4

ICM Biblioteka Wirtualna Matematyki

Concerning groups of dyadic relations of an arbi-
trary field ).

By
C. J. Keyser (Columbia University, U. S. A).

§ 1. Introduetory.

Upon the threshold of the logic of relations it is found that
abstract relations present a variety of aspects which serve as prin-
ciples of classification. Thus a relation may be dyadic or triadic
or n-cornered; it may be finite or infinite; it may be homogeneous
or non-homogeneous; it may be one-one, one-some, some-one, one-
-Iany, many-one, some-s0me, SOme-Many, MaNy-some, Or MANY-MANY;
it may be symmetrie, asymmetric or non-symmetric; it may be
transitive, intransitive, or non-transitive; and so on. Logical com-
bination of such cardinal classes and the use of less generie prin-
ciples of discrimination yield additional classes in endless number
and variety. Hqually familiar is the fact that there exist rules of

combination — such as logical addition, logical multiplication, rela-

tive multiplication — by which any two relations of a class may
be combined so as to produce a relation. If by a system of rela-
tions we mean a class of relations together with a rule of combi-
nation, it is evident that abstract relations offer for consideration
many systems respecting which it is natural to enquire whether
they do or do not constitute groups.

It seems needless to insist upon the interest or the importance
of the general problem thus indicated. The following enquiry does
not deal with the general problem but only with one aspect or
fragment of it. With a few exceptions indicated in course of the

1) Presented before the American Mathematical Society, April 26, 1919.
‘ 21%
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discussion the relations herein studied are such as satisfy the fol-
lowing requirements: (1) the relations are dyadic and homogeneous;
(2) they have a common field; (3) the field is infinite; (4) the do-
main, the co-domain and the field of a relation coincide. :

It is to be added that the mvestlgatmn is confined to systems
in which the rule of combination is relative multiplication.

In accordanee with requirement (4) it is to be noted that, whe-
never a relation is spoken of as ,a relation of or belonging to such
and such ‘a field%, it is to be understood that the relation has the
field for its domain and also for its co-domain.

It will be advantageous to employ certain technical terms and
symbols borroved from the literature of symbolic logic. Unless other-
wise indicated these will be used in accordance with the definitions

~ of them to be found in volume I of the Principia Mathematica of

Messrs. Whitehead and Russell.
It should be carefully noted once for all that relations are to
be taken in their extensional as distinguished from their intensional

 gense, A word reminding the reader of the nature of the distinetion

may be in place. If a dyadic relation B be defined, or determined,
by a propositional function F(z,y) containing two variables, the
extension of R is the class of couples, or pairs of values of z-and
4, that satisfy the function. If B’ be defined by another propositio-
nal function @(z,y), it may happen that the extension of R’ is the
same as that of R. In such case the only difference between R
and B’-is an intepsional difference, a difference due-solily to the
distinction between two equivalent but nonidentical definitions Tro-

‘ughout this article intensional differences will be disregarded: two

relations having the same extensions will be regarded as identical,
the prineiple being that the extension of a relation is the relation,

§ 2. Certain Auxilisiry ’l‘heorems.

The theorems of this section will be of frequent use in subse-
quent developments. :

It will often be convement to denote a field under considera-
tion by the capital F. Unless the coutrary is indicated, it will be
understood that the field so denoted is infinite.  The. elements of
a field — the terms of the relations — will be denoted by z, y, 2, ete.

The proofs of theorems 1, 2 and 3, here set down for future
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reference, are omitted, these theorems being respectively = 3133,
# 342, * 3421 of the Principia above cited.

Theorem 1. — Cuov’' Cov’ R=R: the converse of the converse
of a relation R is identical with R
Theorem 2. Cnv’' (B, | B,) =R, | K,: the converse of the rela-

tive product of R, by R, is the relative product of the converse of
Ry by the converse of R,.

Theorem 3. — (R, | B,) | R, =R, | (R, 1 Ry): relatwe multi-

plication is associative. *
Theorem 4. — If B be a relation of a field F ( _ﬁmte or in-
ﬁmte,) the converse R ‘belongs to F.
It is necessary and sufficient to prove that ' R=@’' E=F
By definition of R and Theorem 1, D'R=q" R, @ R=DE;
by hypothesis, ) R=(@" R=1F; hence D’ R=@' BE=F
- Theorem b. The relative product of any two relations, R,, R,,

of a field (finite or infinite) is a relation of the field.

Denote the field by F. It is to be'proved that ' (B, | Ry) =

=" (R, | By)=F. Let z be any given element of F; by hypo-

thesis F contains an element y and an element 2z such that
2By y.yBy2;.2(B, | By)z; ~(1)FCD(R, | R,). £z (R, | R,) 7,
then there exists a 3 such that 2’ R, y'; since R, is a relation of
F, o' is an element of F; .. (2) D' (R, | Ry,) C F'; from (1) and (2)
it follows that (3) D’ (R, | R,) = F. Next let z be any given ele-

"ment of F; F contains. & y and an =z such that yR,z.z R, y;

T (Rl | B:)2; - (4) FC Q' (R, | Ry) If 2'(R, | By)a there exists
a y’ such that y’ B, 2’; R, being a relation of F, 2’ is an element of F;

5 (B)@ (B, | B)C F; (4) and (B) imply (6) a’ (R, | B,)=F. From
(3) and (6) follows the theorem.

Theorem 6. — If two relations R and R, of a field F ( fi-
nite or infinite) be such that R, | Ry =R, IRI..—.R{, R, being the
identily relatzon of F, B, and R, are mutually converse one-one rela-
tions.

For let  be any given element of F; t.hen 1f z (R, | By) 2, we
have z R,z and hence z = z; hence, if ¢ be the class of relata of
z asto R, and § be the class of referents of = as to R,, (1) aC 8;
let y be any element of g; then. for some element 2/, we have
' B, y.y Ry x and hence x' (R, | R;)x; hence 2" =z and therefore
y belongs to a; .. (2) §C a; by (1) dnd (2), a=§. Now let y be
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any given element of «; then y Ry «.z B,y and therefore also
y (B, | By)y', where y' is any element of a; since y R, y’, ¢’ =y;
.. @ contains but one element; hence R, relates a given referent to
only one relatum and R, relates a given relatum to only one refe-
rent. Similarly it may be proved that E, relates a given referent
to only one relatum and B, a given relatum to only one referent.

" Therefore R, and R, are one one relations.

It remains to _prove that R, and R, arc mutually converse rela-

tions. Suppose y K, z; then also z B, y; but, if z B, v, then y R, x
since x (B, | Ry) # and since, if # be given, there is but one y for
which z R, y. Hence yR x 1mphes y R, x, and . " R, CRg, in like
manver, By C E,; - By =R,, and by theorem 1, R, = R,.
We may now establish the converse of the precedlng theorem,
Théorem 7. — If R, and R, be mutually converse ono-one re-

lations of a field F (finite or infinite), R, | By =R, | B, =R, R,

being the identity relation of F.

Let  be any given element of F; we have z B, y for some el-
ement y of F; hence y R, z and hence y R, z; ..z (R, | By) x-for
every element of F; .. (1) R, C R, | B,. Next suppose z (B, | R,)2;
then there is a y for which z B, y.y R, 2; for that y we have also
y Rz, since R, = R,; but B, is a one-one relation; hence 2 =z}
w @) R | B, CR; .., by (1) and (2), R,=R, | By; similarly,
R,= R, | R,; hence also R, | Ry =R, | R,.

§ 3. "Nine Types of Relﬂtions

The, discussion will henceforth deal with certain relation types
including every variety of relation that may belong to an abstract
field finite or-infinite. The types in question, nine in number are
defined and symbolized as follows.

A oneone (1—1) relation is a relation such that each of its

" referents has but one relatam and each relatum but one referent.

A one-some (1—s) relation: one such that at least ome of its
referents has but one relatum, at least one referent has two or more
relata. and each relatum has but one referent. |

"A some-one (s—1) relation: one such that at least one of its re-
lata has but one referent, at least one relatum has more than one
referent, and each referent has but one relatum.
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A one-many (1—m) relation: one such that each referent has
more than one relatum and each relatum but one referent.

A many-one (m~1) relation: one such that each of its relata has
two or more referents and each of its referents but one relatum.

A some-some (s—s) relation: one such that at least one of its
referents (relata) hat but one relatum (referent), and at least one
referent (relatum) has two or more relata (referents).

A some-any (s—m) relation: one such that each referent has
more than one relatum, at least one relatum has but one referent,
and at least one relatum has two or more referents.

A many-some (m—s) relation: one such that each relatum has
two or more referents, at least ome referent has only one relatum,
and at least one referent has more than one relatum.

A many-many (m—m) relation: one such that each of its refe-
rents has more than one relatum and each relatum has more than
one referent.

Theorem 1. — (@) No relation of a given field (finite or mﬁ
nite) belongs to more than one of the nine types; (8) every velation
of any given rield (finite or infinite) belongs to one or another of
the types;, — (y) relations representing all of the types may coexist
in a single field.

The truth of (@) is evident on comparing the definitions of
the types.

To prove (B), et R denote any given relation of the glven field.
If B be not a 1—1 relation, then (1) some referent of B has more
than one relatum or (2) some relatum has more than one referent

or (3) both (1) and (2) hold. If (1) holds and (2) does not, then B

is a 1—m or a 1-—s relation according as the ,some* of (1) in-
cludes all the referents of R or only a proper part of then, If (2)
holds and (1) does not, then B is a m—1 or a s—1 relation accor-
ding as the ,some“ of (2) ineludes all the relata or only a proper
part of them. Suppose both (1) and (2) to hold; if (1) holds for
only a proper part of the referents and (2) for only a proper part
of the relata, then R is plainly of type s—s; if (1) holds for all
referents end (2) for only part of the relata, R's type in s—m; if
(1) holds for only a part of the referents and (2) for all relata,
the type of R is m—s; finally, to make the only remaining hypo—
thesis, if (1) holds for all referents and (2) for all relata. R 1s
ev1dently of the type m—m.
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For proposition (y) it will suffice to present a system of the
required relations in a specified field. Let F' be any given denumerably
infinite ensemble of elements and suppose these to be denoted by
the positive integers. It is obvions that the following nine relations
R,,..., R, representing the niné relation types coexist in F:

R, (type 1—1): (1, 2), (2, 1), (3, 4), (4 3),....

Ry (p 1= (1,1) (2 2) (2 3), (3,4), (4 5) 5 6)..

By (5 o—1) (1,1),(2,2), 3,2), (4 3), 5,4, (6, 8),..

» l—m) 1, 1, (1, 2) 2 3), (2, 4), (3,5), 3 6)...

n m—I1): (1, 1)7(27 1), (3;2), (4"n 2), (5, 3), (6, 3)1

=) (1, 1), (2 8), (2,4), (3,2), (4 2), (,5), 6 6),....
s—m): (1, 1), (1, 2), (2, 2), (2, 3),(3, 4), (3,5), (4,6),(4 7).
m—s): the couples of s—m inverted

s (type m—m): (1,1), (1,2), (2,1), (2,2), (3,2), (3,3), (4, 3), 4 4),-.

Theorem 2. The nencssary and sufficient condition that the nine
relalion types be represented by the relatwns of a given field is that
the field be infinite.

The condition is necessary. For suppose F to be finite and to
consist of the » elements: I, I,,..., 1. We prove that F has no re-
lation of type 1—m. If ¥ have such a relation R, each ! is a re-
ferent of R having at least two of the s for relata, and each [ is
a relatum having but one referent. Suppose the relata of I, to bel,
and I, those of I, to be I,, and /,, and so on, the relata of /, being l a

and I, . As no two of the I's w1th subseripts @ or @ can be ide-
tical, their number is 2n. Being the elements of F, their number

(
(
(
(
(

¥ 3 3

FERPRRD.

- is n; hence # = 2n, which is impossible since n is finite.

It remains to show that the condition of the theorem is suffi-
cient. Let F be any given infinite field. ‘

It is evident that any field has an identity relatmn B, and that
R; is of 1—1 type.

[In the following argument the symbols R,,..., R, will denote
the relations denoted by them in the foregoing table]

Being infinite, " F contains denumerably infinite classes of ele-
ments. Suppose the elements of ope such class F, (a proper part
of F) to be designated by the cardinal integers. Denote the class
of the remaining elements of ¥ by F,, B,, we have seen, is a re-
lation of Fy; let B, be the identity relation of F,; it is evident
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that the logical sum, R, u R,, of R, and R, is a relation of F, the
logical sum of ¥, and F,, and that the former sum is of type 1—s.
To show that F' contains a relation of type s —1, it suffices to
replace R; of the preceding paragraph by Ry or one may proceed
as follows: Ry = R,, hence R, v B, = Cnv’ (By v B); hence, by
§ 2, theorem 4, the relation B, v R, belongs to F but this relation
is of type s—1, being the converse of a relation of type 1—s.
For the case 1—m, let the denumerable part F, (of F) be such
that the Cantor power of the remainder F), = the prover of F.
Suppose ¥, and F, to be non-intersecting parts of F, -such that
Fyu Fy,=F; and that the powers of F;, Fy, and F, are equal.
Let R be a one-one relation between F, and F,, and B a one-one-
relation between F, and F,. Any given element z of F, its R cor-
respondent y and its B’ correspondent z together yield a pair of
couples (z, y) and (x, 2). The ensemble of all such couples is evi-
dently a 1—m relation ‘belonging to F,. Denote it by R"”. The sum

R,o R" is a relation of F and is elearly of type 1—m.

The converse of the last relation is R;  B”, which belongs to
F and is of type m——I1. | |

As before let F; be a denumerably infinite proper part of F,
and denote the remainder by F,; then, if R, be the indently rela-
tion of F,, the relation Rgu R;, which belongs to F, is of type s—s.

Let R be the universal relation of the remainder F, (here permis-
sibly supposed to contain more than one element). Then the rela-
tions B, v R and B, o R belong to F, their types being respecti-
vely s—m and m—s. . |

Finally, if B and F, be taken as in the preceding paragraph,
the relation Ry R, belongs to F and is of type m—m. Of course
the universal relation of F is of m—m type, ,all* being, as Aris-
otle pointed out, ,a species of many“. |

Theorem 3. — (&) Relations of the types 1—s, 1—m, s—1,
m—1 exist-only in infinite fields; (8) s—s and m—m relations exist
in all fields of more than one element; (y) s—m and m—s relations
exist in all fields of more than two elements.

Proposition (@) has been proved for type I—m in connection
with the preceding theorem. By help of theorem 4, § 2, () is seen
to hold for type m—1. Very similar argument, here omitted, will
avail to show the validity of (a) for the types 1—s and s—1. ~

In prof (§) et F consist of a finite number n of elements:
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L, bve-vy I If m=1, it is evident that ¥ has neither a s—s nor
a8 m—m relation. If =2, the relation consisting of the couples

iy b, (b L)y (s Ba)y (la: b)y (Las L)y ey (b, L) is of type s—s; and
the relation,

(lh ll)i (lp 2)7 (l,, 1)! (l l,), (la'a 1)7 ls’ ZS)) (ZIJ lB) (1_27 ZS)"' Y
(ZH ll)v (lrn lz)! (lla lk) (lsa h)s

where 3= k= n, is of type m—m.

In respect to (y), take F' as above. If » =1, it is obvious that
F has neither a s—m mnor a m—s relation. If n= 2, then, if F
have a s —m relation, either I; or I, is relatum to a smgle referent
(1, or 1,) and the other (}, or L) is a relatum to both I, and I,.
Suppose I, has I, for sole referent. then /; cannot oceur again as
relatum, and /, must occur as relatum to both I, and Z; and so
arise the couples (I, %), (4, k), (I, l); thus for I; has but one

‘relatum; it requires two and thus we get (l,, ;) which is inadmis-

sible as giving I, a second referent; a like contradiction results
from supposing I, to have I, for sole referent or l, to have I or
I, for sole referent; hence, if # =2, F has no s—m relation and
therefore, by § 2, theorem 4, no m—s relation.

If, however, n = 3, the relation, (I, 1), (L, &), (las &), (hay &),
(s )y (s ), Qi la)y Gaylidservy (s lama)y (hy L)y 18 of type s—m,
and the converse relation is of type m—s.

Cor. — Of the nine types the 1—1 type is the only oni repre-
sented in every field (finite or infinile).

§ 4 Types of Relative Products of Relations of Given Types.

By § 2, theorem 4, and § 3, theorem 1, it is seen that the
relative product of two relations of any given field (finite or infi-
nite) belongs to one of such of the nine types as are represented in
the field.

The present section is devoted to the solution of the following

Problem: To determine the relation types that may be represen-
ted by the relative product of two relations of given type or types.

Inasmuch as the type of the relative product of two relations
depends on both the order and the type of the factors, the solution
of the problem involves finding a series of about four score theorems
of the general from: The relative produet of two relations belonging
respectively to this and that given type may represent any one of
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such types and no other. Instead of a long series of formal theo-
rematic stalements, each followed by ite demonstration, it seems

‘better, in the interest of economy, and quite sufficient (1) to describe

the metod of finding the required theorems, (2) to exemplify its
use, and (3) finally to state all of the theorems compactly in the
form of a kind of relative-multiplication table exhibiting to the aye
the possible types of product of relations of assigned type.

The method employed involves the use of four prineiples, which
may be respectively called (4) Exclusion, (B) Inclusion, (C) Conver-
sion, and (D) Construction, and which have the following meanings:
(4), by direct use of the type definitions and the definition of re-
lative product, serves to show that, among the types represented
by the product of two relations of given type or types, certain
types cannot cceur, — are ewcluded; (B) asserts.that, if the occur-
rence of a product type is not excluded by (4) in a given case,
the type in question occurs in that case, it is included; (C) asserts
that, if certain types may be represented by the product of two
relations of given type (or types), the converses of the former ty-
pes may be represeated by the product of two relations whose fype
(or types) is the converse (converses) of the given type (or types);
principle (D) consists in actually construing (or exhibiting) relations
to show the occurrence of types whose occurrence is not excluded
by ().

It is evident that (4) and (B) are alone sufﬁcl’ent (C) has been
employed merely to abbreviate the work, and (D) for the pur_pose
of confirmation, in the interest of certainty.

To exemplify the use of the principles, suppose E, and R, are
of type 1—s. We show that R, | R, may be of type 1—s or 1-—m
but of no other type. Let z be any given element of the field F;
there is in F one and but one x, and one and but one y, such
that = R, y.y B, 2; .. R, | B, can represent none of the types s -1,
m—1, s—s, s—m, m—s, m—m. For some y, y R, 2.y R, #, where
2=k 2’} hence the x for which z R, y has at least two relata as to
R, [ B,, which is, therefore, not a 1 | 1 relation. Hence 2, | R, must
be of type 1—s or 1—ms: it will be of type l—s if, as obviously
may happen. y is sole relatum of z asto B, and z is sole relatum
asto R,; and it will be of type 1—m if, as may happen, y be the
only element that is a sole relatum as to F; and have two or more
relata as to Fj.
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By (C) it follows that, if B, and R, are of type s—1, B, | R,

~ is of type s—1 or m—1 but of no other type. .

For another example, let R,- be of type 1—s and R, of type
m—1. We show that B, | B, may represent any of the types s—1,
m~—3, m—1, s—s, but 0 other. It is obvious that (4) excludes the types
1—1, 1-s, s—m, m—m. By (B) the theorem follows. By (D) we
confirm the conclusion. Let ¥ be any denumerably infinite ensem-
ble, whose elements are designated by the cardinal integers. R, | R,
will be of the type indicated .below if the R’s denote the indicated
relations

(B (1 2), (23), 3,1) (2 4), (3,5) (4,6),...

: (2> 3), (3, 1), (1, 2), (4, 1), (5 2), (6, 3), (7, 4), (8, 4),
| 7 ’ - (9,6), (10, 5),...

: (1L,3), (2,4), 3, 1), @5), 42, (56), (L,T), (6 8)
| (1, 9), (8, 10), ...
By (1,2), (2 8), (3, 1), (4 1), 6,2), (6, 3); (1,4), (8 4),...

: same as preceding

(L2, @3), 3,1, 41, 6,1 (62 11, @ 3)
| 9, 3), (10, 4), (11, 4),..,

: (1,2), (1, 8) (2, 1), (2, 4), 3,5), (4 6), 5,7),... N
:(L2), 2,8) (3,4, (4,2), ®,1), (61), (1, 3). (8, 4),
| (9, 5), (10, B), (11, 6), (12, B);...

By (C) it follows that, if B, be of type 1—m and R, .of type
s—1, B, | B, will represent any of the types 1—s, s—m, 1—m, .
$—s but no other. ' o

The theorems thens found are embodied in the following table,
Each line, except the top line (which merely contains the symhols
of the nine relation types under consideration), is to be regarded
a8 stating a theorem. For exemple, the 11* line means: the relative
produet of a relation of type 1—s by a relation of type s —1 may
belong to any of the types 1—1, 1—s, s—1, s—g but to no other type.

There is no restriction upon the field of the relations [except:

L]

m -8 i

-

m—1

[-

{

-3
o

| (4), § 1], provided we agree to say that, in case the factors of a re--

lative product do not exist in a certain field, a theorem respecting the
product is satisfied ,vacuously; otherwise, the validity of a theo-
rem regarding a product requires that the field contain the factors.
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Types Represented by Relative Products of Relations of Assigned Types

1—1

1-s

81

1—m

m—1

1—1)1—1
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1-1|{1—8 | 8—1 [1—m |m—1 | 8—5 | 83— | m—8 | m—m
m—8 | m—s : ‘ m-—8 | m-—m
M—m m—m
1—1 m—s
1—s m—s | m—m
s—-1 m—3s
1—m m—1 . m—m
m—1 m—1 m—s
88 M==8 | M=t
§—m m-—m
m—m | m—m | m—m
1—1 | m-—m
1—s m-—ml
s—1 m—g | m—m
1—m m—m
m—1 m—1 m—sg | —m
8—8§ m—g |m—m
8—m m—m
M8 m—8 |m—m

§ 5. G‘rroup and Non-group Systems Determined by ‘the Nine
Relation Types.

The relations of given field that belong to a given type consti-
tute s class (of relations). A field containing relations of all the
types thus furnishes nine primary classes. Logieal addition of these,
k at a time, k=g, yields a large variety of additional classes.
A class may be said to be of such and such a type: if a class be
primary, its type will be that of the relations composing it; if
a class be the logical sum of two or move primary classes its type
will be indicated by the symbol for the logical sum of the sym-

"bols of the types of the component classes; thus, for example, the

type of the class composed of the class s—s, the class m—s and
the class m —m is s—su m—sum—m. Bach of these classes toge-
ther with a rule of combination (relative multiplication) is a system.,
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It will be convenient bo say that the type of a system is the
samé aa that of the class contained in it; and a primary system i
one whose class is primary. In this section such systems are exa-
mined with a view to ascertaining the presence or absence of group
properties. |

For that purpose I shall employ the following definition of

- & group. A system 3 (composed of a class C and a rule of combi-

nation) is a group if and only if it satisfies the following conditions:

(@) If a and b are elements of C, a0} is an element of C.

(b) If a, b, ¢ are elements of C, (3050 C=a0(Oe).

(¢) C contains an element i such that, if a be an element of C.
aQi==iQa=a. | | |

(d) C contains an element & such that, if a be an element of G,
there is in 'C an element a’ such that Qo' =—a' O a=¢.

(e) If < and ¢ are in C, i=¢

Theorem 1. — Condivion (b) is satisfied by a system of any type.

The theorem follows from theorem 3, § 2.
- Theorem 2, — Of the nine primary systems that of type 1—1
is the only one satisfying condition (c). | ' »

That (c) is satisfied by the system 1—1 is obvions, the element
i being the identity relation of the field.

That none of the other systems satisfies (c) will be shown by
proving that the contrary supposition involves a contradiction,

System of type 1—s. Suppose it to satisfy. (c); let ¢ be denoted
by B’; B’ has at least one referent, say y, such that y R’ 2, where
z=y; there is in the system a relation R such that xRy, where
z=Fy, and that xRy only when Y =y; since sRy.yR g
2(E | B)z; hence x Rz, which is impossible, since 23y, -

System of type 1—m. Suppose (c) tobe satisfied and denote by -
R'; as to B’ any given element, say x, has at least two relata 21 geer’
suppose 2, == ; for any R of the system, 2 Rz for some element z;
since z R’ 2.2, B2, x(R' | E)z; and, since R | R==R by hypo-
thesis, we have x Rz, but this is impossible since R is of type 1—m-
and z = 2,, | ,

For the systems s—s and m —s the argument is the same as

for the system 1—s.

System of type m—m. Suppose (c) to be satisfied and denote i by
R’; any given referent of B'; say y, bas two or more relata 2y, 2gyues;
suppose z; 5= y; the system contains a relation R such that 2 Ry
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but not y By; we have y B’ 2, . 2, Ey; hence, y (R |.R)y, and, by.
hypothesis, ¥ R y, which is impossible,

Systems $—1, m—1, s—m. Evidently the relations of these are
respectively the converses of the relations of the systems {—s,
1—m, m—s. Suppose the system s—1 to satisfy (c) and denote i by
E’; let E be any relationvof the system; then R | B — B/ | R=R,
whence, by conversion, B’ | E=F | B =EF;. since R is any rela-
tion of the system s—1 o% is auy relation of the system 1—s;
hence, if the former system satifies (c), so does the latter; hut we
have proved that the latter does not. In exactly like manner the
theorem may be proved for the remaining systems m—1 and s—m.

Theorem 3. — Of the primary systems, those of types 1—1 and
m—im are the only ones that satisfy condition (d). |

It is obvious that (d) is satisfied by the 1—1 system, ¢ being
the identity relation of the field, and by the m—m system, & being
the: universal (all-all) relation of the field.

System 1—s. Suppose (d) to be satisfied, denote e by 'Rf; E’ has

& referent » having but one relatum z;. the system contains a re-
lation B, such that R, y.2 R, ¢, ¥ y; hence, by hypothesis,

the system contains a relation B, such that =z (R, | R;) z; hence
y By 2.y’ R, 2, which is impossible since B, is 8 1—s relation and
¥y

System 1—m. If there be a & denote it by R'. We first prove

B | B"3= B'. Asto R’ any given- referent, say z, has two or more

relata (1) 2y, 2,,... or (2) %, 23.:., Where no z=2. In case (1),
z (R’ | R')#,; hence z R’y .y B’ 2;, where y =z, or g,..; 8aY y==2,,
then 2, B'2,, which is impossible. In case @), z(B' | B, 2,.. .;
hence z R'y.y R «,2,,...; if we take y=2z,, a5 we may, then
2 Bz or z, R' 2, or 2’ B’ w, where w is some relatum of 2 asto B :

‘but all these alternatives are impossible. As B’ | B = R, there must

be-an R (3= R') such that R’ | R=FR | B = B". This we show

‘to be impossible. For a given z we have (1) or (2) as above. If (1),

then z (B’ | B) 2, 2,...; hence 2 R'y.y Rz; as y == one of the
#s, say 2z, we have 2, Rz, which is impossible. If (2), then
x(R | B)x, 2,...; hence s Ry.y R’ 2,; y=u, for else, we should

not have y B’ 2; .. B cannot be of type 1—m.

The argument for the systems s—s, s—m is very like the fo-

regoing. For the systems s—1, m—1, m—s, the method of conver-

sion is available as in the preceding theorem.

Fundementa Mathematicae VII. 22
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Theorem 4. — Condition (e) is satisfied by all the primary

systems
This theorem, in whlch the term satisfied means ,vacuously®

satisfied, except asto the system of 1—1 type (where the term has

"its usual signification), is an obvmus “corollaty to the two prece
‘ding theorems.

The two following theorems embrace the clnef results to which
the foregoing discussion bas led. They are immediate consequences
of the three preceding theorems together with those embodied in

the Table of § 4.

Theorem 5. — Among the B11 systems that arise on taking
relative multiplication as & rule of combination with each of the pri-
mary classes of relations of an infinite field and with - each of the
classes formed of the primary classes by logical addition, there are
80 and only 30 systems that have the group property; one of them
satisfies all of the five group conditions; all of them satisfy condition
(b) — the associative law; 16 of them satisfy condition (c); 21 of
them satisfy condition (@); and 19 of them satisfy condition ().
These systems, of which 4 are primary, arve of the following types:

1—1: G )
1__—m: Gabe
m—1:

M—mm: G

1—1ovl—m: G

1 -ltum—1:

1—-—1 w m——m: Gab,d

1—sul—m: Gm

8—-—1 ummlt "

s—m um—m: @y,

m—swm—m. , -

1—1ul—su l—m: Gy,

1—1uvs—14 m—l: »
1—1us mum—m: Guu

1—lum—svm—im:

1—mvus—myom—m: G,

m—1om—svim—m:

1) Each type symbol. is followed by G with subscripts. These indicate that the
corresponding group conditions are satisfied,
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l—sul—mos—mo h——m: G ot

s—lum—lom—sym—m: "

§S—8§v8—mum—sum—m: G,

1—lovl—myvs—moum—m: G usea
l1—1vm—10um—som—m: »
1—1lul—so l—m o S—myu m—m; Gmd
I—1us—1um—1um—sym—n: ”
I—lus—sus—m um—su m—m: -

1—svl—mus—sus—mom—s o M—1: G
s—lom—10s—som—sos—m um—m:

1—1ul—sul—mus—s o S—Mm O M—5 U Mm—m: Gy,

1—lous—lum—1us—so M8 U §—M U M—1p"

il
1—-10l—svl—mys—so s—m v s—1vm—1ym—
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8 J m-—"n: Gubzd’

Theorem 5. — (a) If the field be finite and contain more than

three elements there are 8 and but 8 s

ystems having the group pro-

perty: namely, those whose types are those which remain on deleting
in the above list the type symbols involving 1—s, 1-—m, s—1 or m—1;
and (8) if the field contein but two elements, there are 2 and but 2 |
systems having the group property: namely the systems of types 1—1

and m—m.
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