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where
ceV and wzepYV).
We claim that $p is continuous.

Let X = {(f, #)] f: p~(0) >p~X(') and z € p~1(B)}. N°C M x B, Define
¢: N~F by e(f, %) = f(x). We will show that e is continuous. Suppose
that W is open in K, and consider e¢~(W) CN. Let (f, ) e e~{(W), and
choo.se £> 0 such that Ne(f(a:)) C W. Since F is compact, f is uniformly
continuous, so that given « > 0, there exists u(z) > 0 such that if aly,y)

< pi(a), then d(f(y),f(y’)) < a. We can assume that p(«) < a. Put o(e,f)

= u(le). We elaim that (Syep(f) X Naep(®@)) ~ N C e=1(W).

To see this, let (g, ") € (Sue.n(f) X Noep(®)) ~ N. Then o(Gz(f), Gr(g))
< (e, f), 50 that there must exist #” ¢ p~Yb), with d(@', @) < (s, f)
and d(f(a"), g(@)) < b(e, f). But then d(z, 2") < 25(e, f) = u(4e). Hence
d(f(a), f(")) < }e. Finally, we have d(f(z), ¢(a)) < fe-+d(e,f) <&, s0
that g(z’) e ¥,{f(x)) C W. Thus e is continuous.

Now 8y is obtained as the composition

(¢, 2)~((p(2), ) 2) (5 (p (@), 0, 2] > (3(p (2), o]} () ,

80 thjﬂ; 8y i3 continuous. We also observe that §p satisfies psp(c,z) = ¢
and 3(p (), o) = @, for all (c, z) eV X p~YV).

Hgnee, in the language of ([1], p. 404), 3, is a slicing map for ¥,
and V is a slicing neighborhood. But every point of B has such a neighbor-
hood and map, 80 that p: BB is a sliced fiber space (3], p. 97). We then
conclude, since B is metrie, that » is & Hurewicz fibration ([1], p. 405).
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A characterization of strong inductive dimension*

by
" J. M. Aarts (Delft)

§ 1. Introduction. In [7] Nishiura has presented a theory for (weak)
inductive invariants of separable metrizable spaces. (Weak) inductive
invariants (first introduced by Lelek [5]) are obtained by replacing the
empty set in the definition of (weak) inductive dimension by members
of some family of topological spaces (see § 3 for precise definition).

By studying inductive invariants it is determined what part of
dimension theory is due to the induetive nature of the definition of di-
mension and what part is due to the speecial role of the empty set.

In the paper of Nighinra, this has resulted in a characterization of
weak inductive dimension on separable metrizable spaces by means of
seven (independent) conditions.

Essentially, by weakening one of these conditions, a characterization
of the strong inductive dimension on the class of all metrizable spaces
is obtained (see § 2). In § 3 a theory for strong inductive invariants is
developed in order to prove the independence of the conditions by which
dimension ig characterized (see § 4).

Throughout, B(U) denotes the boundary of U. dimX stands for the
strong inductive dimension of X. All spaces under discussion are
metrizable.

§ 2. A characterization theorem. An extended real-valued function f
defined on the class of metrizable spaces, is said to be fopological (mono-
tone) if f(X)=f(T) (f(X) < f(¥)) whenever X is homeomorphic to (is
a subset of) T. fis called pseudo-inductive if in each space X every non
empty closed set has arbitrarily small neighborhoods U such that f(B(T))
< f(X)—1 (we agree that co—1 = oo). f is weakly subadditive if for all X
and ¥ we have

FE O T) <FE AT L

(cf. [7] inductively subadditive).
Now we state a theorem which characterizes dimension.

* Research supported by National Science Foundation Grants GP-6867 and
GP-8637.
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TeEOREM 1. Suppose f is an extended real-valued fumction defined
on the class of all metrizable spaces. Then f(X) = dimX if and only if f
satisfies the following conditions D1-D7. Furthermore, the seven conditions
are independent.

D1. f is topological.

D2. f is monotone.

D3. If X is the union of a o-locally finite family # of closed subsets
of itself, then f(X) < sup{f(4)] 4 eA}.

D4. For every space X there exists a complete space Y such that Y is
an exiension of X and f(¥) < f(X).

D5. f is pseudo-inductive.

D6. f is weakly subadditive.

D7. fl{9}) = 0.

CoROLLARY. Suppose f is an ewtended real-valued function defined on
the class of all separable metrizable spaces. Then f(X) = dim X of and only
if f satisfies the following (independent) conditions: D1, D2, D3 with #
countable and D4 through DT,

Proof. The independence of the conditions will be discussed in § 4.
Clearly, the dimension function satisties the conditions D1 through D7.
In order to prove the converse we first assume

AL f(X) <0 if and only if dimX < 0.
Then, by D5 and D6 we have A2 and A3 below.
A2. For each integer n (n > 0), if Am X < n, then f(X) < n.
- A3. For each real number ¢ (a > 0), if f(X)<a, then AimX < a,

Thfa.proof of A2 is as follows. Suppose dim X < . By the de-
composition theorem ([6], Theorem IL.4) X — UiXi i=0, ..., n}, where
n

dim Xy < 0. Then f(X) < g; F(X)+n<n (cf. [7]).

The proof of A3 is by induction. Let 1 be an integer > 0. Suppose A3
holds for all & with 0 < o < #. Let a be a real number with # < a < 241
a,nfl J(X) < a. By D5 each closed subset of X has arbitrarily small open
neighborhoods 7 with f (B(U)) < a—1. By Al or by the induction hypo-
thesis it follows that dim (B(T)) < a—1. Hence dimX < q.

A2 and A3 imply the theorem. Tt remains to provemAl.

) Ina rou.’cine way by D1, D2, D6 and D7 it is proved that f(X) = —1
if anglu;nly lff(XX—)—— 0.0 ]i&g;hermore, F(X) > 0 whenever X « & (cf. [7]).

pose < 0. en ej (X)) = —1 a i = '
) =0 o A S0 by 1;)5. ther f(X) 1 and dimX = —1 or

It remains to be proved that if dimX < 0, then f(X)<0. Let

. . S
dim X < 0. Suppose the weight of X is 1 (the weight of a space is the mini-
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mal cardinal number of an open base). Let D be a discrete space consisting
of m points. P denotes the countable product [[{Di| Di=D; i =1, 2,..}
and 7; the natural projection onto D;. Liet p be a point of D, ¢ = {z] 2 ¢ P;
ai(#) = p except for at most finitely many i} and Gi = {x| € P; my(z) = P
if k > 4}. Obviously, & = | J{G4| i = 1, 2, ...} and @; is discrete for each 4.
By D3, it follows that f(G;) = 0 and f() = 0. Observe that @ is not
complete because each G is a nowhere dense closed subset of & By D4,
there exists a complete extension & of G such that f(G)= 0. By the
extension theorem of Lavrentiev ([4], p. 335) the identity map of & onto
itself can be extended to a homeomorphism of a G,-subset of @ which
contains G onto a Gs-subset H of P which contains G. By D1 and D2
we have f(H) = 0.

In the following lemma it will be proved that every zero-dimensional
space X with weight m can be embedded in H. Then from D2 it follows
that f(X)= 0 and the proof is completed. The proof of the corollary is
obvious.

Lenva 1. Suppose D is a discrete space with m points and p € D. Let
P=[l{DijDi=D;i=1,2,..}
and
G = {z] ¢ P; mu(x) = p except for at most finitely many i} .

Suppose H is a Gs-subset of P which contains G. Then every zero-
dimensional space the weight of which does not exceed m, can be embedded in H.

Proof. Let PA\H = |{Fy]i=1,2,..} where each F; is a closed
subset of P. Observe that H is dense in P, since G is dense in P. Hence
each F; is a nowhere dense subset of P.

Let B=D\{p} and @ = [][{Bi| Bi=B; i=1,2,..}. @ is a closed
subset which ig disjoint from @.

Suppose dim X = 0 and the weight of X does not exceed m. Because
dim X = 0, for each ¢ there exists a cover U; of X such that

(i) each member of U; is closed and open,

(i) any two distinet members of Uy are disjoint,

(i) mesh U; < 1/7,

(iv) Uyz; is 2 refinement of U.

Because the weight of X does not exceed nt, the potency of U does
not exceed m (i =1,2,..) (cf. [6], Theorem II.9).

For each i (i=1,2,...) let §; be a one-to-one correspondence
between AU; and a subset of B. g;: X—B is defined by gi(z) = §i(U)
where 2 e Ue Uy We shall define f;: X—D such that f: X~P defined
by w0 f(x) = fi(x) is an embedding and f(X)C H.

Let f; = g,. Observe that f; is constant on each member of Us.
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We define f, on each member of U,.
(i) T 77'(fylx) ~ Fy =0, then we define fy(z) = g,(x).

(i) If 27" (fu@)) ~Fy # O and % U e Uy, then an open set
{Al@)}y x @} x o X Y xTT{Di| i = &}

containing (fy(«), p, p, ...) is selected which is digjoint from @ u F,. Then
. for each y ¢ U we define fy(y) = p. Clearly, f, is continuous on each member
U of U, and therefore f, is continuous on X.
Suppose fy, ..., f» have been defined in this way. We shall define fat1-
Let @, denote the natural projection of D onto D, x ... x Dy. fper will
be defined on each member of Us,.
‘We consider two cases.
(i) fal®) = gu().
Let K= o (G AC T Fa(@)) ~ (o .
define fro1(2) = gnia(z). : .
HEK#0andoelUe Uy, then an open set

(AN X s X fal@)} X Py % oo x Yy []{DY] iz k> w1}

" is selected which is disjoint from @ F, u
define f.14(y) = p.

wIy). I K =0, then we

o Iy, For each y e U we

(i) falz) = p.
Then for some k< n w?I((fl(’“)’ ...,fk(m))) A v F) # @ and
an open set
W)} e < {fel@)y % oy % oo x Y XTT4DY 4 2 1 > m41}

has already been defined which is digjoint from Q UF, U ..U Fy. If
U= n+1, then fy. (x) = gn+1{®) i3 defined. If 1> m+1, then Jnta(z) = p.

Clearly, {f,,f., ..} I8 a collection of continuous functions. In order
to show that f: X—P defined by 7 o f = fi is an embedding, it is proved
that {fi, f,,...} separates points and closed sets ([31, p. 116). Let L De
a closed _set and x ¢ L. Choose i such. that if ZeVeW, then VAL=0
Let~ k> ¢ be the least integer such that (@) = gi(x). Then Tr(z) = gk(x)‘
= Gl U)NE B, where v¢ Ueql,. For each yeL we have fi(y) = P or
)ééy%;g(?} where y € V ¢ Uy, Because 7 is one-te-one and D ig discrete,

FHI) = L)y C D\{fi(x)} .

integFe‘:‘niil‘y’ 1;Wenshhovr that f(X) C H. Suppose » ¢ X‘ and % (k>1) is an
- yve shall show that f(x . V=
Jali) = gaia), at f(z) ¢ Fr. Let n > & be the least integer with
-1
Let K = Pn ((f1(17), .u,f,,(gp))) AF, . F).

icm
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If K = @, then cp,Il((fl(m), vy f,.(-.'c))) is a neighborhood of f(z) which
is disjoint from Fy v ... v F,. It follows that z¢Fi. If K # @, then
a neighborhood

W= {fi@)} % oo X {Jal@)}x{p}X . x PyxI[{Di] i =1>n+1}

of f(x) has been selected which is disjoint from QUFllu WU, Tt
follows that f(#) ¢ Fx.

§ 3. Strong inductive invariants. In this section some of the results
of [7] are generalized to general metric spaces. Let P be a class of topo-
logical spaces which is closed for topological mappings i.e. if X and ¥ are
homeomorphic and X ¢ P, then T e P.

The strong (weak) inductive invariant P-Ind X (P-ind X) induced by
the class P is defined for every space X as follows.

(i) P-IndX = P-indX = —1 if and only if X ¢ P.

(ii) For each # > 0, P-Ind X < » (P-ind X < #) provided that each
non-empty closed subset (each point) of X has arbitrarily small neighbor-
hoods U of X such that

P-IndB(U)<n—1 (P-indB(U) <n-1).

For each integer n > 0, P-IndX = » if P-IndX <n and P-Ind X
<n—1? If P-IndX < » for each n, then P-IndX = oo.

Inductive dimension (P = {0}) is a well-known example of an in-
ductive invariant. Other inductive invariants are compaectness degree [2]
and completeness degree [1].

First, we state some theorems which are straightforward generali-
zations of theorems in [7]. Proofs are omitted.

THEOREM 2. P-Ind X is a topological invariant.

THEOREM 3. For all X and all P

P-IndX < dimX}1.

Moreover, if P is empty, then P-IndX = dimX+1. If @GP, then
P-Tnd X < dim X.

A class P is {c-) monotone if whenever X ¢ P and Y is a (closed) sub-
set of X, then T ¢ P.

An extended real-valued function f on the class of metrizable spaces .
is c-monotone if whenever X is a closed subset of ¥, then f(X) < f(Y).

THEOREX 4. 4 class P is ¢- monotone if and only if P-Ind is c-monotone.

From now on the procedure is somewhat different from that in [7].
We have the following sum theorem.

THEOREM 5. Suppose P is c-monotone. The following conditions are
equivalent.
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BI1. If X is the union of & o-locally finite collection A of closed sub-
sets of itself and each member of 4 belongs to P, then X ¢ P.

B2. For each n > —1, if X = | J £ where £ is o o-locally finite eol-
lection of F,-subsets of X with sup {P-IndA| 4 ¢ £} < n, then P-Ind X < n,

‘We need the following theorem.

THEOREM 6. Suppose P is c-monotone and satisfies B1. For each n =0
and all spaces X the following conditions are equivalent.

Ol P-IndX <. .

C2. There exists a o-locally finite open base B of X such that P-Tnd B(V)
<n—1 for all VeB.

C3. There exist subspaces A and B of X such that P-IndAd <m—1
and dim B < 0. :

‘We also need the following lemma.

Leywa 2. Let n > —1. Suppose P is c-monotone and satisfies B1.
If P-Ind X < n and Y is a o-locally finite union of closed subsets of X,
then P-IndY < n.

Theorems 5 and 6 and Lemma 2 are proved simultaneously.

Proof. We may assume that P + 0. Otherwise, by Theorem 3 we
have P-Ind X = dim X 41. Theorem 5 then follows from [6], IT.2, C and D.
(Observe that if X is a o-locally finite union of F,-subsets of itself, then
X also is the o-locally finite union of closed subsets of itself.) Theorem 6
ff)lloms from [6), Theorem I1.2 and Theorem IT.4. Lemma 2 is obvious,
since dimension is monotone.

Clearly, B1 is equivalent to B2 for n— —1. By induction it is
_proved that B1 implies B2. We assume that B2 has been proved for each
Integer <n—1 (n>0) and show that B2 holds for =.

First, we prove the equivalence of C1, €2 and C3 for «.

C1 implies C2: This is a straightforward generalization of [6], ITI.1. D.

€2 implies 03: Let $ be 2 c-locally finite base of X such that-
P-IndB(V) < n—1 for all V e &,

Let A= {BW)7 € B} and B=T\4. dimB <0 by [6], IL.1,
E and P-Indd <n—1 by B2 and the induction hypothesis.

. C3 implies C1: Let X = 4 w B with P-Ind4 < n—1 and dimB = 0.
Now, the proof is almost identical to the proof of [6], TL.1. C.

‘Now, we prove Lemma 2 for n. (Observe that the case n = —1 is
a direct consequence of the definitions.) We assume that Lemma 2 has
been proved for each integer <n—1. Suppose P-IndX <= and Y is
a’s-locauy finite union of closed subsets of X, Let X =4 v B with P-Tnd 4
s#—1and AimB<0. Y~ 4 is a o-locally finite union of closed sub-
?)ets‘ﬂf 4 and P-Ind(Y ~4)<n—1 by the induction hypothesis.

bviously, dim(¥ ~ B)<o0. :
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The lemma now follows from Theorem 6.
Finally, we prove that B2 holds for .

Suppose X = {J{4,| y DI’¢} and for each i=1,2,.. we have
i=1

{4,] y eIi} is a locally finite collection of F,-subsets of X. Suppose
P-Ind4d,<n Let 4,=|J{4f| k=1,2,..} where each A¥ g closed
in X. By Theorem 4 we have P~IndAff < n for each k and y. It follows
that X is the union of a ¢-locally finite collection of closed subsets of

itself each of which has P-Ind < n. Thus we assume X = [_J{4,|y ¢ lj Iy,
=1

for each ¢ the collection {4,] y « I't} is locally finite, each A4, is closed and
P-Ind 4, < n.
Moreover, we assume that each I is well ordered. Suppose y e I7.

i-1
Let B, = | J{4s| 6 e | Tk or 6 e I'; and § < y}. B, is a locally finite union
k=1

of closed sets. Thus B, is closed. 0, = A\B, is an F,-subset of X.
By Lemma 2 we have P-IndC, < n.

Obviously, X = J{0,] y e DF;}, the C,’s are pairwise disjoint
i1
and O, is an F,-subset of X. Applying 03 to each C, we have ¢, = D, u B,
where P-IndD, <n—1 and dimB, <0. Let D = (J{D,| y )T} and
) i=1

BE={J{B,ye G’I’i}. Then X = D v E. Each D, is an F,-subset of D
i=1

and P-TInd D < n—1 by B2 for #—1. Bach B, is an F,-subset of B and
dim % < 0 (see the observations made at the beginning of the proof).
Then by Theorem 6 we have P-IndX < #.

As a consequence of Theorem 6 we have

THEOREM 7. Suppose P is c-monotone and satisfies Bl. For every
separable metrizable space X we have P-Ind X = P-ind X.

Proof. The proof is a straightforward generalization of [6], Theo-
rem IV.1 using Theorem 6 above.

A family P is called additive if X v Y ¢ P whenever X ¢« P and Y ¢ P.
In the same way as Lemma 2 has been proved by means of Theorem 6
the following theorems can be proved. The “if” parts are trivial.

THEOREM 8. Suppose P is c-monotone and satisfies Bl. Then P «if
additive if and only if P-Ind is weakly subadditive.

THEOREM 9. Suppose P is c-monotone and satisfies B1. Then P is
monotone if and only if P-Ind is monotone.

§ 4. Independence of the conditions D1-D7. In this section we show
that each of the conditions D1 through D7 is independent of the other
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conditions by means of examples. We only indicate proofs of non-trivial
facts (ef. [7] for 1,3, 6 and 7).

1. Independence of D1. Let f(@) = —1, f({@})=0 and f(X)
=dimX~+1 if X # @ and X # {O}.

2.Independence of D2. Let O be the collection of all spaces X such
that dimX < 0 and X is the union of a o-locally finite collection of
(topologically) complete subsets of itself. Obviously, C is c¢-monotone.

Suppose X = [ J#, where £ is a o-locally finite collection of cloged
subsets of X and each member of 4 belongs to €. Then dim X < 0 by [6],
I1.2, C and D. Moreover, X is the union of a ¢-locally finite collection
of complete subsets of itself. This follows from the fact that if {4,| y ¢ I'}
is a locally finite collection of closed sets such that each A, is the union
of a locally finite collection {AJ| & ¢ 4,} of subsets of A,, then
{43 y eI, 8 € A,} is locally finite. (

Hence, X ¢ 0 and C satisfies condition BI.

Now, let

fX)=C-TndX+1 # X#0 and F(0)=—1.

We shall show that f satisfies all conditions D1 through D7 except
for D2.

Clearly, f satisfies D1. D3 is a consequence of Theorem 5. Obgerve
that if f{X) < 0 then dim X < 0. It follows that f is pseudo-inductive (D5).
Moreover, by induction it can be proved that if £(X) < u, then dim X < n.
Hence dimX < f(X). By Theorem 3 we have either f(X) = dimX or
J(X) = dim X +1. Observe that if X ig the union of a o-locally finite
collection of complete subsets of itself, then f(X)= dimX. N ow, it is
clear that f satisfies condition D4. Indeed, for any dimension preserving
complete extension ¥ of X we have f(¥)=f(X) or f(Y) = f(X)-1.
The existence of such an extension easily follows from [6], Theorem IT.10.

Now, we show that f is weakly subadditive (D6). Let X=A4 B
and f(4) = m and f(B) = n. By simultaneous induction it is proved that
J(X) <m+n. This obviously holds for m = —1 or # — —1. If both
m = = 0 then X is the union of a ¢-locally finite collection of complete
. subsets of ifself. Tt follows that f(X) = dim X < 1 by [6], Theorem TT.4.
Now, let m = r and n = 8, and suppose the weak subadditivity has been
proved for m <7, n <s—1 and m <r—1, o <s. We may assume f(4)
772 1. Then ¢-Ind 4 > 0. By Theorem 6, C3, there exist subspaces D
and & of 4 such that f(D) < r—1 and dim B < 0.Then f(D v B) < (r—1)+
+8-+1=r+s by the induction hypothesis and f(X)= f((l) v B) v E)
< 7+8-+1 by Theorem 6.

Obviously, f satisfies D7. § does not satisfy D2. Indeed, if f(X)= 0,
then dim X = 0 and X is a Borel set in every complete space which con-
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taing X (ef: [4], p. 27). However, there exist zero-dimensional subsets
of the irrationals which are not Borel sets.

Thus, f satisfies the conditions D1 through D7 except for D2.

3. Independence of D3. Let f(X) = dimX if X is finite and
(X) = dim X1 otherwise.

4. Independence of D4. Let Q be the collection of all spaces X such
that X is the union of a o-locally finite collection of singletons. As in 2 it
i3 proved that @ satisfies B1. Moreover, § is additive and monotone.
From Theorems 2, 5, 8 and 9 it follows that Q-Tnd satisfies D1, D2, D3
and D6. Let f(X) = Q-Ind X+1 if X £ O and fl9) = —1.

Then f satisfies D1, D2, D3, D3, D6 and D7.

If X is separable and f(X) = 0, then X is countable. It follows that f
does not satisfy D4.

5. Independence of Dj. Let f(0) = —1 and fIX)=01i X # 0,

6. Independence of D6. f(X) = dim X if and only if dimX << 0.
f(X)=dimX+1 if and only if dimX > 0.
7. Independence of D7. f(X)= dimX+1.
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