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Homotopy dependence of fundamental sequences,
relative fundamental equivalence of sets
and a generalization of cohomotopy groups

by
Stanistaw Godlewski (Warszawa)

In order to extend some standard notions of the homotopy theory
onto arbitrary compacta K. Borsuk introduced in [4] the notion of the V
fundamental sequence. Replacing maps by fundamental sequences one
can obtain generalizations of many standard notions. In such a manner
we obtain the notions of homotopy dependence of fundamental sequences
(§ 4), relative fundamental domination and relative fundamental
equivalence of sets (§6) and fundamental skeletons (§ 7). All these
notions are generalizations of the notions introduced by XK. Borsuk in [1]
and [2]. Using the notion of the fundamental skeleton, we define groups
#x(X) which are generalizations of the generalized cohomotopy groups
7w X) introduced by K. Borsuk in [3].

§ 1. Basic notions. In [4], [5], and [6] K. Borsuk introduced the basic
notions of theory of shape. We recall some of the bagic definitions. All
spaces considered in this paper are compact and metric, and thus we
can agsume that they lie in the Hilbert cube Q.

By a fundamental sequence from X to ¥ (notation f= {fi, X, ¥} or
f: X~Y) we understand an ordered triple congisting of the compacta
X,¥CQ and of a sequence of maps fr: @@, k=1,2,..., such that
for every neighborhood V of Y there exists a neighborhood U of X such
that fx| U~ frea|U in V for almost all k.

We say that the fundamental sequences f= {fz, X, ¥} and g

= {gx, X, ¥} are homotopic (notation f=~g) if for every neighborhood ¥V
of Y there exists a neighborhood U of X such that fx|U ~gz|U in V for
almost all k. This relation is reflexive, symmetric and transitive and it
decomposes all fundamental sequencés into fundamental classes. The
fundamental class with representative f is denoted by [f] or, precisely,
by [f]: X—>7.

If f: X~ is a map, then there exists a map f @ ~Q such that f
=f(&) for e X. Setting fy=f for k=1,2,... we get a fundamental


GUEST


64 8. Godlewski

sequence f = {f¢, X, Y} called the fundamenial sequence generated by the
map f. Then we say that the fundamental clags [_f] i8 generated by the map f.

It f = {fs, X, ¥} and g = {gx, ¥, Z} are two fundamental sequences,
then the triple {gxfi, X, Z} is also a fundamental sequence. It is called
the composition of the fundamental sequences f and g and denoted by gf.
The fundamental clags [gf] is called the composition of the fundamental
classes [f] and [g] and it is denoted by [g][f].

If fr is the identity map i: @'~@ for every k=1,2, ..., then the-

fundamental sequence {fi, X, X} is said to be the fundamental identity
sequence for X and it is denoted by ix. The fundamental clags [ix] is called
the fundamental identity class for X.

By the shape of a compactum X we understand the collection Sh(X)

of all compacta ¥ such that there exist fundamental sequences f: X—Y -

and ¢: ¥Y-X such that gf ~ix, and fg~iry. Then the fundamental ge-
quence f (and also the fundamental sequence g) is called the fundamental
equivalence. If for compacta X,Y there exist fundamental sequences
f: X>Y and g: ¥ —~X such that fg ~ iy, then we say that the shape of X
dominates the shape of ¥ and write Sh(X) > Sh(Y).

. § 2. Extendability of fundamental sequences. If X C X’ and f
= {f¥, X, Y} and f'= {fx, X', Y} are fundamental sequences such that
f#X = fr| X, then we say that the fundamertal sequence f'is an extension
of the fundamental sequence f (see [5], p. 56). If for a fundamental
sequence f: XY there exists an extension f’: X’'—~Y, then we say that
the fundamental sequence f is extendable over X'. The collection of all
fundamental sequences from X to ¥ will be denoted by {X, X} and the
collection of all fundamental classes from X to ¥ by [X, Y]. If X C X/,
then by {X C X', ¥} we denote the collection of all fundamental sequendes
from X to Y extendable over X'.

In'[9] H. Patkowska has proved the following

(2.1) TEeOREM. If fundamental sequences f: XY and g: X—~Y are
homotopic and f has an ewiension f': X' ¥, then g has an eztension
g's X'~>Y homotopic to f'. . T
By Theorem (2.1) we can introduce the notion of extendability for
fundamental classes. We say that a fundamental clags [fl: X-Y is
ewtendable over X' if its representative f: X ¥ iy extendable over.X'.
If f is an extension of [, then we say that the fundamental class [f'71is
an extension of the fundamental class [f]. The collection of all fundamental
classes from X to Y extendable over X’ is denoted by [XC X', Y.
The collection of all maps of X into ¥ is denoted by ¥~ and the

collection of all homotopy classes of maps belonging to ¥* is denoted.

by [T¥]. Tf X CX, then the subset of ¥* consisting of all maps extend-
able over X' is denoted by ¥X¥ (compare [3], p. 616)
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It is well known (see [1], p. 94) that

(2.2) If Y ¢ ANR, then every map g: X—Y homotopic to & map f: XY
extendable 1o a map f': X'—Y is extendable to a map g’z X'»¥
homotopic to f'.

It follows that if ¥ ¢ ANR, then the set YXY is the union of some homo-
topy classes belonging to [¥%]. In the case of, Y ¢ ANR the set of a}l
homotopy classes of maps belonging to ¥* is denoted by [¥*°]
(compare [3], p. 616).

(2.3) If f={f¥, X, Y} is a fundamental sequence generated by a map
f: XY and f': X'—=Y is an extension of f, then f is extendable
over X' to a fundamental sequence homotopic to a sequence gemerated
by f'.

Proof. Let f' = {fi, X’y ¥} be a fundamental sequence generated
by f. It is easy to see that f” = {fi, X, ¥} is a fundamental sequence
(because X C X'). Since il X = fx|X, then by (1.1) of [6] f=f". The
fundamental sequence f’ is an extension of f”'. Hence by Patkowska’s
Theorem (2.1) the fundamental sequence f is extendable over X' to
a fundamental sequence homotopic to f'.

From (2.3) we infer that

(2.4) A fundamental class generated by a map f: X Y extendable over X'
is extendable over X'.

Let us prove that

(2.8) If Y e ANR and a fundamental sequence f= {fx, X, Y} generated
by & map f: XY is ewtendable 10 a fundamental sequence
f = {fi, X', ¥}, then the map f is extendable o a map e X'>Y
“such that the fundamental sequence generated by f’ is homotopic to I’.

Proof. By (5.1) of [4] there exists a fundamental sequence f”
= {fy/, X', Y} generated by a map f: X'—Y and homotopie to f’. It i8
easy to see that g'= {fi, X, ¥} and ¢" = {f¥, X, ¥} are fundamental
sequences and g’ ~g” (because X C X’). Since fi|X = fi|X, then P
(see [5], (1.1), 5 57). Hence f~g'’. Moreover, 9" is generated by f"lXi;
Hence by (4.3) and (2.1) of [4] f~f"’|X. Therefore, since ¥ « ANR, fis
extendable to a map f': X~Y and f'~f". Therefore the fundamental
sequence generated by f' is homotopie to f, and thus it is homotopic to f’.

(2.6) Remark. Without the hypothesis ¥ ¢ ANR (2.5) is not true. Eor
instance, let X’ be a circle given in the plane E? by the equa,i.;mn
#+y?=1 and let X be a subset of X’ consisting of all points
(z,y) e X' satisfying the inequality z >0. Let ¥, by 2 subset
of the plane E? consisting of all points (z, ) e F? satistying con-

Fundamenta Mathematicae, T. LXIX 5
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dition y == sin(1/z) and 0 <2 < 1. Let ¥, be the segment with
end-points (0,1) and (0, —2), Y, the segment with end- -points
(0, —2) and (1, —2) and Y, the segment with end-points (1, —2)
and (1, sinl). Let Y=Y, vY¥,uY,uY,. Letf: X»Ybeammp
such that f(X) = ¥, and the map h: XY, defined by the formula,
hz) = f(2) is 2 homeomorphism. It is easy to see that there existy
o fundamental sequence f: XY satisfying hypothesis of (2.5)
and such that its extension f’ is a fundamental equivalence. Then
no fundamental sequence homotopic to J' is generated by a map
f'+ X'~X, because every map of X’ into Y is homotopic to con-
stant map.

From (2.5) we obtain :
(2.7) If Ye ANR and a Jundamental class [f]: X~ generated by a map

f: XY is extendable to a fwndammtal class [f’] X' Y, then the

map f is extendable to a map f': X'—Y generating the fundamemal
dass [ f'].

§ 3. Cartesian products and diagonals of fundamental sequences. The
notions introduced in this section for fundamental sequences are analogous
to the well-known notions for maps. They will be needed in the next
section. First we recall the well-known notions of the Cartesian product
of maps and the diagonal of maps. The Cartesian product of sets X,

Xy ...y Xy is denoted by Pl X, If Xy= X for ¢=1,2,...,n, then the

Cartesian product lg X, is denoted by X"
Consider maps fi: X;—¥; fori =1, 2, ..
defined by the formula
@1y @y vy @0) = (filwy), falma), cors Sl dtm))
is called the Cartesian product of the maps f, f,,
SixfeX .o Xfa or, ghortly, by ‘_];: ' E

.y 7. The mayp f: }%X,—> ﬁ Y;
=] =1

for i € X;

«..y fo 4nd denoted by

I fy: XY are maps for 4= 1,2
defined by the formula

z) = (fl(w),fz(‘”)’ ,fn(w))
is called the diagonal of the maps f,, Jas
or, shortly, by An fi.

i=1

3 ey Wy then the map f: X ﬁ ¥

feal

for 2e¢X

wey fn and denoted by fLAfoA...Afn

icm
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Let us prove the following
(3.1) LemMA. Suppose X;, ¥;CQ for i=1,2,..,n

and 1t X=PX;CQ" and Y= PY:CQ™ If fi=
i=1 =

i=1
{for i=1,2,..

Qn'_)Qn (for 6=1,2,..),
sequence.
Proof. Take an arbitrary neighborhood ¥ of Y in @™ Then there

, n) such that 17; V:CV.
i=1

are compacta

{fﬂﬂa X‘: Yi}

,n) are fundamental sequences cmd\ Tx

then i =

= ‘E Jax:
{fe, X, Y} is a fundamental

exigt neighborhoods V; of ¥;in @ (for ¢=1,2, ...

Since fi (for 4= 1,2, ..., n) is a fundamental sequence then there exists
a neighborhood U of X; in @ such that fix|Us = fix4:| Uy in V' for almost
all k. Therefore there exists a map

hig: UgX 0,1 —~Vy
such that
(8.2)

{(for i=1,2,...,n and almost all k)

for ;¢ Us.

har(®i, 1) = fipea(@d)

= fanl(®1) ,

hin(#:, 0)

The set U= P U is a neighborhood of X in Q". Let us define the map

hx: Ux<0,15 —>V by the formula
@), 1) = (Rarliey, 1), Pap(ay 1), - wey huk(@n, 1))

Since the maps ki (i=1,2,..,n) are defined for almost all %, then
the maps hz are also def_med f01 almost all &. It follows from (3.2) and (3.3)
that

(8.3) (21, @ay ey

hk('w,. 0)=fu#), M®,1)=fenl®) for xelU.

Hence f5| U = fr11|U in ¥ for almost all k. Thus f = {f¢, X, ¥} is a funda-
mental sequence.

The fundamental sequence f associated with fundamental sequences
Jis fas ey fu by Lemma (3.1) will be called the Cartesian product of the
Fundamental .seque'n,ces fl, fay ooy fn and denoted by fixfaX .. X fn OX,

shortly, by _P i

It fo]lows at once from the definition of the Cartesian produet of
fundamental sequences that

(3.4) If___f.-: X{'—>Yi (md_g;: Y¢-—>Z1 fOT i= 1, 2, ey Ty then

}’; (gsf2) =.1?’ gt Pfe.
=1 " i=1 i=1
5*
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(3.5) Immma. If fi~gi for i=1,2,...,n, then
l n n

P fiz P ¢

A simple proof of Lemma (3.5), analogous to the proof of Lemma (3.1),
ig left to the reader.

By Lemma (3.5) the fundamental class [ P Ji]l depends only on the

fundamental classes [fi], [f2l, ..., [f»]. It will be ceulled the Cartesian proquct
of the fundamental classes [fil, [f2], ..., [fa] and denoted by [AlX[flx
X ... X[fa] or, shortly, by _I;L[ﬁ].
i=1"" -
From (3.4) we obtain

(3.6) P (LgdLfD)

t=1

= Plgd P
i=1 4]

The following two properties of Cartesian products of fundamental
sequences are obvious.

(8.1 If a fundamental sequence fir Xi—»Yi is an extension of a funda-

mental seqwmce Ju X1—>Y¢ for i=1,2,..,n, then the Cartesian

product P fi: P Xi— P Y is an extension of the Cartesian product

i=1" =1 i=1

P fir PX1—>P Y.

=17 i=1
If funolammtal sequences fi: X;—Y; are generated by maps fi: X,
for i=1,2,

(3.8)

.., m, respectively, then the Cartesian product P Jioof

the f'wndamental sequences [y foy .oy fu is generated by the Ocmeswm

product Pf@ of the maps fi, fay oy fn-

Let us prove the following
LeEMMA. X, Y, Y., YuCQ are
o Y= flIQCQ. If fi=

(3.9) Suppose

compacta  and

{fw, X, X} (for i=1,2,..,

Jundamental sequences and fr = Z fi: @ Q™ (for k=1,2,..),
i=1
then f=

n) are

{fes X, X} is a fundamental sequence.

Proof. Take an arbitrary neighborhood V of ¥ in Q". Then there
exist neighborhoods V; of sets ¥; in Q (for i=1,2,..,n) such that
PV¢ CV. Bince f; (for i=1

»2, .., m) is a fundamental sequence, there

eXISts a neighborhood U; of X; in Q such that FarlUs > fina| Ug in Vi for

1 ©

cm
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almost all k. Therefore there exists a-map Pig:
§=1,2,..,n and almost all k) such that

(3.10)  hax(w, 0) = funl®) , = fipn(®) for

The set U = ﬁ U, is a neighborhood of X in @. Let us define the map
i=1 : .

hie: Ux<0,1>—V by the formula

Ui x<0,1>—V; (for

Tax(m, 1) weUs.

(3.11)

Since the maps hy (i=1,2,..,n) are defined for almost all %, the
maps i are also defined for almost all k. Tt follows from (3.10) and (3.11)
that

(@, 1) = (haalw, 0), haal, ), wov T, D)) -

xeU.
, ¥} is a funda-

i@, 0) = falw) ,  Tafw, 1)

Hence fi| U = fr+1|U in V for almost all k. Thus f=
mental sequence.

The fundamental sequence f associated with fundamental sequences

F1sJas ey Jo Y Lemma (3.9) will be called the diagonal of the fundamenta,l

sequences fi, fay s fn and denoted by fiafia.. N fn or shortly, by A fi-

It follows at once from the definitions of the]Cartesian product of
fundamental sequences and of the diagonal of fundamental sequences that

(3.12) If fir X—>Ti and giz Yi—>Zy for i= 1,2, ..

= frn(w) for

{fJH

, N, then

n n n
A lgf) = (P g g A fo: X—>131Z¢
(3.13) LmwmwmaA. If fi~ga X->Y; for i=1,2,..,n, then
A fix Age X—>P s
i=1"" T=1"" N =1

A simple proof of Lemma (3.13), analogous to the proof of Lemma
(3.9), is left to the reader.

n
By Lemma (3.13) the fundamental class [ A f1] depends only on the

fundamental classes [fal, [fsl; --rs [ful- It will be oa.]led the diagonal of the
SFundamental classes [_fl] sz], o Lf: fa] and denoted by [fi1ALf] A.. - ALfa] or,

n
shortly, by él Lfil.
From (3.12) we obtain
(3.14) If [fi]: X~ and [_gcj: Yi—>Zi for i=1,2,...,m then

A [arfi) = (P Ld(ALD: X P %
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The following two properties of diagonals of fundamental sequences
are obvious.
(3.18) If a fundamental sequence fi: X'~y is an emtension of o funds-
mental sequence fi: XYy for 1=1,2,..,n, then the diagonal
- n " n
X fii X'~ 17JI Y, is an extension of the diagonal ¢A fiX— P 7y,
=1 =1 =] ta=1

(3.16) If fundamental sequences fi: X —Y i are generated by maps fi: X -7,

n
for i=1,2, .., n, respectively, then the diagonal ¢A1 Ju of the funda-

n
mental sequences fi, fay .., fn U8 generated by the diagonal A f; of
== = i=1
_ the maps fi, fay ooy fu.

§ 4. Homotopy dependence of fundamental sequences. In [1] K. Borsuk
has introduced the notion of the homotopy dependence of maps. In an
analogous manner we introduce the notion of the homotopy dependence
of fundamental sequences. ’

Suppose X, Y CQ are two compacta and a subset 4 of the ot
{X, ¥} of all fundamental sequences from X to Y. We ghall say
that a fundamental sequence f: X—¥ is homotopically dependent on A it

there exist fi, fy, ..., fa e 4 and a fundamental sequence 9 Y'Y, called
: n
the fundamental multisequence on ¥, such that foé A fi (compare the
J=E A

definitions of the multimap and the homotopy dependence of maps in [11,
p. 64). The set of all fundamental sequences homotopically dependent
on 4 will be denoted by w(4). :

It follows at once from the definition that
(1) Iffen(d) and fg then gew(4).
Let us denote by 2~ the family of all subsets of a set N. A function
A 2N 0¥ satisfying the conditions: '
ACA(A) for every set ACN,
it ACBCXN then 2(4)CA(B),
2{A(4)) = A(4) for every set AC N

iy sald to be the dependence operation in the set N and then the set N is
said to be the dependence domain (see [1], p. 66)
Let us prove the following

. ‘

(4.2) THBOREM. The operation w in the set {X, Y} is a dependence op-
eration, i.e.,

(i) A Cw(d) for every set A C {X, 73,
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(i) if ACBC{X, Y} then w(4)C w(B),
(iil) w(w(4)) = w(4) for every set AC{X, T}

Proof. (i). Take an arbitrary fundamental sequence f e 4. Let f; = f
and let 9: Y=Y De the fundamental identity sequence. Then Is _'?fl’
Whence_fe w(4). )

(ii). Let ACBC{X, Y} and feo(d). Then —f:éiéiﬁ where
9 ¥ Y and fie A for i=1,2,...,n. Since A CB, we have fieB for
T=1,2,..,n Hence few(B). N

(;ii)f It7 follows from (i) and (i) that w(4)C w{w(4)). It remains
to prove that w(w (A)) C w(A). Take an arbitrary fundamental sequence
feolw (A)). Then there exist fundamental sequences Jie o(4) for
q,T 1,2 ,n and a fundamental multisequence i?: YY" »Y such that

T= oAy Ay e

f=? A fi Since fiew(d) for i=1,2,..,n, there exist fundamental

geq;e;:zle_s_ fied for j=1,2,..,m and fundamental multisequences

mi
9 ¥™ >¥ such that fi~d _Al_]_‘”. Hence by (3.13) and (3.12)
— * —_— — j=

n n mi

A fix A9 A fu) = (P ) ACA Ju)-
. g=1 — §=17T

izt i=1 i=1 j=17"
iz
Hence we obtain
- mi
(A fu)
j=17

n
i=1" 1i=1

f=9 Zfiﬁf‘(Pﬁf) ;
A

Therefore the fundamental sequence f is homotopic to the composition
of the diagonal . i

AU fu)s X »Tmrmtesme

i=1 =17

] lti-
of the fundamental sequences fieA and of the fundamentgﬂ multi

sequence
) 1‘"5 Dy Y1n1+ma+...+mn __)_Y .
L o
¥ i ted.
Th A) and the proof is comple -
HSC_J:);SLiDd(er)a,n arbitrary subset T of the seb [X, Y] of :%f;l)lt?gm;n %
classes from X to Y. Let us assign to the set T 1:]1;T sey} B 1;d~a,-
defined ags follows. Let Ar be the subset of the set {X,
mental sequences from X to Y such that

(4.3) _f_e.AT if and only if [f] el
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and let
(44) [fleA(T) if an only if few(Ar).

The operation 1 is well defined by (4.1).
Let us prove the following

(4.5) TamorEM. The operation A in the set [X, ¥] is a dependence 0p-
eration, i.e.,
(1) TCAT) for every set TC[X, Y],
(i) if TCOC[X, X] then A(T) C A(S),
(ifl) A(A(T)) = A(T) for every set TC[X, X].

Proof. (i). Take an arbitrary fundamental clags [f] € 7% Then by (4.3)
Jedr. Hence by Theorem (4.2) few(Ar) and by (4.4) [f] e A(T).

(ii). Let 7'C S and [f]e A(T). Then fe w(Ar). Obvioﬁ“sly AypC Ag.
Hence by Theorem (4.2) w(Ar) C w(Ag). Therefore few(ds) and by (4.4)
[] € a(s). -

(iff). Tt follows from (i) and (ii) that A(T)C /I(Z(T)). It remains to
show that A(A(T)) CA(T). Take an arbitrary fundamental clags [f]
e A(A(T)). Then few(Aym). Let us observe that Aym = w(dyz). Indeed,
by (4.3) g « Ay if and only if [g] € 2(T) and by (4.4) this relation holds
if and. only if g« w(Ar). Hence Je co(w(AT)}. Therefore by Theorem (4.2)
Jew(4r). Thus by (4.4) [f1eA(T) and the proof is finished.

Tt follows from Lemma (3.13) and the definitions of the operations
w and A that
(4.6) [f1eA(T) if and only if there ewist fundamental classes LA, [fel, o

vy [fnl €T and o fundamental class [#: Y"'-¥Y such that [f1

n
=@ AL
The fundamental class [#]: ¥"-+¥ will be called the Sfundamental multiclass.

Suppose X, X,, YCQ ave three compacta and [f]: X, X, is
& fundamental class. Liet us define the function h

[fI°: [, Y]>[X,, 7]
by the formula
(4.7) o fe)) = [¢I[f] for [p]: X,—Y.
It is obvious that
(4.8) If [f]is o fundamental identity class, then [f1* is a identity function.
(4.9) If a composition [91Lf] s defined, then
(LI = [fT 0"

cm
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Let Ny and N, be two dependence domains with dependence oper-
ations 4, and A,, respectively. A function f: N;—N, satisfying the con-
dition

F(M(4)) Ca,(f(4)) for every set 4 C N,

will be called a A-morphism. A one-to-one A-morphism for which the
inverse function is a A-morphism is said to be a A-isomorphism (see [1],
p. 66).

Let A, and 1, be the dependence operations in the sets [X;, ¥] and
[X,, Y] respectively, defined as above. Then we obtain the following
(4.10) TEmROREM. The function [fI*: [X,, Y]+[X,, Y] 98 & A-morphism.

Moreover, of f is a fundamental. equivalence, then [ fI* is @ A-iso-
morphism.

Proof. We must show that [f1*(%(T)} C 4([f1(T)) for an arbitrary

set T C[X,, Y]. Take an arbitrary fundamental class [y] e[ﬂ*(lg(T)).
Then there exists a fundamental class [¢] e ,(T) such that

’ [Me) =[pl, ie, [gllfl=1[y].

Since [p] € 4(T), there exist fundamental classes [¢:], [gs], ., [pule T and
a fundamental multiclass [9]: Y"->Y such that

. n
¢]l=[9] A [gad
Hence we obtain

[v) = 18] 2 L] -

Tiet [pid = [pil[f] for i = 1,2, ..., n. Then [y] = [9] él[f’]‘

Tt follows from (4.7) thait [y:]  [fT%(T) and hence by (4.6) [y] Zl([f]*(T));
thus the first part of the Theorem is proved.

Now, suppose that f is a fundamental equivalence. Let [g]: X,—X,
be a fondamental class such that the compositions [f1{g] and [g][_f] are
both fundamental identity classes. Then by (4.8) and (4.9) the functions

([GILF)* = [fPg*  and  ([fIg])" = [FI)*

are identities. Therefore [fI* and [g]* are one-to-one functions. anc‘l f:he
A-morphism [¢]*is the inverse to the Z—morphism,[_f}*. Thus [I]* is a A-iso-
morphism and the proof is completed. . )

Suppose we are given two compacta X, ¥ C¢. Consider an arbi
subset 4 of the collection Y= of all maps of X into Y. We shall say that
a map f: XY is homotopically dependent on the set A provided that there

trary
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n
exist maps fi, fa, oy fued and 9: Y'Y such that fod A fi (It is
i=1

2 modification of the notion given in [1], p. 64). Let us denote by {4}

the set of all fundamental sequences generated by maps belonging to 4.
We shall prove that

(4.11)  If a fundamental sequence [ is homotopic to a fundamental sequence
generated by o map homotopically dependent on a set A, then f is
homotopically dependent on the set {4}, -

Proof. Let g: XY be a fundamental sequence homotopic to f
and generated by a map ¢g: XY homotopically dependent on 4. Then

g=b Zgg, where gie A for i=1,2,..,n and 9: ¥"—Y. Let g; (for
i=1 Ay

i=1,2,..,n) be a fundamental sequence geﬁera,ted by gi and #: Y'Y
fundamental multisequence generated by #. Then by (3.16) the funda-

n n

mental sequence A g¢; is generated by the map A g; and hence the funda-
f=1"" i=1 :

mental sequence & A g; is generated by the map 4 Z ¢i. By (4.1) of [4]
— =17 i1

n ! n
g:ﬁiAlg;. Hence f~?# A ¢: and g; € {4} by the definition of the set {4).
g=Y— PR 4
Therefore f is homotopically dependent on the set {A}.

(4.12) If ¥ e ANR, A C Y™ and o fundamental sequence f is homotopically
dependent on the set of all fundamental sequences gemerated by maps
belonging to A, then f is homotopic to a fundamental sequence
generated by o map homotopically dependent on A.

Proof. By the hypothesis f~% A fi, where fundamental sequences f;
L= 84 " J

are generated by maps fied for ¢=1,2,..,n and &: ¥"-»¥. Since
Y ¢ ANR, then by Theorem (5.1) of [4] (p. 228) the fundamental multi-
sequence ¥ is homotopic to a fundamental multisequence 7: ¥"—>T

n
generated by a map n: ¥"—Y. Hence f~5 A f; and by (3.16) the funda-
=080
n
mental sequence 7 'Ax fi is generated by the map 7 Zi fi. Since fied
i=1"" q==1

for {=1,2,..,n, the map 7 A fi is homotopically dependent on A.
=1
Let us prove the following
(413) TumoREM. If o fundamental sequence f s homotopically dependent

oma set A C{X, Y} and every fundamental sequence belonging to A is
ewtendable over X', then f is ewtendable over X',
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n
Proof. By the hypothesis f~9 A fi where fied for i=1,2,...,n
=204 d
and 9: Y'>X. Let Ié: X'~>Y Dbe an extension of f; for ¢ =1,2,...,n. Then

n n
by (3.15) X f# is an extension of A f; and hence & A fiis an extension
=1 i=1" =

=1

of @ K Ji. Therefore the fundamental sequence éé‘; fi is extendable

overti". Hence by Patkowska’s Theorem (2.1) f is extendable over X',

(4.14) Remark. Theorem (4.13) is a generalization of Patkowska’s
Theorem (2.1). Indeed, if a fundamental sequence g: X—T is
homotopic to a fundamental sequence f: X7V having an ex-
tengion f: X'—¥, then g is homotopically dependent on the
set {f} consisting only of the fundamental sequence f (as the
required fundamental multisequence we can take a fundamental
identity sequence on ¥). Hence by Theorem (4.13) ¢ is extend-
able over X'. .

§ 5. Fundamental dimension and cohomotopy groups. By a funda-
mental dimension of a compactum X we understand the number Fd(X)
= Min{dim ¥: Sh(X) <Sh(Y)}. This notion is due to K. Borsuk.

Tn order to define the n-th cohomotopy group (see [10]) of & space X
one requires (in the case n > 2) that the dimension dim X of the space X
be less than 2n—1. In this section we show that for an arbifirary com-
pactum X the inequality dimX < 2n—1 may be replaced by the in-
equality FPd(X) < 2n—1.

First we prove a few lemmas concerning maps into an ANR.

Suppose we are given three compacta X,¥,%CQ, where Z ¢ ANR.
Consider a fundamental sequence f: X~Y. Take an arbitrary map
¢: Y—=Z. Let p: ¥Y—Z be the fundamental sequence genera,teq_ by the
map ¢. Then the fundamental class [gf] is generated by a map ¢: X -T>Z
(see [4], Theorem (5.1), p. 228). Therefore to each map ¢: ¥ —Z we assign
a certain map 7: X~Z. This assignment is not unique, but the homotopy
class [@] of the map p depends only on the homotopy class [¢] of the
map ¢, ie.,

(8.1) If pey: Y2, then pup: X—2.

Proof. Since ¢ ~v, then by (4.1) of [4] (see - 226) g=y. Hence
of ~uf (see (6.4) of [4], p. 232). Therefore maps 7 and y are .weakly homo-
topic (see [4], p. 224 and Theorem (4.3), D 298), and since Z ¢ ANR,
we have g~ (see [4] Theorem (2.1), p. 224).

By (5?1) uvaé can[aisign $o an arbitrary fundamental sequence f: X ¥
a function :

1251125
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defined by the formula f¥([p]) = [@] for p € Z7. If follows at once from

the definition that

(5.2) If feg then f¥= g%, »

(5.3) If o composition gf is defined, then (gf = I #f-

(5.4) If ix: XX is the fundamental identity sequence, then % s the
identity function.

Now, let Sh(X) < Sh(Y). Then there exist fundamental sequences
fi XY and g¢: Y —~»X such that _gj_‘:_@'x. Hence by (5.2), (5.3) and (5.4)

}#g# iy the identity function. It follows that :

(6.8) If f: XY and g: ¥Y—>X are fundamenial sequences such that gf ~ix
and Z « ANR, then the function f%: [27]-[2%) is onto and g§*: [7%]
—[Z%] is a single-valued function.

Now we recall the definition of the nth cohomotopy group of a space X

given in [10].
Let § = 8" be the n-dimensional sphere. Let us choose a point s, ¢ §.
Oongider the subset ‘

V8 = (8% (s)) v ((80) X 8)

of the Cartesian product §x 8. Let us define the map 2: Sv8—8 by
the formula

(8,8) =02(s,8)=s for sef.

If dimX < 2n—1, then for arbitrary two maps ¢, w: X -8 there exists

a map
D: Xx0,1>+8%x8
such that

P(z,0)=(p(a),p(x)), &(@,1)e8VS for zeX.

The map & is called a normalizing homotopy for the maps ¢ and u. Then
the map y: X—8v8 defined by the formula y(z) = &(z, 1) is said to
be a normalization of the maps ¢ and v (see [10], p. 210). Then in the
set [8¥] of all homotopy classes of maips of X into § the group operation
may be defined by the formula

(5.6) lol+ [yl = [2x].
This group is called the n-th cohomotopy group of the space X and de-
noted by a#(X) (see [10], p. 213).

.We show that if the fundamental dimension Fd(X) of a com-
pactum X is less than 2n—1, then we can define the nth cohomotopy
group a#(X) of the compactum X in the same manner. Since Fd(X)

@ ©
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< 9n—1, then there exists a compactum ¥ C¢ such that Sh(X) < Sh(Y)
and dimY < 2n—1. Therefore there exist funda,mentfﬂ sequences f
= {fs, X, ¥} and g={gx, ¥, X} such t]:}at gf~ix={i, X, X}, where
i: Q@ is the identiby map. Take two arbitrary maps g, P X ->S',‘ where
8 = " is the n-dimensional sphere. 8ince S ¢ ANR, there exists a neighbor-
hood U of X (in @) such that there exist extensions 7, %: U8 of maps ¢
and v, respectively. Since gf =ix, we have

gufulX =4 X in U for almost all k.
Therefore for almosf all % there exist maps
Fr: Xx0,15-U
such thiat
Fyz,0) =2 and Fiz,1)=gfr(2) for zeX.
Let us define the map
Gr: X <0, 1)+>8x8
by the formula
G(z, 1) = (FFr(2, 1), PFe(w, 1)) for zeX and 0 <t<1.

Then for z e X ‘

G(@, 0) = (ﬁlﬂk(my 0), PH2, 0)) = (&5’(56), le(m)) = (‘P(W)J w(m)) y
5.7 - - -
&0 Gilz,1) = (51;‘10(507 1), PE(w, 1)) = (‘ngfk(w)y wgkfk(m)) .
Since ¢ iy a fundamental sequence, there exists a neighborhood V’ of. hig
such that gx(V") C U for almost all %. Then for almost all k& we define
the maps ¢x,yr: ¥—8 by the formulae

o) = Fouly),  vely) = Ponly) for ye¥.

Since dim Y < 2n—1, for the maps ¢i and v there exists a normalizing

homotopy
' Hi: Tx0,1)~8x8.

" 1) eSv8
Hyly, 0) = (paly), waly)) = @Foule), Pouly))  amd  Hily, D e
’ for yeX.

Since §x 8, SV ¢ ANR, there exists an extension
' Hy: Vx0,1>—>8x8

of Hy, where V C V' is a neighborhood of ¥, such that

Huly, 0) = (Foxly), P0uv)) »
©8) {ﬁk(y,l) eSv8 for yeV.
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Let %, be a natural number so great that the maps Gy, and Hy, exist
and fi,(X) CV. Let us define the map

®: X0, 1588
by the formula '

A

Gz, 2t) for 0
ﬁlcn(fku(w)a Zt"l) for  §<

H

O, 1) = b
(m,)~{ N

N A

t
11

By (5.7) and (5.8) @ is well defined and continuous and it is a normalizing
homotopy of the maps ¢ and . Thus we have proved that

(8.9) If FA(X)<2n—1, then for an arbitrary two maps @, p: X8
there ewists a normalizing homotopy. ‘ :

Now we show that the addition in the set [8%], given by the for-
mula, (5.6), is well defined, i.e.,

(610) If Fd(X)<2n—1 and y: X—8v8 is a normalization of maps
@,y X8, then the homotopy class [Qy] depends only on the
homotopy dlasses [p] and [v].

Proof. Since F4(X) < 2n—1, then there exists a compactum ¥ C Q
such that dimY < 2n—1 and Sh(X) < Sh(¥). Therefore there exist

fundamental sequences f: XY and g: ¥—X such that gf ~ ix. Hence
by (5.5) - - T

(811) g% [8F1=a™T) is a single-valued function.

Let @, y: ¥—8§ be maps such that

(5.12) Fle) =17 and  g*yl) = [9].

Let z: Y—~8V 8 be a normalization of the maps ¢ and y. Then the homo-
topy class [Q%] depends only on the homotopy classes [@] and [¥] (see [10],
Lemma 6.2, p. 211). In order to prove (5.10) it suffices by (5.11) to show
that

(5.13) (9 = @71

Sinee y: X—~8vS is a normalization of the maps ¢ and y, then there
exists a normalizing homotopy '

b Xx 0,1>+8%8
such that

cb(ac,O);(cp(m),y:(m)) and O(z,1)= y(w) for weX.

icm°
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Since 8, Sv8, 8 8 ¢ ANR, then there exists a closed neighborhood U
of X (in Q) such that the two following conditions are satisfied:

(5.14) There exist extensions §: U8, P: U8, F: U~8V8 of the maps
@y, respectively.

(8.18) There ewists an extension @: U x {0,1>—>8 X8 of the homotopy @
such that

B@,0)= (F(@),P@) and D(@,1)=7(@) for wel.

Since g = {gx, ¥, X} is a fundamental sequence, there exists a cloged

- neighborhood ¥ of Y and a natural number k, such that

(5.16) GelV=gn|V in U for E>k,.
It follows from (5.16) that gx(V)C U for k > k,. Then for k >k, we can
define maps
T, Pe: V8§ and % V—>8V8
by the formulae :
B17)  Puy) = Foy), Tuy) = Por®), Tuly) = Toaly) For Yy eV.

It follows by (5.16) and (5.17) that

(8.18) e ~Frey Ve, Ar=Tw v k>k.
Let )
(5.19) Fe=0:Y, Tu=PT, Tx=7xY.

We shall prove that
(5200 g*loD = Ful, gD =[Pl §7(1QD) =[xl
Let $: Q—~Q be a map such that ¢ (x) = F(«) for z e U and ¢k:.Q.—?'Q be
a m:p gucthha.t Puly) = Prly) for y eV aind k > %,. By the gfﬂ;lf;iitﬁ
maps ¢ and ¢ and by (5.17) and (5.18) it follows that the " 111 Z ronta)
sequence {¢gx, ¥, S} is homotopic to the ?onstant fu_ndamen : ; g nee
{$ro, ¥, 8}. The fundamental sequence {Proy ¥, 8} 18 Agene;a. ;} bgongs
map Pr,: ¥ —S. Therefore the fundamentfxl sequence {Pgx, X, iy
to the fundamental class generated DY @k, and thus by the de !
of the function g* we obtain g_#([q:]) = [@,]. Analogously one can prov
the remaining two conditions (5.20).

Now, let us define the map

¥ ¥ x<0,1>>8x8
by the formula
& 1.
(5.21) Wy, t) = B(grly), 1) for ye¥ and 0<t<
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Then from (5.21), (5.15), (5.17) and (5.19) we obtain
Dy, 0) = B(gro(9), 0) = (Fro(¥)s Pora(y))

= (Fa®)s Prol®)) = ([@relt)s Prol)
Py, 1) = B{ga(¥), 1) = T9r8) = Trol¥) = Trol¥)

for Ye Y,

for yeX.

It follows that Ek is a normalization of the maps q_a;; and Pr. By (5
o o . 12
and (5.20) we have Pra- B3 { )

(5.22) (%] = [¥nl -

Since dimY < 2n—1, the homotopy class [Qx] depends only on the
homotopy classes [@] and [%] and the homotopy class [Q%r,] depends
only on the homotopy classes [@x,] and [Pz, (see [10], Lemma 6.2, p. 211).
Therefore by (5.22) [Q7] = [Q%x] and hence by (5.20) we obtain (5.13)
and the proof of (5.10) is completed. -

If Fd(X) < 2n—1, then by (5.9) and (5.10) we can define the ad-
dition in the set [8*] by the formmula (5.8). We show that the set [SX]
with this addition is an Abelian group.

Sinee Fd(X) < 2n—1, then, there exists a compactum ¥ C@ such
that dimY < 2n—1 and Sh(X) < Sh(Y). Therefore there exist funda-
mental sequences f: XY and g: Y Y such that gf ~ix. Hence by (5.5)
the function ¥ a"(X)->[8¥] is onto and g1 [85]->a™T) is a single-
valued function. Moreover, by (5.2), (5.3) and (5.4) f#g# ig the identity

. . X
function on [8%]. It follows by (5.6), (5.12) and (5.13) that for arbitrary
two maps @,yp: X—8 :

(7] = [Pl »

(5.23) g1+ D) = g™(p]) + g ([vD) -

Analogously one can prove that for arbitrary two maps @, y: ¥ =8
(524 @+ ) = @)+

(Compare also the proof of Theorem (2.3) of [7]). Let [
s _ . . ¥o] be the zero of
the group *(¥) and let [gp] = f¥([@]). Then ’

(5.28)  [gol+Ipl =[]
Indeed, let [v]= g#([y)]). Then [@,]+ [y] = [9]. Hence by (5.24)
FH@D) + 1) = ) -

for an arbitrary map y: X—8§.

But
@) =[p] and  FHP) = o) = [v] .
Hence we obtain (5.25).
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It is easy to see that

(5.26) For an arbilrary map ¢: X8 there exists a map p: X8 such
that [¢]-+1p] = [@l-
Indeed, if ¥: ¥ =8 is & map such that g#([tp])—‘r[ﬂ = [@), then by (5.24)
an arbitrary map e i#(\_”ﬂ) satisfies the required condition.
Since _g_#: [Sx]—wz”( Y) is a single-valued function and the addition
in the group a®(Y) is associative and commutative, then by (5.23) it
follows that

(5.27) The addition in the set [SX] given by the formula (5.6) is associative
and commutative.

Therefore by (5.25), (5.26) and (5.27) the set [SX 1 with the addition
given by the formula (5.6) is an Abelian group.

Thus we obtain the following
(5.28) THEOREM. If Fd(X)<2n—1, then the n-th cohomolopy ¢roup

a(X) of the compactum X exists.

In [8] we have vproved (see (3.2) of [8]) that if 7' is a- triangulation
of a polyhedron P and P® ig the combinatorial k-skeleton of T and
Fd(X) <k, then for every map f: X P there exists a map §: X->P
homotopic to f and such that g(X)C P®, Hence we obtain the folloyv?;g

CoROLIARY. If Fd(X) < n, then the n-th cohcmotcpy group an(X
of the compactum X is trivial.

TrroreM. If FA(X) < 2n—1, FA(Y) < 2n—1 and J: XY is
a fundamental sequence, then the function 5 X)) >a(X) is
a homomorphism.

The proof of Theorem {5.30) is precisely the same as the proof of
the analogous Theorem (2.3) of [7]. In the proof of Theorem (2.3) of [7]
we utilize the hypotheses dimX < on—1 and dimY < 2n—1. These
hypotheses were needed only for the existence of groups a™{X) and
a(X).

From (5.2), (5.3), (5.4) and (5.30) we obtain the following corollaries.
. and Sh(X) >Sh(Y), then
is a divisor of the group a{(X).

(5.29)

(5.30)

(5.31) COROILARY. If FdX)< 2n—1
a(X)> a(X) i.e. the group a{Y)

(5.32) Comozamy. If Fd(X) < 2n-—1, Sh(X) > Sh(Y) and S(X)
< Sh(T) then a(X) = w(¥)-
(5.33) ComorLarY. If FA(X)<2n—1 and Sh(X) = Sh(Y), then the

groups mX) and an(X) are isomorphic i.e. Cohomotopy groups are
invariances of shape.

Fundamenta Mathematicae, T. IXIX [i]
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§ 6. Relative fundamental domination and relative fundamental equiva-
lenoe of sets. In [2] K. Borsuk introduced the notions of homotopic
domﬁon and homotopic equivalence of sets in a space. In thig seetilc))n
we infroduce analogous notions of relative fundamental domination ang
relative fundamental equivalence, replacing maps by fundamental ge-
quences. '

First we recall the notions i inati i
cqivaiaon ot of homotopic domination and homotopic

;et X, and X, be cloged subsets of a space X and let 4: X, X
aﬂq iy X,~>X denote the inclusion maps. One says that the set JX ht;mo-
topically dominates the set X, in X (notation X, < X,in X) if theré exists

S §

a map a: X, ~X, such that 4, ~i,a (see [2], p. 609). If X, <X,in X and
.- < h
X, }< X, in X, then we say that sets X, and X, are homotopically equivalent
n X—and write X, = X, in X (see [2], p. 610).
Hﬂb;‘\;gw, ]10% Z)YI ﬁnd X, be closed subsets of a compactum X lying in the
cube ¢. Let ¢;: X;—+X and 4y: X,—~X be fundame
) K . ly? ntal sequences
sg:;leﬂd tflhe mclusmn maps ¢: X; X and 4,: X,—~>X y respectivgly. We
xh <‘X the sei:, X, fwmiammmll'y dominates the set X, in X (notation
th; s in X) if bhere exists a fundamental sequence a: X, X, such
that ¢, ~4,a. If i in N
h~ i X1§Xg in X and XZ§X1 in X, then we say that the
sets X; and X, are fundamentally equivalent in X and write X, = X, in X
TR T : ’
From the definitions it follows at once that ’

(6.1) Xl?zl in X for every closed subset X, of a compactum X
(6.2) Xl? X, in X if and only if Xg-; X, in X.
(63) If X, <X, i i

15X, in X and X2<FX3_W X, then X1§Xs wn X.

64) If X, =X, i
f X, FX3 in X and XQ? X; in X, then Xl—_b; X, in X.
It is easy to see that

6.5) I ;
(6.5) lefxgan,tth;l%XginX.

Indeed, if a: X, X, is a map such that 4,

is the fundamental sequence generated by o %0, then 4y = i,q, where o

(6.6) Remark. The converse of (6.5)
the segment lying in the p]an'e
Let X, be a subset of the plan
satisfying conditiong ¥
and denote by X, the 5

Eizs 1ot true. For instance, let X, be
; Ezvm;h endpoints (0, 1) and (0, —1).
' consisting of all points (2 :
=bsm(1/m) and 0 < o < 1. Let X=( &f)\jg
ubset of X; consisting of all points (z, y) e X,
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4 i 4

satisfying the inequality 3 < = < 1. It is easy to see that X; < X,
in X, but the relation X; < X, in X does not hold. 7
It follows by (6.5) that '
(6.7) If XIT X, in X, then Xl§ X, in X.

Now we show that
6.8) If Xy <X, in X and X, X, c ANR, then X, <X in X.
r h

Proof. By hypothesis there exists a fundamental sequence a: X, X,
such that 4, ~i,a. Since X, ¢ ANR, then the fundamental sequence g is
homotopic to “a fundamental sequence generated by a map a: X;—»>X,
(see [4], Theorem (5.1), p. 228). Then the fundamental sequence i,a i8
homotopic to a fundamental sequence generated by the map iz0. There-
ore, sinfee ¥ e ANR, by (2.1) and (4.3) of [4] we obtain 4, ~4,0. Thus
X, f X, in X.

(6.9) Remark. Any of the hypotheses X e ANR and X, e ANR of (6.8)
cannot be omitted. For instance, if we define compacta X, X,
and X, as in Remark (6.6), then X; % X, in X, but the relation

X, <X, in X does not hold. Moreover, let us observe that X,
&

¢ ANR. Now, let X, be the set denoted by ¥ in Remark (2.6).
Tet X be the subset of the plane E consisting of all points (@, y)
satistying the inequality iy < (z—3%)*+* <9 and denote by X;
the circle given in the plane E® by the equation (£—3)+9° = 155
It is easy to see that X, § X, in X, but the relation X; f X,inX
does not hold. Moreover, let us observe that X ¢ ANR.

It follows from. (6.8) that
(6.10) If X, = X, in X and X, X, X, <« ANR then le X, in X.
It is easy to see that
(6.11) If X is a closed subset of a compactum X' and X, § X, in X, then
X, <X, in X
F
Indeed, if 4;: XX, iy X,—X, i XX, g X, X', .7_4{ X,—+X'
are fundamental sequences generated by the inclusion maps and a: X; —+X,
is a fundamental sequence such that %, ~4a, then @, ~iiga, bub i1t
and g 4la, whence 11’ ~ 1’55. .
(6.12) Remark. There exist compacta X, Xp, X, X' such that X, X,
CXCX and X, <ZX,in X' but the relation X, % X, in X does
F
6*
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not hold. For instance, let X’ be a segment with end points z
and y (where # = y), X consists of the points # and y, X, consists
of the point z, and X, consists of the point y.

It is evident that X, <hX in X for every closed subset X, of X
(see [2] p. 610). Hence by (6.5)
(6.13) X, ?X i X for every closed subset X, of a compactum X.
Let us observe that
(6.14) If X, is a closed subset of a compactum X such that X < X, in X,
then Sh(X) < 8h(X,). 7

Indeed, byjhypothesis there exists a fundamental sequence a: XX,
such that ix~i,a, where %p: X,—X is a fundamental sequence generated
by the inclusion map 4 X,—~X.

(6.15) Remark. The converse of (6.14) is not true. For instance, suppose
we are given the following two subsets of the straight line ¥': X,
= {0} v L:Jl {1/n} and X = X, v {2}, where {z} denotes the set

congisting of a point #. It is easy to see that Sh(X)= Sh(X,)
(because X is homeomorphic to X,) and the relation X < X,
r

in X does not hold.
Let X, § X, in X. Then there exists a fundamental sequence a: XX

such that 7, ~iya. Consider the function o*: [X,, ¥]~[X,, ¥] defined

by the formula
a*([g]) = [plla] .

{Compare the definition of L_fj* given by (4.7). For definitions of sets
[X, ¥, [XC X', Y] see §2).
Let us prove that .

(6.16) (X, CX,¥Y))C[X,C X, ¥].

Proof. Take an arbitrary fundamental sequence ¢ = {gj, X,, ¥}
having an extension ¢" = {gr, X, ¥}. It suffices to show that the funda-
mental sequence ga: X;—~¥ has.an extension over X. Since ¢’ is an
extension of g, then ¢i(e)= pi(x) for z<X,. Hence Fhla(®) = gu()
for z _eXZ. Therefore by (1.1) "of [6] we have 9l ~ ¢. Hence P'lga ~ pa
and since fa=x1,, then ¢l ~pa. The fundamental sequence o't X5 is
an extension of ¢'i;: X;~¥. Therefore by Patkowska’s Theorem (2.1)

the fundamental sequence ge has an extension ov
is finished. F2 er X and the proof
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Keoping the hypotheses and the notations as above, let us suppose
that ¥ e ANR and congider the funetion
E#: [Y.Xl]_){yXx] X
(For the definition of i# see § 5). Liet us prove that
(6.17) HFTReF) C[YeE].

Proof. Take an arbitrary map ¢: X,—>¥. Let ¢ be a fundamental
sequence generated by ¢. Since ¥ ¢ ANR, the fundamental class [pa] is
generated by a map p: X;—Y (see [4], Theorem (5.1), p. 228). By defi-
nition & ([p]) = [g]. It suffices to show that if the map ¢: X,—Y is
extendable over X, then the map @: X,—¥ has an extension over X.
Since ¢'is extandable over X, by (2.3) the fundamental sequence ¢ has
an extension over X, ie., [ple[X,CX, Y]. By (6.16)

aXlg]) e[X;C X, Y], ie, [pa]e[X,CX,T];

therefore the fundamental sequence pa: X; —Y has an extension over X.
Hence by (2.5) the map @ has an extension over X and the proof is finished.
Now, let X, = X, in X. Then there exist fundamental sequences

a: XX, and g, X,—X,; such that 4 ~ia, and iy iy a,. Consider the
functions .
of: [X,, Y1~[X,, ¥] and of: [X;, Y]-[X,, ¥].
By (6.16)
af{[X,CX, Y))C[X,CX, ¥] and o([X,CX,¥Y))C[X,CX, Y]
Therefore we can define the functions
@ [X,CX, Y]-[X, CX, Y], & [X,CX,Y]-[X,CX Y]
by the formulae
T([g]) = of(fgl) for [¢]e[XCX,T],
Gy = od([y]) for [ple[XCX,Y].
Let us prove the following
(6.18) TuEOREM. The compositions
2,4 [X,CX,Y]-[X,CX, Y]

and
Elgzi [X,CX,Y]-[X,CX, Y]

are identities.
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Proof. Take an arbitrary fundamental sequence ¢ XY extend-
able over X. In order to prove that _g”g_ﬁl is an.identity it suffices to show
that go; @ ~ . Let ¢': XY be an extension of @ over X. Then by (1.1)

of [6] ¢l, ~¢. Applying the hypotheses G dye and 440y, we obtain
AR TR LT TS
Therefore @,d,
an identity.
By (6.18) we obtain the following
(6.19) CoRoLLARY. The functions
& (LCX, Y>[LCX, 7] and @ [X,CX, ¥]+[X,CX, 7]

are one-to-one and @, is the inverse of .

iy an identity. Analogously one can prove that 4,3, is

Keeping the notations as above and the hypothesis X, = X, in X let
us suppose that ¥ ¢ ANR and consider the functions

aff: [T 5[Y¥]  and s [T [ 75,

By (6.17)
E%-):(YX.CX]) C [Yme]
Therefore we can define the functions
§1= [‘Yx,cx]__)_[yxlcx

by the formmulae

and gl;_ﬁﬁ([yX1CX]) C {YXgCX].

, §2: [YXECX];_)[YXgCX]
allg) = offg]) for peTTX

1
a(ly)) = of ([y])
Let us prove the following

for pe YFCX,

{6.20) THEOREM. The compositions
G [YON[ Y58 gy g [XRCF s yTacs)

are idenlities.

Proof. Take an arbitrary map ¢: X,—-»¥ extendable over X. Let

#: X,—Y be a fundamental Sequence generated by ¢. Since ¥ ¢ ANR,
?h?n the fundamental class [i”ill ay] is generated by a map . By deﬁnitioli
,4,([¢]) = [¥]. In order to Prove that G548, is an identity, it suffices to
show that ¢ ~. Since the map ¢: X, ¥ hasan extension over X, by (2.3)
E;éligf)unda,mental sequence ¢: X,—+Y is extendable over X, H’ence by
§z§1([2]) = I_S}’] ’

i.e., [273122] = [2’] .
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Therefore the maps ¢ and ¢ generate the same fundamental clags, and
thus by (4.3) and (2.1) of [4] ¢ ~¢. Analogously one ean prove that a0,
i3 an identity function.

By (6.20) we obtain the following

(6.21) CoroLLARY. The funclions

éli [I,—xgcx]__ﬂ:yx,ch and &2: [y-X:CX]___)[szCX]

are one-lo-one and a, is the inverse of &,.

§ 7. Fandamental skeletons. In [2] K. Borsuk introduced the notion
of a homotopic k-skeleton of a space. In this section we introduce the
analogous notion of fundamental %-skeleton of a compactum. First we
recall the definition of a homotopic %-skeleton. A closed subset X, of
& space X is said to be a homotopic k-skeleton of X, provided dimX, <%
and for each closed subset X, of X with dim X, < % we have X, § X,in X.

Now, let X be a compactum lying in the Hilbert cube @ and let X,
be a closed subset of X. By a relative fundamental dimension of X; in X
we understand the number

Flrerx(X,) = Min{dim X,: X, < X, in X}.
B

It is obvious that
(7.1) Fdra x(X;) < dim X, .
It follows by (6.11) that

If X is a closed subset of a compactum X' then Bdux(X,)
>Fd.relx'(-X1)-

Exawpri. Let X; = X he a circle given in the plane E® by the

(7.2)

- equation &®+-y*=1 and let X’ be a disc in B* given by the in-

equality °+3* <1. Then Fdux(X;) = 1 and Fdyx(X;) = 0.
It follows by (6.14) that
Fdrax(X) > Fd(X) .

A closed subset X; of a compactum X is said to be a fundamental
k-skeleton of X provided that Fd,e x(X;) <k and for each closed subset X,
of X with Fdra x(X,) < % we have X, < X, in X. By a strong fundamenial

F

(7.4)

k-skeleton of X we understand a fundamental %-skeleton X, of X such
that Fd(X;) < k.
It is evident that

(7.5) If X; and X, are two fundamental k-skeletons of X, then X, = X,
m X.
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Let us observe that

(7.6) Every homotopic k-skeleton of a compacium X is a sirong funda-
mental k-skeleton of X.

Indeed, if X, is a homotopic %-skeleton of X, then dim X, < % and
hence by (7.1) Fdraix(X;) < k. Take an arbitrary closed subset X, of X
such that Fdrex(X,) < k. Then there exists a closed subset X, of X such
that X, <i«‘ X, in X and dimX, <%. Since X, is a homotopic %-gkeleton

of X, then X, f X, in X. Hence by (6.5) X, < X, in X. Therefore by (6.3)
F
X, % X, in X. Thus X, is a fundamental k-skeleton of X. By the defi-

nition of the fundamental dimension Fd(X;) < k. Thus X, is a strong
fundamental k-skeleton of X.
It follows by (6.13) and (7.4) that

(7.7) If Flax(X) <k then X is a strong fundamental k- skeleton of X.

A space X is said to have the property (A) (see [1], p. 163) provided
fox: every point # ¢« X and for every neighborhood U of # (in X) there
exists a neighborhood V of z such that every compact subset 4 of T is
contractible to a point in a subset B of U with dimB < dim 4 +1.

) In [2] K. Borsuk has proved (see p. 612) that for every ANR-space X
with property (A) and for every k = 0,1,2, ... there exists a homotopic
k-skeleton of X. Therefore by (7 .6) for every ANR-space X with
i)ropgrtf E)A) there exists a strong fundamental - skeleton of X for every

BREAG Rat Ead AL

Let us prove that

(7.8) {f X, 18 a closed subset of a compactum X with Pdrax(Xo) <k and ¥,
is & fundamental k- skeleton of an ANR-set ¥ with property (A)o
then every fundamenial sequence f: X Y is homotopic 1o a fmzda-,
Z:e:tetzcsegue*‘ni s XY which is an estension of a fundamental
: fd jo:e j%oﬁy z;?hz[}u'z:ﬁ:;;i _f(,75 lXDﬁYn 18 a fundamental sequence
s oy enial sequence generated by the inclusion

Proof. Since Y ¢ ANR, the fu
homotopic to a fundamental sequen

g: X—Y. Since Fdrex(X,)

that Aim X, <k and X, <

F

ndamental *sequence i XY is
ce g: X~V generated by a map
< k-, there exists a closed subget X, of X such
X, in X. Therefore there exists a fundamental
sequence a: X,—X, such that g1, a, where iy and 4, are fundamental
sequences generated by the inclusion maps 4, x, »E and 4;: X, —X
respectively. Since ANR-set ¥ has the property (Ao) by Theoi‘;sm ’ 8 1’
and (2.1) of [1] (pp. 164 and 94) there exists g, map g;’: XY homf)t(ol;ig
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to g and such that dimg'(X;) <% Let ¥, =g'(X;). Then dimY, <%k

and hence by (7.1) Fdrar{Y,) < k. Since ¥, is a fundamental %-skeleton

of Y we have ¥; < ¥, in Y. Therefore there exists a fundamental sequence
F

B: Y,~Y, such that j, ~j,8, where j, and j, are fundamental sequences
generated by the inclusion maps jp: Y,—¥ and j;: ¥,~Y, respectively.
Let us define the map ¢'': X, —Y, by the formula ¢”(z) = g'(») for z ¢ X,.
Let ¢ be a fundamental sequence generated by the map g”. Leb us set

o= Bg’’a: Xy—>¥,. It remaing to show that the fundamental sequence

Gofst Xo—Y has an extension f: X--Y¥ homotopic to f. Since i~ a,
We have gip~gi,a: X,—Y. The fundamental sequence g: XY is an
extension of the fundamental sequence giy: X,—Y. Hence by Patkowska’s
Theorem (2.1) the fundamental sequence gi,a: X,—Y has an extension
§: X—Y homotopic to g. Tt follows from the definition of ¢" that g'i
= j.g"": X,-~Y. Since g~¢', we have gi;~j,g'": X,;»Y. Hence ¢i, ~j,g",
and therefore giya~j,g" a: X,—Y. Since j, ~joB, we have j g a~j,pg" a

= jofo- Thus we have gi,a ~jyf,. Therefore by Patkowska’s Theorem 2.0)
the fundamental sequence jof, has an extension f* homotopic to g. Since
g~f, we have f'~f and the proof ig finished.

§ 8. Groups =%(X). In [3] K. Borsuk, using the notion of the

. homotopic %-skeleton, introduced the notion of the generalized cohomo-

topy group ax{X). In this section, replacing homotopic k-skeletons by
strong fundamental %-skeletons, we define analogously groups zx(X) as
generalizations of groups mi(X). First we recall the definition of gener-
alized cohomotopy groups =zx(X) of a space X.

Let 8 = 8" be the n-dimensional sphere and let X, be a closed sub-
set of a space X with dimX,< 2n—1. Then [§%“F]C[8%] (see § 2).
Introducing in the set [§%°] the group operation by the formula (5.6),
we obtain the mth cohomotopy group z™(X,) of X,. The set [§5°°¥]
C an(X,) generates the subgroup =#(X,C X) of the group a*(X,) (see [3],
p. 617). X. Borsuk has proved that if X; and X, are homotopie %-skeletons
of X, where k<< 2n—1, then the groups a#(X,;C X) and an(X,C X) are
isomorphic (see [3], p. 617). The abstract group isomorphic to all groups
M X, C X) where X; is a homotopic k-skeleton of X (where k& < 2n—1),
is denoted by =i(X) (see [3], p. 619). )

Now, let X, be a closed subset of a compactum X with Fd(X,)
< 2n—1. Then by Theorem (5.28) there exists the n-th cohomotopy
group = (X,) of X34 Therefore we can define the group »#(X, C X) as above.

Let ns prove a theorem analogous to Borsuk’s Theorem mentioned
above ([3], p. 617).
(8.1) TurorEM. Let X, and X, be two sirong fundamenial k-skelelons

of X, where k< 2n—1. Then the group =X, CX) is isomorphic
to the group an(X,C X).
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In [3] (p. 617) K. Borsuk has proved the following algebraic

(8.2) Lmmma. Let A and B be two Abelian groups and @: A->B and
¥: B U be homomorphisms. Let A and B be two subsets of A and B,
respectively, such that

Yo(x)=x Tfor wed, O¥Y(y)=y for yeB.

Let @4 denote the partial homomorphism of @ considered on the sub-
group (A) of U generated by the set A and let Wp denote the pariial
homomorphism of ¥ considered on the subgroup (B) of B generated
by the set B. Then @4 is an isomorphism of (4) onto (B) and ¥y
is the isomorphism inverse to @ 4.

Proof of Theorem (8.1). By (7.5) X1‘~;: X, in X. Then there exist
fundamental sequences «;: X,—»>X, and oy X,~X; such that 4, ~iyaq,
and i,~1,0,. By (5.30) the fundamental sequences a, and a, induce the
homomorphisms B -

dff A X)>a™(Xy), and
respectively. By (6.20)

dFaflg) =[p] for [p]e[8¥CF],

aF iy =[y] for [p]e[8%C].

Hence by Lemms (8.2) the homomorphism of maps isomorphiecally the
group a*( X, C X) onto the group »*(X; C X). Thus, the proof of Theorem
is finished.

It follows from Theorem (8.1) that the algebraic structure of the
group z*(X, C X) does not depend on the choice of the strong funda-
mental k-skeleton X, of X. The abstract group, isoiaorphic with all
groups a™X, C X), where X, is a strong fundamental %-skeleton of X
(where & < 2n—1), we denote by =i(X).

It follows by (7.6) that B

(8.3) If a compactum X has a homotopic k-skeleton (where k << 2n—1)
then the group =y X) is isomorphic to the group my(X).
It follows by (5.28) and (7.4) that if Fdrax(X) < 2n—1, then there

exists the nth cohomotopy group =z*(X) of X. Hence by (7.7) we obtain
the following

@t 2" Xy) o™ Xy)

7

(8.4) (.)OBOLIAI‘{Y. If b=TPdx(X) < 20—1, then the group zp(X) is
somorphic to the n-th cohomotopy group av(X) of X. -

_ §9. Problems. In § 7 we have shown that Fdrax(X) > Fd(X) (see
(1.4'))‘ _The author does not known any example of a compactum X
satisfying the condition Fdx{X) > Fd(X).

icm
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(9.1) ProBLEM. Is true that Fdrax{X) = Fd(X) for every compactum X?

(9.2) ProBLEM. Let FA(X) < k. Does there exists a (sirong) fundamental
k-skeleton of X%

(9.3) PrOBLEM. Let k = Fd(X) < 2n—1 and suppose that the compactum X
has a strong fundamental k-skeleton. Is it true that the group my(X)
is isomorphic to the n-th cohomotopy group aMX) of X?¥ -

If the answer to problem (9.1) is positive, then by (7.7) the answer
to problem (9.2) is also positive.

A positive answer to problem (9.1) would give also, by (8.4), a positive
answer to problem (9.3).

(9.4) ProBLEM. Let Sh(X)=S8h(Y). Is it irue that the exisience of
a (strong) fundamental k-skeleton of X implies the existence of
a (strong) fundamental k-skeleton of Y¥

(9.5) PrOBLEM. Let Sh(X) = Sh(Y) and let compacta X and Y both have
strong fundamental k-skeletons. Is it true that the group ai(X) (for

k< 2n—1) is isomorphic to the group (Y)Y

In [2] K. Borsuk has proved (see p. 612) that for an arbitrary ANR-
set X satisfying the condition (A) and for every k=0,1,2,... there
exist a homotopic k-skeleton of X.

(9.6) ProBLEM. Is it tfrue that for an arbitrary compactum X satisfying
the condition (A) and for every k= 0,1, 2, ... there exists a (strong)
Sundamental k-skeleton of X¥
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