself such that

(i) \(\|\phi(x) - \phi(y)\| \leq \frac{\|x - y\|}{2} + \frac{\|\phi(x) - \phi(y)\|}{2},\)

\(x, y \in X\)

and

(ii) \(\sup_{x \in X} \|\phi(x) - \phi(y)\| \leq \frac{\delta(H)}{2},\) where \(H\) is any non-empty convex subset of \(X\) which is mapped into itself by \(\phi\).

Then if \(\phi\) has a fixed point \(u \in X\), the sequence \(\{x_n\}\) given by

\[x_{n+1} = x_n + \phi(x_n),\]

where \(x_0\) is any arbitrary point of \(X\), converges to \(u\).

Proof. Consider the closed sphere \(K\) with \(u\) as centre and \(d(=\|u - x_0\|)\) as radius. If \(y \in K\), then we get

\[
\|\phi(y) - u\| = \|\phi(y) - \phi(u)\| \\
\leq \frac{\|y - x\|}{2} + \frac{\|\phi(y) - \phi(u)\|}{2} \\
\leq \frac{\|y - u\|}{2} + \frac{\|x - u\|}{2}.
\]

So, \(\|\phi(y) - u\| \leq \|y - u\| \leq d\).

Hence \(\phi(y) \in K\), i.e., \(\phi\) maps \(K\) into itself. Also \(K\) is bounded, closed, convex and non-empty. Hence, by Theorem 1, \(\phi\) has a unique fixed point in \(K\) and, by Theorem 2, \(\{x_n\}\) converges to \(u\). This proves the theorem.

Theorem 4. Let \(X\) be a Banach space and \(x_0\) an arbitrary point of \(X\). Let \(\phi\) be a mapping of \(X\) into itself such that

\[
\|\phi(x) - \phi(y)\| \leq \frac{\|x - y\|}{2} + \frac{\|\phi(x) - \phi(y)\|}{2},\]

\(x, y \in X\).

Then if the sequence \(\{x_n\}\), where \(x_{n+1} = x_n + \phi(x_n)\), converges to \(\xi\), then \(\xi\) is the unique fixed point of \(\phi\) in \(X\).

Proof. We define an operator \(\phi_1\) as follows

\[
\phi_1(x) = \frac{x + \phi(x)}{2}.
\]

Then \(\phi_1\) maps \(X\) into itself and the sequence \(\{x_n\}\) becomes the sequence of iterates of \(x_0\) by \(\phi_1\).

Now for \(x, y \in X\) we have

\[
\|\phi_1(x) - \phi_1(y)\| = \frac{\|x - y\|}{2} + \frac{\|\phi(x) - \phi(y)\|}{4} \\
\leq \frac{\|x - y\|}{2} + \frac{\|x - \phi(x)\| + \|y - \phi(y)\|}{4} \\
= \frac{\|x - y\|}{2} + \frac{\|\phi(x) - \phi(y)\|}{2}.
\]

Hence

\[
\|x_{n+1} - \phi_1(\xi)\| = \|x_n - \phi_1(\xi)\| \\
\leq \|x_n - \xi\| + \|\phi(x_n) - \phi_1(\xi)\| \\
\leq \|x_n - \xi\| + \frac{\|x_n - \phi(x_n)\|}{2} + \frac{\|\phi(x_n) - \phi_1(\xi)\|}{2} \\
\leq \|x_n - \xi\| + \|x_n - \phi(x_n)\| + \|\phi(x_n) - \phi_1(\xi)\| \\
\leq \|x_n - \xi\| + \|x_n - \phi(x_n)\| + \|\phi(x_n) - \phi_1(\xi)\| \\
\leq \|x_n - \xi\| + \|x_n - x_{n+1}\| + \|\xi - x_{n+1}\|.
\]

Since \(\lim x_n = \xi\), the above inequality implies \(\xi = \phi_1(\xi)\). So \(\xi = \phi_1(\xi) = x/2\), which gives \(\xi = \phi(\xi)\). This proves the theorem.

Browder and Petryshyn [10] have proved the following:

Theorem 5. Let \(\phi\) be a mapping of a uniformly convex Banach space \(X\) into itself such that

(i) \(\|\phi(x) - \phi(y)\| \leq \frac{\|x - y\|}{2},\)

\(x, y \in X\)

and

(ii) \(\sup_{x \in X} \|\phi(x) - \phi(y)\| \leq \frac{\delta(F)}{2},\) where \(F\) is any non-empty convex subset of \(X\) which is mapped into itself by \(\phi\).
Then φ has a fixed point u in X if and only if the sequence (x_n),
\[x_{n+1} = \frac{x_n + \varphi(x_n)}{2}, \quad x_n \text{ being an arbitrary point in } X, \]
converges to u.

Finally we prove the following theorem.

Theorem 6. Let (f_n) be a sequence of elements in a Banach space X. Let v_n be the unique solution of the equation $u - \varphi(u) = f_n$ where φ is a mapping of X into itself such that
\[\|\varphi(x) - \varphi(y)\| \leq \frac{|x - \varphi(x)| + |y - \varphi(y)|}{2}, \quad x, y \in X. \]

If $\|f_n\| \to 0$ as $n \to \infty$, the sequence (v_n) converges to the solution of the equation $u = \varphi(u)$.

Proof. We have
\[
\|v_n - v_m\| = \|v_n - \varphi(v_n)\| + \|\varphi(v_n) - \varphi(v_m)\| + \|v_m - \varphi(v_m)\|
\leq \|v_n - f_n\| + \frac{\|v_n - \varphi(v_n)\|}{2} + \frac{\|v_m - \varphi(v_m)\|}{2} + \|f_n - f_m\|
\leq \|v_n - f_n\| + \|f_n - f_m\| + \frac{\|f_n - f_m\|}{2}.
\]

It follows, therefore, that (v_n) is a Cauchy sequence in X. Hence it converges, say, to $v \in X$. Also,
\[
|u - \varphi(u)| \leq |v - v_n| + |v_n - \varphi(v_n)| + |\varphi(v_n) - \varphi(v)|
\leq |v - v_n| + \|f_n\| + \frac{\|v_n - \varphi(v_n)\|}{2}.
\]

Hence it follows that $v = \varphi(u)$ and this completes the proof.

I am thankful to Dr. B. K. Lahiri, Kalyani University, for his kind help and suggestions during the preparation of this paper.

References

