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Concerning the fixed point property
for i-dendroids
by
J. J. Charatonik (Notre Dame, Ind.)

A metric continmum is said to be a dendroid if it is hereditarily
unicoherent and arcwise connected. It follows that it is hereditarily de-
composable (see [1], (47), p. 239). A hereditarily unicoherent and heredi-
tarily decomposable continuum is called a A-dendroid. It is proved in [2],
Corollary 2, p. 29 that for every A-dendroid !X .there exists a unique
decomposition D of X (called the canonical decomposition):

1) . X = {84 ded(X)}
such that

(i) D is upper semicontinuous,

(ii) the elements Sz of D are continua,

(iii) the hyperspace 4(X) of D is a dendroid,

(iv) D is the finest possible decomposition among all decompositioné
satistying (i), (ii), and (iii).

The elements Sy of D are called strata of X. The monotone mapping ¢
of X onto 4(X) defined by i
(2) = d)= 8z for ded(X)
is called canonical.

If A is a space, we denote by 24 the set of all ndn-empty closed sub-
sets of 4, and 35 (4) the family of connected members of 24, Thus x(4(X))
is the family of all subcontinua of the dendroid A4(X).

Let X be A-dendroid and let

fi X=X
be a continuous mapping of X into itself. Put
(3). F(d)= (p(f(¢‘1(ol))) for ded(X).

Since @ is monotone, p~Xd) = Sq is a continuum, hence F(d) is a con-
tinuum and, by definition, it is a snbset of 4(X). Thus (3) defines & con-
tingum-valued mapping

F: A(X)—~%(4(X)).
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LeMMA 1. The mapping F is upper semicontinuous.
Proof. Let
(4) limd,=d, where d,ecd(X).
N0

Thus
Ls p=Y(dn) C 9~X(d)

700

by the upper semicontinuity of the decomposition D. So

(5) f(wI_iiQ’"l(dn)) Cf(‘ﬁ"l(d)) .
Since '
©) J(Is 4= Ts f(4s),

where A, are subsets of a compact space and f is a continuous mapping
(see [6], Lemma 8.4, p. 23), we have from (5)

Ls flp=i(dn)) Cf(p=2(a) ,
whence .
o[ Ls (o)) C o (flx(a) .

It implies, by (6) again, that

s o{fly=dw)) C p(f(px(@)) ,
ie.
Ls F(dn) C F(d)

by (3). It shows that the mapping F is upper semicontinuous.

THEOREM 1. For every continuous mapping f of & i-dendroid X into
itself there ewists a stratum of X which intersects its mage.

Proof. Since the continuum-valued mapping F, which was defined
by (3), is upper ‘semicontinuous by Lemma 1, hence there exists by
Theorem 1 in [7], p. 162 a point d, in 4(X) such that d, e F'(dy), i.e.

dy « g (f (p~(d0)))

by (3). It implies the existence of % point 2 < flp~X(dy)) C X such that
9(p)=dy, ie. p ep~Yd,). Therefore P i8 a common point for continua
Sa,= ¢~d,) and f(84,), thus Sa, ~ f(8a,) # @, which finishes the proof.

If X is an arcwise connected A-dendroid, i.e. if it is a dendroid simply,
then all its strata are points (see [2], (2.25), p. 22). In. this case the
existence of a stratum intersecting its image means the existence. of
a fixed point. Therefore we have the fixed point theorem for dendroids
as & corollary from Theorem 1.

iom®
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LumMa 2. If Ay are subcontinua of a continuum and if
) Apn dpy1 £ 9 for n=1,2,..

bl

then Ls An is a continuum.
Nn—>00 ..
Proof. Obviously Lg 4, is a compactum. We should prove the
n—>00
connectedness of it only. Let p and ¢ be two distinet points of Ls A,.
N~—>00
We prove that I(p, g), a continuum irreducible from p to g, is contained
in Ls Ayn.
N—>00
Since p e Ls 4, there are a subsequence of continua Ap, and
n—oo
a sequence of points px such that pz e 4y, and
(8) lim py=1p.
Similarly, g being in Ls 4., one can find a subsequence of con-
n~>oo

tinua Am,; and a sequence of points g such that gx e Am,

(9) ’ : gim = q
and, moreover, ny < mg for k=1,2, ...
Put
(10) Lr=Ap v dniv..vdy,.

Using (7) we see that Ly are continua with
(11) Pr e Ly and qx el .
Let {Ly,} be a convergent subsequence of the sequence {Lz}, and put

L= Lim I .

r—>00

Thus L is a confinuum and p, g L by (8), (9), and (11). Hence L
contains an irreducible continuum I(p, g):

(12) I(p,¢)CL.

To state the lemma it is sufficient to prove that
(13) ' LC ,Eii Ay .

So, if # i§ a point in L, then there exist points &, ¢ Ly, with
(14) Eﬁ Tp=1.

Since
Lpy= Ay, v Ay 41V o v Ay,
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according to (10), hence there iy an index j such that ng, < j < my, zmd‘
@y e A, Therefore (14) implies that » « Ls 4, which gives (13), whence

7n-»00

I(p,q)C Ls Ay by (12). Thus Ls A, is connected.
N~>00

n—00
The following lemma is proved in [4], p. 933.
Levws 3. A continuum X has fiwed point property with respect to
a class F of continuous mappings of X into dtself if and only if for every
mapping fe T there ewists in X a tramsfinite sequence of swbcontinua
K, (a < 2) such that

(15) B<a implies K,CKg,
(16) if B<a and Kp is not a point, then K, +# Kp,
an fE)CK, for every a<®Q.

Here we shall assume X to be a A-dendroid and F to be the class
of all continuous mappings of X into itself. Let f ¢ . Denote by 8$(X,f
the family of strata § of X which intersect their images under f:

(18) SeS(X,f) ifand only if 8~F(S)~0.

- Further, let $,(X, f) be the subfamily of 8§(X, f) consisting of those
elements S of §(X,f) for which

Ls f48) = X,
(where f°(8) = § and F%(8) is the image of § under 7", the nth iteration

of f), and let 8,(X, f) denote the subfamily of §(X » ) consisting of those
elements 8 of $(X,f) for which

Since Ls f%(8)C C'jo #™8), hence
(19) 8(X, ) C8(X, f) C8(X, f).

We see from Theorem 1 and from (18) that 8(X, f) is not empty.
But 8,(X, f) as well as 8,(X, f) can be empty. As an example it is enough
to take an arbitrary monostratiform A-dendroid X (i.e. such that it
consists of only one stratum—see [3]) and as f a continuous surjective
(ie. onto) mapping. An open question is whether there exist a mnon-
monostratiform (in particular, a hereditarily stratified, i.e. containing
no monostratiform non-trivial subcontinuum) i-dendroid X and a con-
tinuous surjective mapping f defined on it such that 8,(X, f) or 8,(X,f)
even is empty.

iom®
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Let F; (i =1 or 2) be the class of continuous mappings of a i-den-
droid X into itself such that for every non-trivial (i.e. different from
a point) subcontinnum K of X

(20) it f(K)C K, then SyK,f|K) =@ .

We see that if feF, and if a non-trivial subcontinuum X of X con-
taing its image f(K), then 8,(K, f|K) # @ by definition hence 8,(K,fIK)
# @ by (19), thus f e &;. Therefore

(1) F,CF,CF. ‘

TEEOREM 2. Every A-dendroid X has fived point property with respect
to the class Fy of comtinuous mappings.

Proof. According to Lemma 3 we should define a transfinite ge-
quence of continua K, for which (15)=(17) hold. Admit K, = X and

assume we have defined continua K, satisfying (15)—(17) for all § < a.
Consider two cases. Firstly let a = g-+1. Define

(22) K= Ls f18),
where
(23) 8 € 8,(Ky, f1Kp) .

It implies in particular that S e § (K, flEg) by (19), i.e. 8 is a stratum
of Kj such that
(24) Snf(8) 0.

Since (8 ~ f(8)) CFS) ~ (), hence we have
8) ~f"(8) # 0

by (24). Substituting f*(S) for 4, in Lemma 2.we see from (22) that K, is
a continnum. ) :
By the inductive hypothesis (17) we have f(&jp) C Kz, hence

(25) (B CEs for n=1,2,..

' Since 8C K; by definition, hence f*(8)Cf™(Kp), thus f*(8)C K,
by (25), and Ls f*(S) C Kz, K; being a compact set. So we see that (15)
N-+00

holds by (22). Further, (23) implies that
Ls fY8) # K,
N—>00

by the definition of §,(K,,f|K.), which gives (16) according to (22). To

. 8how (17) consider f(HK,):

(26) F(Ea) = F( Ls £(8)) = Ls f(8)
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imply f(K,) = K, and (17) holds true,
Secondly let o= lim f. Define
f<a

@7 K,= N K.

B<a

So (15) and (16) ave satisfied by the above definition. To see (17)
observe that ‘

(28) T = $L[) ) C [ F(Ep) -
Since f(Kj) C Ks by the induective hypothesis (17), hence
N F(E) TN Ky
p<a B<a

and (17) follows by (27) and (28). This completes the proof.
Theorem 2 and the first inclusion in (21) imply

CorOLLARY 1. Hvery A-dendroid X has fiwed point property with respect

to the class F, of continuous mappings.

Describe now some relations between the class &, (or ¥,) and some
other classes of continuous mappings, introduced in [5].

I{et X and Y be A-dendroids and let » and y be their canonical
mappings onto dendroids 4(X) and 4(¥) respectively. A continnous
mapping f of X into ¥ belongs to the class C provided that it takes every
stratum of X into a stratum of ¥. In other words, a continuous mapping

fi XY
belongs to C if and only if for every point-d e A(X) there exists a point
d’ e A(Y) such that
Flo=a@) CyYa)
(see [8], p. 337, where a necessary and sufficient condition is given for f
to be in C). '

A subcla&_;s Cp of C is defined as follows: a continuous mapping f
of X onto ¥ is in C; provided that f belongs to C hereditarily. It means
that for every subcontinuum K of X the partial mapping flK, which
maps K onto f(K), is in C (see [5], p. 341).

We shall consider now continuous mappings f of X into X ie. we
shall assume that ¥ = f(X)C X. .

) TEEOREM. 3. If & A-dendroid X is hereditarily stratified and if a con-
tinuous mapping f of X onto YC X is in Ch, then fe F,.
-Proof. Recall that every subcontinuum of a A-dendroid i a A-den-

droid itfself. Agsume K is a non-trivial subcontinuum of X with f(K)C K.
Aceording to (20) it ought to be proved that k 4

(29) \ S(E, fIK) #@ .

i

by equality (6) proved in [6], Lemma 8.4, p. 23. Therefore (26) and (22)
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Since f € C by hypothesis, hence f|K « C. Thus there exists s stratum
8 of K which containg its image:
‘ f8)C8
(see [b], Lemma, p. 340). It implies

S CME)  for m=0,1,2, ...
whence

" (30) Urs=s.

n=0

X being hereditarily stratified, we have § %= K, thus

by (30). Therefore § e S,(K,f|K) accordingito the definition, and (29)
follows. '

Denote by 3 the class of all homeomorphisms and by 46 the class
of all continuous monotone mappings of a J-dendroid X into itself.
‘Obviously 3 C 46 and we have J C C; by Property 8 in [5], p. 341. So
Theorem 3 and (21) imply

COROLLARY 2. If a A-dendroid X is hereditarily stratified, then
FCHMCCGCTF,CHFCTF.

S0 we see that Theorem 2 is a generalization of fixed point theorems
proved in [4], p. 934 for A6 and in [5], p. 343 for Cp. These papers, es-
pecially [4], contain also a larger list of references concerning the fixed
point property. .

It is known (see [5], Proposition 9) that if the A-dendroid X is arcwise
connected (i.e. if X is a dendroid) then class Cp contains ¥, and therefore
classes Gy, F,, ¥, and F coincide. However, it i3 not so without the

arewise connectedness of X. For hereditarily stratified A-dendroids the
“projection (parallel to the x-axis) of sinl/z — curve onto its limit segment
© is a mapping in G\, The example of a mapping % from an irreducible

continuum X into itself described in [4] after Corollary 5 shows that
F\Cn #% @. But I do not know whether classes &, 51 and & are different
for hereditarily stratified - dendroids.
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Homotopy dependence of fundamental sequences,
relative fundamental equivalence of sets
and a generalization of cohomotopy groups

by
Stanistaw Godlewski (Warszawa)

In order to extend some standard notions of the homotopy theory
onto arbitrary compacta K. Borsuk introduced in [4] the notion of the V
fundamental sequence. Replacing maps by fundamental sequences one
can obtain generalizations of many standard notions. In such a manner
we obtain the notions of homotopy dependence of fundamental sequences
(§ 4), relative fundamental domination and relative fundamental
equivalence of sets (§6) and fundamental skeletons (§ 7). All these
notions are generalizations of the notions introduced by XK. Borsuk in [1]
and [2]. Using the notion of the fundamental skeleton, we define groups
#x(X) which are generalizations of the generalized cohomotopy groups
7w X) introduced by K. Borsuk in [3].

§ 1. Basic notions. In [4], [5], and [6] K. Borsuk introduced the basic
notions of theory of shape. We recall some of the bagic definitions. All
spaces considered in this paper are compact and metric, and thus we
can agsume that they lie in the Hilbert cube Q.

By a fundamental sequence from X to ¥ (notation f= {fi, X, ¥} or
f: X~Y) we understand an ordered triple congisting of the compacta
X,¥CQ and of a sequence of maps fr: @@, k=1,2,..., such that
for every neighborhood V of Y there exists a neighborhood U of X such
that fx| U~ frea|U in V for almost all k.

We say that the fundamental sequences f= {fz, X, ¥} and g

= {gx, X, ¥} are homotopic (notation f=~g) if for every neighborhood ¥V
of Y there exists a neighborhood U of X such that fx|U ~gz|U in V for
almost all k. This relation is reflexive, symmetric and transitive and it
decomposes all fundamental sequencés into fundamental classes. The
fundamental class with representative f is denoted by [f] or, precisely,
by [f]: X—>7.

If f: X~ is a map, then there exists a map f @ ~Q such that f
=f(&) for e X. Setting fy=f for k=1,2,... we get a fundamental
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