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On some combinatorial problems
involving large cardinals*

by
A. Hajnal (Budapest)

§ 1. Introduction. Notation. We are going to use the usual notations
of set theory. Cardinals are identified with initial ordinals. a, f, v, 6 de-
note cardinals & &, 1, @, », 0, T, o denote ordinals. {A] is the cardinality
of the set A. ot is the smallest, cardinal greater than a. weis the sequence
of infinite cardinals, w,= . %, j, #, 8, I, k denote non-negativ integers.
We-put

[AT = {XCa: |X|=q}, [A]"={XCa: |[X|<d}.

For the convenience of. the reader we recall here the definition of
some of the partition symbols defined in earlier papers of P. Brdos,
R. Rado and of the author.

DeprNmmoN 1. The ordinary partition symbol. (See [3], 3.1.).
a—>(ﬂ,)‘:<,, denotes that the following statement is true: ‘Whenever
[a]’= | I, then there are 4 Ca, » <y such that |4]= B,, [4)° CI,.

<y

Here and for all other symbols to be defined > denotes the negations
of the corresponding statements respectively.

a->(B)5 denotes a—(Bhey it By=p for v <y.

We are going to use for the symbols some other morve or less self
explanatory abbreviations defined in detail in [3].

DerivrrioN 2. The Ramsey symbol. (See [3], 3.2). a~—-—>(j3)§w
means that the following statement is true. Whenever (o] = L_<j I, for
<y

every 7 << o then there are AC o and f ey such that |4] = # and (41
C I'im for every » < o.

* §¢ 1-4 of this paper contain the detailed proofs of the resulis sta‘t;ed by tl_le
anthor in his talk given at the Symposium on Models of Axiomatic Theories held in
Warszawa, August 25-Septernber 214, 1968.
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DeriviTioN 3. The polarized partition symbol. (See [3], 3.3.).

Let 7= ry+ ... +%5-1.
g ﬂo,v T0s00esta—1
Os—1, /38—1,1' <y

means that the following statément is true: Whenever [ae]™ X ... X [ae_,]"*
= |J I, then there exist sets A;Ca; for ¢<<s and »<'y such that

<y
[4e)°X o X [Asa]** CI, and |4y = B, for i <s.

In [3] we have investigated in detail the first two symbols, and the
special cage 7q=r; =1, s = 2, y = 2 of the third symbol. The polarized
partition symbol has never béen investigated in full generality. We
mention that a surprising number of set theoretical problems are equiva-
lent to different special cases of this symbol. As a matter of fact even
the ordinary partition symbol a—(8,)ic, can be written in the form

1 (1)1:6
(a) - .Bv v<7.
As a common generalization of the symbol defined in Definition 2

and of a special case of the symbol defined in Definition 3 one can define
the following new symbol: :

1,<w
DEFINITION 4. (a°)~+<ﬁ ") denotes that the following statement

. ay Bi/y
is true: Assume that for-every r < o, ayx [a,]" = {J I,. Then there are

<y
4,Ca, 4;Cay, e such that [ol == 8o, [44] = f1 and 4, x[4,]C Tiny
for 7 < w.
The definition of this symbol was suggested by F. Galvin.
‘We started to discuss with Paul Erdés the special case 75 =1, r; = 2,

§=3 of the polarized partition symbol more than ten years ago. We
obtained the following results:

(w1_>1 w\b? a ) 1 w\4?
w 3w an (wl$(3’w ’

We could not replace the 3's by 4 that time, and in our paper [5]
we stated (using a different notation) . »(1 @y (o — 1 w)m as

o] 4w/ T\a 4w

open problems. See problems 60 and 59 of [6] respectively. Recently
we e(')llectecl our results on the special case 7, =1, 7, = 2, s =3 of the
pglarlzed partition symbol and proved a nwmber: of new results, which
will be published in our forthcoming paper [4]. During our work on this

Paper we have proved that if ¢ > o is 0,1-measurable then (a+>~+(l, a)m
a a’ o
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holds. This certainly furnighes a solution of the firgt problem mentioned
above. After having communicated this result to F. Galvin he proved
the following theorem.:

tralt
o wl,
He mentioned that his proof breaks down for 0,1-measurable

-+ 1,<e
cardinals greater than w, but he conjectured that (aa )~+(Z) will hold
: A

for every y < w, and for every r.

for 0,1-measurable cardinals a > o and for y < a.

This is clearly a generalization of a theorem of P. Erdos and the
author proved in [2] which states that a—(a);” provided a > w is
0,1-measurable and § < a. In § 2 T will give a proof of Galvin’s conjecture.
I think that just like the old theorem a--(a);® it is bound to have
a number of model theoretic applications. Using similar arguments in
§3 I am going to prove the following theorem:

. 1,2
If a >  is 0,1-measurable then (a(i)»-»(z % i s Z) holds for every f < a.

This obviously gives a solution of the second problem mentioned
above. In § 4 I am going to give some remarks rather than theorems.
I do not even know fore sure if the remarks are new or known. In § 5 T am
going to prove a theorem I have obtained recently.

§ 2. Proof of Galvin’s conjecture.
THEOREM 1. Assume a > w, a s 0,1-measurable, y < a. Then

(a;u) (a)1,<m
- .
[23 a »
Note that the statement of Theorem 1 is obviously weaker than the
statement that a is 0,1-measurable. I do not know if it is really stronger
<w

than a—(a); .
THEOREM 2. Assume a > o, a is 0,1-measurable. Then

()=l
—>

o aly
holds for every r.

For a = w Theorem 2 ig due to F. Galvin. For a > w it is a corollary
of Theorem 1. Note that with an obvious meodification the proof 9f
Theorem 1 would yield a proof of Theorem 2 for a = w a8 ‘well. We will
only give the proof of Theorem 1. -

The proof is a simple combination of the proof of a—(a),
in [2] and of the proof of the ramification lemma in [3].

given
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Proof of Theorem 1. For every £ < ot and for every r let [«
= {JI¥ be a disjoint r-partition of type y of a. By Definition 4 it is
r<y
sufﬁéiént to prove the following statement:
(1) There exist sets ACoa, BCa%, |4|=|B|=2ca and an feoy
such that
' [AY C EﬂBI%) for every r < w.

Let z be a non-trivial 0,1-valued «-complete measure on all sub-
sets of a. For every £ < at and for every » we define a sequence [o] "
= | 6™ of disjoint » —¢-partitions of « for ¢ <r by induction on ¢ as

<y
follows.

(2) I¥™ = I5" for » < y. Assume 0 < § < r and the digjoint 7 —i-par-
tition [« = |J I5"* has already been defined.

<y

Tet Xe[al "% Pub X e IZ"™" for the uniquely determined » <y -

for which u({y ea—X: X v {y}e 15”}) = 1.

(8) For every &< at, let fi be the uniquely determined function
J: e @y for which fy(r) = v if# 0 e I¥™ for r < o.

Considering that « is measurable y* < a*, hence there are at &s for
which f; = f for an f e @y. Hence we may assume in the proof that f;= f
for every & << at.

Put Dbriefly
4)  I§ = I, for every f<a*, 0<i<r, .

HX, & r,))={yea—X: T {y} elpni for Xelal ™'}, 0 <i<r.

By (2) and (3) we have . :

(3) X eI,y ift u(H(X,&,7,4)) =1 for Xe [ 7% 0<i<r for
every £ <ot and for every 7, and 0 e Ig,, for every & < at.

To prove (1) we will prove .

(6) There exist sets 4 Ca, BCat such Lhat |4]= |B| = a and
[4] C QBIE’T’D for every r < w.

Now we prove the following lemma:
(7) Let A'Ca, B'Ca*, §Cat, |4'| < q, |B| <a.
(%) Assume that for every X ¢ [A']° for every 7 > s and forevery £ ¢ § U B’

7—% =3 implies that X e I;s;. Then there exist a subset 7 Ca—4',
(IT] <a) and b, €8, §,C 8 for p e T satisfying the following conditions:

() boeS8,—B’' for geT.
(i) 8-B'=J8,.
eel

(iii) If- we put A;= A’ v {g}, B;= B’ u {b,} then for every g ¢ T con-
dition (x) is satisfied replacing A’, B', 8 by 4., B,, 8, respectively.
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To prove (7) for every £e§—B’ put
U= N N0 HX,Ls46,0).

<0 0<i<o X e[A'F [ eB U .

Considering that ¢ > w, [4'| < e, |B| < a and that u is a-complete
it follows from (5) that u(Us) = 1 for every ¢ §—B'. Let T= {p c a—A":
\V E(eS—B'Noe Uy} Put S,={£e«8—B: peUs for geT. Then
8, C8—B, TCa—4", 8, 0 for g« T. Let b, be an arbitrary element
of 8,. Considering u(Ug) =1, Usgn (a—A') # 0 hence there is a ge T
guch that £e8; ie. §—B = UTSQ‘ Thus conditions (i) and (ii) are
satistied. *

Considering that 8§, B,C 8w B’ to prove that (iii) holds it is
sufficient to prove that X e [A'Y, &8, v B, imply that X u {o} eleps
for every oe®, * >s+1, r—i=s+1.

Then by the definition of U:; and econsidering that 8,0,
pe H(X, &, s+141,9+1) for every £eS, v B’, i<<w, hence by (4)
X v {p} € Isrs. This proves (7).

Using the fact that by (5) 4’=0, B'=0, § = ot satisty (%), in
the set ot we can build up inductively a ramification system of length a
as defined in Lemma 1 [3]. '

Let F be the set of all triples (4', B’, 8) satisfying condition (%) of (7).
Put (4s, Bs, 8) << (41, Bi, 8y) iff 45 £ A1, B i Bi,8,C 8y BiC8,. Let
7= (44, By, 8,) for p < ¢ for some ¢ such that 7, <z for p<o<q.
Put 4’ = U A,, B = U B,, 8= ﬂ 8,. Then obviously (4, B, 8) ¢F.

Using the facts that (0, 0 a+) eF, (7 ) holds, and that by the measurability
of a af< at Lemma 1 [3] yields us .that there exists a sequence
{Toloca = (44, Bhy 8);, To€F, 1, <1 for g<o<a Then A=) 4,

o<a
B=|JB, are such that ACa, BCo*, |4|=[B|=0a and X <[AT,
e<a
& ¢ B implies that X eIy, ; for every r > s, r—i = s. Thus 4, B satisly (6)
and this proves the theorem.

Remark. A perhaps slightly simpler way to prove Theorem 1 would

be the following. By Scott’s theorem (see e.g. T. 2012 [5]) ¢ has a normal

<o

measure u. Then by Rowbottom’s generalization of a~-(a), (see eg.
T 2036 [5]) for each £ < a+ there exists fe € ®y and T C o such that ul(Te)
=1 and [T:]"C I}, for r < w. Then again there are of, & for which f;
equals to the same f 50 we may again assume that fz = f for every & < at.
To finish the proof one has to prove that then there is a set BCa*,
|B| = a for which [ﬂ Te| = a.

+ 1,1
The last statement is essentially the same as (a )»(Z)g for measur-

able ¢ and I can not prove it without using the same ramification ar-
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gument as I have used in the original proof. I do not know if a genera-
lization of Rowbottom type of Theorem 1 is true or not i.e. I do not know
it in (1) |4| = « can be replaced by u(4)= 1, for normal meagures y,
§ 3. Proof of Theorems 3 and 4.
THEOREM 3. Lét « >, a 0,1-measurable, f < a. Then

P

Ag it was already mentioned, in our paper [4] with P. Brdds we give
a number of other results on this symbol. These results show that in some
way this theorem is best possible. By Definition 3 Theorem 3 is equivalent
to the following statement.

Assume o >w, o is 0,1-measurable and B < a. Let [atP =I5 U I}
be a 2-partition of type 2 of at for every £ << a. Then one of the following
conditions (i), (i), (iii) holds.

(i) There are ACay BCat, |A]=qa, |B|=f§ such that
[BFCN Ii.
fed )
(iiy  There are £ A, BCat, |B|= a such that
[BPCI;.
(ii) There are ACa, BC at, |4| = |B| = a such that
[BFCN L.
Eed

Instead of Theorem 3 we are going to prove the following slightly
stronger Theorem 4 which can not be expressed in terms of the polarized
partition gymbol. -

TEEOREM 4. Lot o >w be 0,1-measurable and B < a. Assume that

ot =I5 w If for every &< a. Then ome of the following conditions (i),
(ii), (iil) holds.

(i) There are ACa, BCat*, |4|=qa, |B| =8 such that
' [BFCNI.
Eed ;
(i) There are ACa, BCat, |A| < a, |B| = a+ such that
[BFCUI.
Eed

(iil)  There are ACa, BC at, |4| = |B| = a such that
[BFCNI.
fed

iom® | ‘
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Theorem 4 is really stronger than Theorem 3 since (i) implies (ii)’
because ot —(a)i holds provided o is strongly inaccessible and 6 < a
(see. e.g. [3])-

Proof of Theorem 4. We assume that (i) and (ii) are false and

we prove that then (iii) holds.

Let x4 be a non-trivial 0,1-valued a-complete meagure on all subsets
of a. For each X e[a™]® let

1) TX)= {fca: XeIi}. o

Put L= {X elat: p(T(X)) =1}, i=0,1. Then [a*P =L v I,.
a being strongly inaccessible we have at—>(f, at)® for every g < a. By
the assumption that (i) is false there iy no ¥ Cat, |¥]= f§ such that -
[YJ*C I, hence there is a Z C a™, |Z] = o¥ such that [ZF CIL ie. p(T(X)
=1 for every X ¢ [Z].

Thus we may assume that

(@) p(T(X)) =1 for every X e[a*T"

We prove the following lemma:
- (8) Let A'Ca, B'Ca*, 8Cat such that |[4'], [B|<ea satisfying
the following condition:

(3% [B'T v [B, 8] CQA ,15 .

"Here [B’, 8] denotes the set {{#,y}e[a]: e B'AyeS}.
Then there exista T C S—B, |T| < aand 4, e a—4’, 8,C8—(B' v T)
for o ¢ T satisfying the following conditions: :

) 8—B'=Tuv 8.
o€T

-(ii) It we put A,= A’ {a}, B;= B' v {¢} then condition (¥%%) is

satisfied substituting 4', B, 8 by 4., B, 8, respectively.
To prove (3) put §—B' = §'. Let o 8. Pub
) Uy=(a—4)~_ [ T(X).
X e[BU{a}?

Then by (2) U, is non empty.

(5) Lt £(c) € Uy for o & and Zy={o ¢ 8': £(0) = & for fea—d.
Then 8 = |J Z; and the Z; are disjoint. For each & ea—A’ let T be

fea—d’ .

2 subset of Z; maximal with respect to the property [T:C CEAILJ{HIﬁ.

By the assumption that (ii) is false we have

(6) |Te] < a for every e a—A’. Let o ¢ Z:—Te. By the maximality

¢
of T, there exists a ¢ e T¢ such that {¢, o} ¢:EHJ(5}L. Put
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(1) Be={oeZe—Ts {o,0te () Iil, T= U T, ay=2¢ for
. Led’U{g} Eca—d!
oeT;. Then TCS—B' =8, S8, C8~T for geT, L%SQ:ZE—TE
) e€ s
for £ca—A’, hence §—B' =T w UISQ, and, by (6), |7| < a.
o€l

Let ge . Then [B,]* v (B, 8] =[BT w[B,8,v{e}]vie}, s,
If o « T then ¢ e T; for a unique & and a, = & for this £. It follows from (4)
and (5) that

[BTC_ ()

[B,Z)C N L
4’0

I,
® Fe L)

and then 8, v {¢} C Z; implies [B', 8, v {o}1C_ () Ii.[{g},8]C N I
. Led U{E} Led ufg)

follows from (7). Hence we have [B,]* v [B;, 8,1C N Ii and T; a,, &,
redf

e
for ¢ « T satisty the requirements of lemama (3).

Now just like in the proof of Theorem 1 let F be the set of all triples
©= (4, B', §) satisfying the requirements of (%%). Let again < be the
pertial ordering defined on F by the stipulation z, <7v i 4§ g: 4y,
B; € Bi, 8,C 8, B{C8,. Again we obviously have that if for some ¢
{Tele<p CF is such that 7, <7, for o <o <@ then (4', B', 8) satisfies
the condition (%%) of (3) where A'= (J4,, B'= (JB, and 8 = §,.

e<p e<

. . [ e<y

Considering again that (0,0, a*) eF, (3) holds and that of < ot the
ramification argument of Lemma 1 ([3]) gives ug the existence of a chain
of length a ie. {7},<aCF, 7,7 for o<o<a Then A = U4,

. . e<a
B = |JB, obviously satisty the requirements of (iii). - This proves the

e<a
theorem.

§ 4. Remarks.

4.1. Following the notations of [10] we say that i(a, §) holds if « car-

ries an «-complete nontrivial 2-saturated ideal. k(a) holds if i(a, a) but
i{a, ) is false for f < a. A Souglin a-tree is a tree (ramification system)
of power a such that every chain and antichain is of power << a. It is
well-known that if o is weakly compact then there are no Souslin - trees
(see e.g. T 1234 [10] or [9]).

It would De inferesting to know if for a strongly inaccessible not:
weakly compact a there are Souslin o-trees. (The bonsisteney of this
statement is proved, see T. 1235 [10]). On the other hand it is a known
open problem if there are strongly inaccessible o’s for which k(a) holds
(see P 2054 [10]). A

The following trivial remarlk gives & connection.

* Remark 1. If k(a) holds for a sbrongly inaccessible o then there is
a Souslin a-tree. ‘

icm
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Proof. By a theorem of A. Levy (T. 2053, [10]) « is not weakly
compact. Then by a well-known result of [9] there is a tree (4, <) of
power a not containing a chain of power o, such that for each level & < a
the elements of A of order £ form a set of power less than .

Since %(a) holds there is an «-complete-non-trivial «-saturated

qdeal’ I in A. Put A'={zed: {yed: 23y} ¢I}. Considering that

each level of A contains an element of A’ |[4'| = « and (4’, <) does not
contain an antichain of power a because I is a-saturated.

To put Remark 1 in a more interesting form one can say that either
every strongly inaccessible a for which i(a, «) holds is 0,1-measurable
or there exists a Souslin a-tree for some strongly inaccessible a.

J. de Groot asked the following: Is it true that the number of open
subsets of a Hausdorff space is always a power of 2% Obviously if « is
strongly inaccessible the usual ordered sat corresponding to a Souslin
a-tree would exhibit a counterexample. In our paper [7] with I. Juhész
we proved a number of partial results on de Groot’s problem which *
certainly imply that at least assuming GCH the answer is affirmative
except possibly if the cardinality of the space is inaccessible and
not weakly compact see e.g. [7]. Thus a Souslin a-tree seems to be
a typical possible counterexample, and in fact by Prikry’s result
T. 1235 [10] already mentioned it is Iconsistent that de Groot’s con-
jecture fails. )

Added in proof: This paper was written before T learned about Jensen’s general
result that V = I = (Weak compactness <= Souslin hypothesis). -

4.2, In our paper [2] with P. Erdos we have defined the s<ymb01
(a, B, < w)—>y to denote the following statement. Whenever f e ”’l‘t(a)
is such that f(X) ~ X =0 and [f(X)| < B for X e [a]™" then there exists
A Ca, |A] =y such that f(4) ~ 4 = 0. i.e. every set-mapping of type <w
and of order at most § defined on a set of power o has a free set of power a.
We proved that if a > o is 0,1-measurable thgn (e, 8, <w)—a holds
for § < d; but this is anyway a corollary a-{a);” for y < a. T want to
mention that the set-mapping theorem iz true under weaker as-
sumptions too.

Remark 2. Assume a > o and i(e, y) holds for some y < a. Then
(¢, B, <w)—»a holds for every f < a.

T do not know if the condition i(a,y) can be replaced by i(a, a).
Though I have not seen this statement anywhere this is probably well-
known gince the corollary of it, that there is no J 018801 algebra of power a
if i(a, y) holds, is well-known. As to the proof of it th(? old proof given
in [2] applies using the following trivial remark. If I is an a—coinplete
non-trivial 87 < « saturated ideal in «, and FCP(a) ——.I |F| =3¢ the’n
there is an ' C F, [F'| = 67 with [ F’ 5 0. Note that using Rowbottom’s
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idea one can prove the exigtence of a free set not in I provided I is norma],

I omit the details.

43. The following symbols can be defined.
DEFINITION 5, (i) a ~[B],,; holds iff whenever [a]" = | I, then there

<y

are BCa, DCy such that [B|=§, |D|=06 and [BI'C I, (see
ve€D

p. 158 [3]). .
(i) a—>[pl,s holds iff whenever [a]"= (JI, for r< e then there
<

r<y
are BCa, DCy such that |B| =g, [D|= & and [BI'C JI, for r < w.
veD

Using again the old proof given in [2] one can prove

Remark 3. Assume i(a, ) for some o> w, 67 < o, then a—[a]55.

Using Rowbottom’s improvement one can even prove the existence
of & subset 4 C a, 4 ¢ I satisfying the requirements of Definition 5 (ii) pro-

. vided I is a 6"-saturated normal ideal in a. ‘

I omit the obvious details. To indicate that' theorems of this type
might be usefull I mention that analyzing Rowbottom’s proof for
T. 2032 [10] it is easy to see that the existence of an a for which a->[w ],
holds implies that there are only countably many constructible reals
hence by Remark 3 the same conclusion follows e.g. from the existence
of a real valued measurable a. (This inference is not very usefull since
it trivially follows from a more general theorem of R. Solovay see
T. 2050 [107]). ‘

On the other hand there are many open problems for the symbols
defined in Definition 5 which seem to be interesting e.g. Assume a > o,
i{a, ;) does then a—[al%, or a~[a]2, hold. These should be compared
with problems 15, 16, 17 of [5].

) Added in proof: After the paper was written K. Kunen proved that the
existence of an o for which i(a, a) implies that there are only countably many
constructible reals. See K. Kunen, Some applications of dterated ultrapowers in set
theory, Ann. Math. Logic (appear).

4.4. In papers with P. Brdés, R. Rado and B. O. Milner we often
needed the following for reference purposes. :
Remark 4. Assume V = L. Then attplatie, for o > w.

This follows from the following simple facts. Rowbottom’s proof

mentioned several times yields that V = I implies a*+-A[at]3% for a > o'

and from the fact that a++-»[a+]%, impliey att[at]F for o > w.

at,a

This ‘can be seen as follows: Assume [att]"= (JI, is a disjoint
<y

7-partition of type y of at+ for 2 <r < w. For ea;chv &< att leb fe be
3 one-to-one mapping of & onto an ordinal < a*. Define the 2-partition

[a++]2=}<’£+1' of type a* of at+ ag follows.

icm°
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Let [£, &} e [a*+P, L < & Put {C, & € I, for the minimal u for which
fr: V(X = AL £ TN Moo e X~ (0, 8 =file) <FAO)NX < I\ C .

Then [a*+] :vngIy; and ACatt, DCat, [AP C’LGJL‘}I, imply that
[A]’CVLE%IZ for 2 <7< w.

4.5. Finally I want to mention a problem which I have formulated
from a problem of F. Galvin. The chromatic number of a graph is the
least cardinal § for which the set of vertices is the union of § sets not
containing edges. Galvin’s original question was the following. Let G be
a graph of chromatic number >w. Does there exist two disjoint subsets
of vertices such that the subgraphs spanned by these subsets are both
of chromatic number >w. Let G be a graph of chromatic number >
with a vertices and let I be the ideal of all those subsets which spann
a subgraph of chromatic number <w. If o were the first cardinal for
which the answer to Galvin’s question were not affirmative I would be
an o, -complete non-trivial prime ideal in « and this would obviously
contradict to known indescribability principles. I want to state an im-
proved version of the problem.

Let G be a graph of chromatic number >w. Does there exist a se-
quence {¢,},<o, 0f pairwise disjoint subsets of the set of wvertices, such
that for each » < w,, g, defines a subgraph of chromatic number > w?

Obviously if a counterexample exists its cardinality is very large.

§ 5. Generalization of some results of Kiesler-Tarski [9]. Let C; be
the class of cardinals satisfying the condition '

(i) There is an a-complete field B of subsets of a, [a]“*C B, a-gener-
ated by <a elements of it such that there is no proper a-complete
d-saturated ideal T in B, [¢]~*CT.

The class C, of [9] can be defined by the following condition.

(i)’ There is an a-complete field B of subsets of a, [a]**C B, a-generated
by <a elements of it such that there is no proper a-complete
2-saturated ideal I in B, [«]*C L.

Congider the following statements.

(ii) There is an o-complete field B of sets a-generated by at most a
elements of it and an a-complete proper ideal I C B such that I can
not be extended to a proper o-complete «-saturated ideal of B.

(ii)’ Is the statement obtained from (ii) if a:saturated is replaced by
2-saturated. ’
Let (8, <) be a partially ordered set. We say that if is an a-tree,

if it is a ramification system as defined in [9]; [8| = « each element of 8
has level <a and on each level there are fewer than ¢ elements.
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(iii) There is an a-tree (8, <) such thab each subset 8’ C S of power ¢
containg an antichain of power a.

(iii)" There is an a-tree (S, <) such that it contains no chain of power ¢
(in other words this means each subset 8’ C 8 of power a« containg
an antichain of power 2). .

(iv) There is an ordered set (8,<) of power a mnot containing in-
creasingly or decreasingly well ordered subsets of power a and satis-
fying the following condition: If 8'C S, |8'| = «, §' does not have
the a-Souslin property (i.e. there are o pairwise disjoint intervals
with endpoints in §').

(iv)" is (iv) without the second condition.

It is known from [9] that (i)’ (ii)’ (iv)’ are equivalent for every o > o
and (iii)’ is equivalent to these statements for strongly inaccessible a.
The implications were proved by differenf people. For detailed references
see [9].

I am going to prove

THEOREM 5. Assume o is sirongly inaccessible. Then (i), (i), (iii) and
(iv) are equivalent,

It is obvious that (i).. (iv) imply (i)'... (iv)’ respectively. In our
paper with G. Fodor [6] we stated in Theorem 5 that (i) holds for a large
clags of strongly inaccessible o’s. We did not give a proof since this can
be carried out with a routine modification of the proof of Theorem 3
of [6] or better with a modification of the proofs of TFremlin, Jensen,
Solovay (T. 2049 [10]). Obviously o e C; implies that i(a, a) is falge
and it is not known if « e C§ and a € C, are equivalent for strongly inac-
cessible a. (See the problem of [10], mentioned in 4.1 of this paper).

Proof of Theorem 5.

1) (1)

(2) (i) & (i), ((ii)’ = (iii)’ is & theorem of Brdos and Tarski).

Though the proof is very similar to the proof of the Frdos—Tarski
theorem I give the details since T think that the formulation of (iii) is
the main point of the theorem. Assume (iii) is falge, and let B e an
a-complete field of sets a-generated by at most «-elements of it, and I
an «-complete proper ideal in B. By the assumptions we may assume
|Bl = a. Let B = {4:}sc, be a well-ordering of B, let By = {A;}ice; & < a.
For each ¢ <alet pee JB— J(BenI). Let <3 be the usual partial
ordering on v2. Let f; « *9 be defined by the stipulation fx(f) = 0 iff ped Ap.
Let 8 be the set {fe®2: \/£(£ < anf < fi)).

Then o being strongly inaccessible (8, <) is an a-tree. By the as-
sumption that (1ii) is false there is §' C 8, [8'] = « such that §’ contains

=(ii) is obvious.

icm
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no antichain of power a. We define J CB by the stipulation A; eJ iff
f(&) =0 for all but fewer than fe 8. It is obvious that ICJ, and J i
an a-complete proper ideal in B. Let D C « be such that Ar¢d, A, n Ay
= 0 for { # {’ ¢ D. Then by the definition of J , for each { ¢ D there exist
n, & felS'y L <n<¢ such that

(8) f="Feln and f() =1 ie. pred;. Let. now £ #£¢ eD and let
7, &, F5 0’y €, the ordinals and functions satisfying (3) for ¢ and ¢’
respectively. We may assume n <. Then <9, pred;, predy,
hence A;, Afbeing disjoint py ¢ 4; hence f(2) = £(¢) = 1, fe(£) = F() = 0,
f and f" are incomparable in (8',<3). For each { ¢ D let f* be a function
satisfying (3). Then. {f*};ep is an antichain of power |D] in (§', <) hence
ID| < o and J is a-saturated. This proves (2).

(4) (ifi) =(iv) ((iii)’ =(iv)" is a theorem of Hanf).

I am going to follow mine proof of Hanf’s theorem given in [8] when
outlining the proof of (4).

Let (8, <)) be an a-treé satisfying the conditions of (iii). For each
el let £(w) = typ{y < ®: y € 8}, for each £ < &(z) let z|¢ be the unique
element of § with {(2|0) =¢, #[{ <. Put 8= {ze8: £(z) = & and
let <3¢ be an arbitrary ordering of S:. Define the ordering <* of § by
the following stipulation. Suppose z, »' ¢ §, z <* z' if and only if z <4’
or #<x#' and x| <ga'|& where & is the first ordinal for which #|&,
= o'|&,. We prove that (8, <*) satisfies (iv). It has been proved in [8]
that (8, <<*) is an ordered set and satisfies (iv)’ provided (8, <) satis-
fies (iii)’. Hence (8§, <<*) satisfies the first condition of (iv). Let 8 CS§,
8= a Put

8" ={we8: \Yay Zo( Vo€ 8 Nm € 8NV ¥ Zoht < Yot < Za)}

Obviously [8"| = a. By (iii) there is an 8" C 8", |8'| = a such that
the elements of 8§ are pairwise incomparable in (8,<]). Then
{( Yy, Za)wes form a system of power a of pairwise disjoint intervals
with endpoints in §'.

(5) (iv)=(i). Assume that (i)

is false and let (8,~<<) be an ordered
set satisfying the condition i

(6) § containg no increasingly or decreasingly well-ordered subset
of power a.

Let B be the a-complete field o-generated by the intervals of &§.
{Then by (6) B contains [a]<* and all convex subsets of §.) Let I be an
a-complete «-satureted ideal in B,[a]**CI. Let < be a well-ordering
of 8. For each # ¢ & let U, be the maximal convex set such that z e Uy

implies # <2z, #~<3¢ Let §' = {#ef: Us¢I}. We prove |[§']=a. As-

sume |§| < o. Then o being strongly inaccessible 8 is the union of §*
4%
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and -of fewer than a-convex gets not containing elements of S’. Hence
there would be a convex set K, K ~ 8" =0, K ¢I. Using (6) it is eagy
to see that there is & TC K, |T| < a such that K= T u J U, which

is a contradiction. Hence |§'| = a. It follows from (6) that there is an
87" CH, |8"| = a such that 8 is densely ordered by < ie. if 2 <y;
@,y <R then there is a ze8”, s <2 <y. We prove that z<yel”
implies (z,y) ¢ I. Let #,y 8", # <y. Let 2, be the minimal element;

" of (#,y) ~ 8 and let 2 be the minimal element of (z,2) ~ 8 in the
well ordering <. Then U, C(#,2)C (#,y) U ¢I hence (z,y)¢I. It
follows that 8’ does not contain the end points «-pairwise disjoint inter-
vals hence (iv) is false as well. This proves (5).

Note that in Remark 1 we really proved (iii)= (i) and Theorem 5
yields the slightly stronger conclusion that for every strongly inaccessi-
ble @ a € Gora ¢ Cy = there is a Souslin a-tree. Finally T want to mention
that as>(a); is known to be equivalent with ae C,. I could not find
a corresponding result for « e Cy . I suspect that a+[a]s might be the
right statement. ' :

a~[ali is defined as follows. Whenever [o* = (JI, then therc

r<a
are ACa, %<y, |d]=a such that [APC |J I,. Let a=[a] be
vy g
the following weaker statement. Whenever [o} = \UI, then there are
A Ca,fedasuch that [4] = a and for every ¢ <7 e d {o,13¢ U I,
<y flod

Tn [1] we have proved that 2° = o+ implies a+ #[at]ie and it is easy to
see that a#[al; implies a e Cy .
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