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Peripheral and inner points

by
J. Lawson and B. Madison (Baton Rouge, La.)

In the theory of manifolds there is a well-defined notion of what
points are and are not boundary points. A homotopic generalization of
this notion has been introduced by Hopf and Pannwitz [7]. Those points
corresponding to boundary points are called labil points and the re-
maining points are called stable poimts. Stable points and labil points
have been studied, among other places, in [2], and [8].

The purpose of this paper is to study elementary properties of
a cohomological definition of boundary and non-boundary points, what
we call peripheral and inner points. We also relate these notions to thoge
of the preceding paragraph. In a later paper we apply these properties
to topological algebra.

We wish to thank K. ]E[ofmann and P. Mostert for arousing our
interest in these concepts and for several fruitful conversation concerning
peripherality. We express our appreciation to the members of the
gseminar conducted by R. J. Koch for patient listening and helpful
suggestions.

1. Basic definitions and equivalences. The Alexander cohomology
theory will be employed throughout this paper; the coefficient group
will be arbitrary unless specified. If X is a topological space, H*(X) will
denote the graded eohomology group of X. Basic definitions, notation,
and properties of Alexander cohomology and codimension, the dimension
function we employ, may be found in [4] and [9].

DEFINITION 1.1. A point » ¢ X, a topological space, is marginal if
for any open set U containing #, there exists an open set ¥V containing #
and contained in U such that H*(X, X\V) is trivial ,

A. D. Wallace [10] was one of the early investigators of cohomological
boundary points. The preceding definition is closely akin to hig. The next
definition is essentially due to Hofmann and Mostert, a,lthough it was
inspired by results of Bredon ([3], p. 76).

DEFINITION 1.2. A point » e X, a topological space, is peripheral
if for any open set U containing , there exists an open set V containing #
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and contained in U such that the homomorphism i*: H*(X, X\V)
~H*X, X\U) induced by the inclusion mapping 4 is the trivial or zero
homomorphism. A point is an inner point if it is not peripheral.

THEOREM 1.3. In a regular space X the following are equivalent:

(1) the point & 4s marginal n X; ,

(2) the point & is marginal in K, o neighborhood of x;

(3) for any open set U such that » U, there ewisis an open set V con-
laining © contmined in U such that the natural homomorphism H*(X)
~H*(X\V) is an isomorphism.

Proof. Assume @ is marginal in X and K is a neighborhood of .
Suppose # « W, an open subset in K. Let ¥ and U be open neighborhoods
of » in X such that V*C U C U*C W, and H*(X, X\V) is trivial. By
excision H*(U*, U*\V) is trivial. Again by excision in the subspace K,
H*(EK,R\V) is trivial. Hence « is marginal in K.

To show (2) implies (1), one simply reverses the preceding argument.
That (1) and (3) are equivalent follows from the exact sequence
for pairs.

THEEOREM 1.4. The following are equivalent in a regular space X:

(1) the point = is peripheral in X;

(2) there emists a basis AU of open neighborhoods of » with the property
that given U e U, there emists an open set V such that € VC U and the
natural map H*(X, X\V)-H*X, X\U) is trivial;

(8) the point x is peripheral in K, a neighborhood of w;

(4) for any open set U containing o, there ewists an open set V such
that e VC U and ’

(a) the natural mapping H*(X)—~H*(X\V) is one-to-ome,

(b) if he HY(X\V) for any p, then h[(X\U) estonds to X.

Proof. It is easily verified that (1) implies (2) by letting U be all
open sets containing x. Conversely, suppose (2) is satisfied and that W
is an open set- containing x. Then there exist open sets U and V such
that2 « VC UC W, U ¢ U, and the natural homomorphism H*(X, X\V)
~H*(X, X\U) is trivial. Since the natural homomorphism H*(X, X\V)
—~H"X, X\W) factors through the preceding homomorphism, it is also
trivial. Hence & is peripheral.

) That (1) implies (3) follows from an application of the excision axiom
similar to that in the proof of the preceding theorem.

To show (3) implies (2), we choose an open set W containing & such
that W* C K° and set U equal to all open sets U such that # ¢ U and

U* C'W. That U has the desired properties again follows from the ex-
cision axiom.
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To show that (1) implies (4) we consider the following commutative
diagram:

BY(X, X\V)—>H"(X)— HY(X\V)— H'"(X, X\P)

I’ m* n*
R » v
H(X, I\U)— H(X) — H'(X\U)—H"" (X, I\ T)

The rows are exact since they constitute part of the exact sequence
for pairs; the vertical homomorphisms are those induced by inclusion.

"If U is an opeh neighborhood of #, V can be chosen so that the outside

vertical homomorphisms are trivial. This fact, together with the obser-
vation that m* is the identity, implies that the homomorphism H?(X)
~HP(X\V) is one-to-one and image (n*) C image (i*) by diagram chasing.

Conversely, assume that U is an open set containing # and V is as
in condition (4). Since H”(X)—~H"(X\V) is one-to-one, the homomorphism
HY(X, X\V)~H"(X) is -trivial, and hence ¢* is onto in the following
diagram: :

HHX\V) -2 HP(X, X\T)
n¥*

HPYX) —i:—>Hp_1(X\U) —>HYX, X\T)

Since also image (n*) C image (¢*), it follows by diagram -chasing
that HY(X, X\V)~»H"(X, X\U) is trivial.

DrrINITION 1.5. Let x ¢ X, a topological space. The open set U sur-
rounds z if # ¢ U and for any open neighborhood V of  such that VC U,
the natural homomorphism H*(X, X\V)-~H*(X, X\U) is non-trivial

THEOREM 1.6. The following are equivalent for a regular space X:

(1) the point x is an inner point of X;

(2) there emists an open set U which surrounds ;

(8) the point @ is inner in K, & neighborhood of .

Proof. The equivalence of (1) and (2) follows directly from the
definition of inner. The equivalence of (1) and (3) again follows from
excision, or can be deduced directly from Theorem 1.4.

The following theorem is sometimes useful even though it is quite
trivial. We leave the proof to the reader.

THEOREM 1.7, Let # ¢ X, a topological space. If V and U are open sets,
#eVCU, and if U surrounds &, then V surrounds .

In the remainder of this section we compare the two notions of
marginal and peripheral with each other and with the notion of stability.

TaoREM 1.8. Let @ ¢ X, a lopological space. If » is marginal, then & i
peripheral. ’

Fundamenta Mathematicae, T. LXIX 18
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Proof. Let U be an open neighborhood of ». There exists an open
peighborhood V of # gueh that VC U and Y X, X\V).is t%‘ix.rial. Hence
the natural homomorphism H*(X, Z\V) —H* (X, X\U) is trivial.

The following example shows that the converse of Theorem 1.8 ig
not true in general. )

ExanprE 1.9. For each positive integer &k let Hr be a 2-cell with
distinguished points ax and bk in the interior. Let Ax be an arc in the
interior of By with initial point az and final point bx. Denote by By the
identification space obtained from Ej by identifying ax with by. Let 8;_,
be the image of the boundary of Ej in the space By and 8t the image
of Ay in By. Suppose that h: Si—8% is a homeomorphism for each
integer % > 2. The space X' is obtained from the digjoint union of the B;
by identifying & in S with hx(z) in 8. Let X be the one-point compactifi-
cation of X' and denote the compactifying point by p. Denote by Ty
the image of By in X, by Cz_ the image of Si-1 in X, by Lz the union

Lk)lT,, and by Rx the subspace ( LEJJr Ty)*. Note that Lx ~ R = Cg.
feml di=lk+1

Sk-1

Ey B

We show that p is a peripheral point of X but p is not marginal in X.

Since Ay is a strong deformation retract of Hg, we conclude S is
a strong deformation retract of B. By piecing finitely many homotopies
together, we conclude that for each k> 1, Ri is a deformation retract
of. X and C; is a deformation retract of L. Hence the natural homo-
morphisms H*(X)—-H*(R;) and H*(Lg)—~H*(Cx) are isomorphisms for
each k> 1. By piecing together countably many homotopies, we con-
clude that the point p is a deformation retract of X, and hence X is
acyclie.

o see that p is peripheral, we let U be an open set about p. Since X
iz acyclic, any open set ¥, p ¢V C U, has the property that H*(X)
—H*(X\V) is one-to-one. We now chooge such a V that satisfies (b) of
Theorem 1.4 (4). Choose % so that Ry C U. Set V = Rp)\Or and
V' = By4y:\Ckt1 50 that- T\V =L and X\V'= Lz.. The inclusion
map Cr—Lyys can be factored through Ey,; in a natural way Cr—>DFrn
~>Lgyy. Hence H*(Lj..)~>H*(Cp) iz the zero homomorphism. In the
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following commutative diagram with homomorphisms 4, j, and % induced
by inclusions,

i

H*(Cp) +——— H*}Lk—u)
N
AN /
\ /!
H*(L5

% is an isomorphism, ¢ is zero and hence j is zero. Thus H*X\V')
~H*X\V) is zero and thus so is H*X\V')->H*X\U). Thus for
he HYX\V’) we have that h[(X\U) =0 extends to X.

‘We now indicate that p is not marginal. Let U be a small open set
about p. Let m = max{k: Ly C X\U}; then Cp C X\U. The cohomology
classes of Cp extend to any closed superset which fails to contain Tpyi.
Hence X\U has non-trivial cohomology in dimension 1, and thus the
homomorphism H*(X)ﬁH*(X‘]) is not an isomorphism. Since U was
arbitrary, it follows from Theorem 1.3 that p is not marginal.

We now compare the concepts of peripherality and marginality to
the concept of a labil point.

DEFINITION 1.10. A point p in X ig labil if for each open set U
about p there is a continuous function F: X x I -+X satisfying:

(1) F(=, 0) = o for each z in X,

(2) F(z,1) = o for each # in X\U and ¢ in I,

(8) F(z,t) e U for each # in U and ¢ in I,

(4) F'(z,1) # p for each » in X. ‘w«q

TEEOREM 1.11. If @ point p of locally compact Hausdorff%x 1s labil,
then p is o peripheral point of X. )

Proof. Let U be an open set about p with U* compact and F: X x
«xI~+X be a continuous function satisfying (1)-(4) of Definition "¥:10
for p and U. Then

CTF(X x{1) =F(X\Ux{1}) v F(T*x {1}) = I\U v F(U* x{1})
which is the wnion of two closed sets and is hence closed. Seb
V= X\F(X x {1}). Define Fy: XX by Fya) = F(z,1) for each v ¢ X
and let Fi: (X, X\U)~(X, Z\V) and Fi": (X, Z\U)~>(X\V, X\V) be
defined by F,. Then the inclusion map 4: (X, X\U)~(X, X\V) is homo-
topic to Fj and thus Fy* = ¢*. Thus the following diagram commutes:

HYX, X\V) ——sH*(X, X\U)
\ //l.
f'\\ / i

HHX\V, Z\V)
18+
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where j is an inclusion map. Since H*(X\V, X\V)=0 it follows that
i* = 0 and hence p is peripheral.

In order to show that the converse of Theorem 1.11 is not true we
need a couple of results. If X is a topological space, then the.cone of X,
denoted CX, is the identification space X x I/X x {1}. The vertex of (y
is the image of (#,1)e X x I in CX. “

THROREM 1.12. Let X be a topological space and p be the verien of CX.
Then p is marginal if and only if X is acyelic. .

Proof. Tdentify X with X x {0} in CX. Suppose that p is marginal,
Then by Theorem 1.3 there exists an open set V about p, VA X = 9,
50 that the inclusion map induces an isomorphism H*(CX) ~H*CX\V),
Now X is a retract of CX\V and hence the inclusion map induces an
onto homomorphism H*(CX\V)—H*(X). Since CX is acyclic it follows
that X is also.

Suppose that X is acyclic. Let U be an open set about . Choose
an open set ¥ about p so that ¥ C U and CX\V has X as a deformation
retract, e.g., let ¥ to be the image of 2! (t,1] in CX. Hence OX\V is
acyclic and hence the inclusion map induces an isomorphism H*(CX)
~>H*(CX\V). Thus by Theorem 1.3, p is marginal. .

TEEOREM 1.13 (Kuperberg [8]). If X is a compact Hausdorff space
the vertez of CX is labil if and only if X is contractible.

Exampig 1.14. In view of the above results we choose a compact
space X' which is -acyclic but not contractible, for example let

X = {(z,y): y = sin(1/z), 0 < & < 1}*. Tt follows that the vertex of OX is
marginal but stable.

2, Efistence of inner points. The following concept of a roof in
coh.omology wag suggested to us by P. Conner. Tt includes the roofs as
defined by A. D. Wallace [10] and also satisfies a cohomology addition
theorem and a “small roof” theorem which are included for completeness.

DeFINITION 2.1. Let 4 be a closed subseb of a topological space X
and @ a proper subgroup of HY4). A G-roof is a closed set R containing 4
satisfying:

(2) if 4: AR is the inclusion map then *HYR)C &

) (1?) if §is a closed proper subset of R, 4 C 8, and j: A48 ig the
inclusion map then J*HYS) ¢ @

TEEOREM 2.2. Let 4 be a closed subset of a compact Hawsdorff space X
c.zfd G a proper subgroup of HYA). If i: A~X is the inclusion map and
*HYX)C @, then there is a G-roof in X. ’

Proof. This result follows easily

Hausdorff maximality prineip.
theory.

from an application of the
le and the continuity of the Alexander
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THROREM 2.3. Let A be a closed subset of a compact Hausdorff space X
with G a proper subgroup of H'(A). If B, and R, are distinct G-roofs
then Hq+1(R1 v Ry) # 0.

Proof. Since B, and R, are distinet there is an k in H{AN\G and 1’
in HYR, ~ R,) so that h'|4 = k. Consider the Mayer—Vietoris sequence:

SHYR) ® HYRy) —>HYR, ~ Ry)->H™ (R, v Ry) >

Suppose k' = I(ky, ks) = k| Ry n Ry—Ey|Ry n R,

Then h = h'|4d = k|4 %4 is in G. This is a contradiction and
hence A(R') # 0. »

THEOREM 2.4, Let X be o compact Hausdorff space and A a closed
subset of X. Let @ be a proper subgroup of HYA), R a G-roof, and U an
open subset of R\A. If i: UN\U—U* is the inclusion-map and K = *H(T*),
then U* is a K -roof.

Proof. Clearly K is a subgroup of HY( U\ U). To see that X is proper
let b e HY{ANG and k' e H(RE\U) so that 1'|A = h. Consider the following
diagram induced by inclusion maps:

HYR)—> HY(R\U)—> HYA)

HY(U*)— HY(U\T)

Suppose k' = h'|(UX\U) extends to g e H{(T*).
The Mayer—Vietoris sequence

SHYR)~HYU*) @ H(R\U)—> B{U\U)~

gives that I(g, k') = 0 and hence &’ extends to E. This is a contradiction
and thus %/ does not extend to U* and K is proper.

Let S be a closed proper subset of U* that contains UM\U. For j:
UAU~S the inclusion map suppose that j*H%S)C K. There exists
h e H{A)\@ so that ® extends to b’ ¢ HYS © (R\U)). Let k" = W|(B\U),
K = k|8, and k" = b"|(U*\U). By assumption there exists k e« HY(U*) s0
that k|(TU*\U)= k. By the above Mayer-Vietoris argument it follows
that &' extends to R which is a contradiction. Thus U* is a K-roof.

TusoREM 2.5. If X is an n-dimensional compact Housdorff space,

4 is a closed subspace of X, K is a proper subgroup of H"Y4), and R is

a K-roof, then @ in BE\A is an inner point of X.

Proof. Suppose that # in E\4 is peripheral. Let U be an open set
about # so that U ~ 4 = @. Choose an open set V, ¢V C U, so that
the inclusion map induces H*(X)—>H*(X\V) one-to-one and & in H*(X\V)
implies that 4)(X\U) extends to X. Consider the following commutative
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diagram with horizontal Mayer—Vietoris sequences and vertical home.
morphisms induced by inclusions:

FUR)OEE) —HTR) —HYX) —>H'RB)®E'(X)

R N R
H(R)@ B {E\V) —H" HB\V) ——HYX\V)~—>H"(R) © H"(X\})

1 v

HY(R)@ B (X\U) —>H"(E\U)

I
H"Y(A)

Choose he H" (ANK so that h extends to A’ < H* '(E\V). Since
ed X = n and by the way V was chosen, ¢ is an isomorphism. Since J hag
as one component an identity map, J is one-to-one; the homomorphism i’
is the direct sum of one-t0-one maps and is one-to-one. It follows that J'
is one-to-one and hence that 4 is zero. Thus I’ is onto and A’ extends
to (b, k) in H" Y(R)® H" YX\V). By the way that V was chosen
(s Bo(X\T)} extends to (hy, hs) in H'YR)® H(X). Now KI"U(hy, hy)
= kle'(hl, h)=h and hence %I'"(h, hzl(X\U)) =h. Then it follows
-kI”l] (hay he) = b and hence Kl'§'I(hy, hy) = h. This implies that I(h,, hs)
iy an extension of & to R. This is a contradiction. Thus # is an inner
point of X.

. The‘ above theorem yields the next result about the existerice of
inner pf)mts in locally compact finite dimensional Hausdorft spaces. With
restrictions on the coefficient ring this result follows from [8], p. 76
and [5]. ’ '

THEOREM 2.6. If X is a finite dimensional locally -compact Hausdorff
space, then the set of inner points in X are demse in X.

Proof. Suppose that cd X = n. Let U be an open set in X. Then
¢dU = m < «. Thus there is a compaet subset B of U so that cdB = m [4].
Choose an open set V in X so that BCV C V*C U and V* is compact.
It foll'ows that edV* = edV = m. By the definition of codimension [4]
there is a closed subset 4 of B and €« H™(4) so that, for i: A-»B the
Inclugion map, & ¢ #*H™ "(B) = K. Then K is a proper subérroup of ™Y A).
Choose,a K -roof R and it follows from the previous theorem that @ ¢ B\A

is an inner point of V*. Since # < BC V. i i
point of . € » by Theorem 1.6 x is an inner

. m?;. .Elementary properties. of peripheral and inner points. If X s
u etric :pacfz, # e X, and ¢ is a pogitive real number, N (z; ¢) will denote
set of points of X whose distance to « is less than s. A set is F, if it

“i::nf@
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is the countable union of cloged sets and @ if it is the countable inter-
gection of open sets.

TurorEM 3.1. Let X be a metric space. The inner points are F,, or
equivalently, the peripheral points are Gs.

Proof. We set Iy, = {w ¢ X: N(»; 1)n) surrounds «} for each positive
integer n. It follows from Theorems 1.6 and 1.7 that (] F, is exactly the
set of inner points.

We show Iy CFyiy. Let {wx} be a sequence in F, converging to a.
Let ¥ be an open neighborhood of & contained in N (v; 1/(n-+1)). There
exists an integer m such that @m eV and N (z; 1)(n+1)) C N (3 1fn).
The following triangle induced by inclusion mappings is commutative:

HYX, X\V) —= H¥(X, X\N (2; 1/n))
AN
/

i

H(X, Z\N (a; 1)(n-+1)))

Since N (@m,1/n) surrounds @, * is not trivial. Hence ¢* is not
trivial. Since V was arbitrary, N (z; 1/(n+1)) surrounds @; thus @ € Fra.
Thus the inner points are equal to [ JIs.

As a corollary to this theorem, we note that if the peripheral points
are dense, then the inner points are a set of first category. Doyle and
Hocking [6] give an example of a tree (a one-dimengional Peano continuum
with no simple closed curves) in which the endpoints are dense. Borsuk
and Jaworowski have shown that endpoints in trees are labil [2], pp. 161,
162; hence by Theorem 1.11, they are peripheral.

THEOREM 3.2. Let X be a compact Hausdorff space of codimension n.
If the peripheral points form a closed set, then they have codimension m
where m < n—1. i

Proof, Suppose the peripheral points P have codimension #. Then
there exists a compact subset 4 of P guch that H™ (P)--H""'(4) is
not onto. Let I be the image of H* Y(P) in H"*(4) and let B be a K -roof
contained in P. By Theorem 2.5 z ¢ E\A is an inner point; this is a contra-
diction since R C P,

If the coefficient group is a field, we obtain the following theorem
concerning Cartesian products:

TurorEM 3.3. Let X and Y be compact, Hausdorff spaces. If @ and y
are inner points of X and ¥ vesp., then (z,y) is an inner point of X X X.
If @ or y ds peripheral, then (z,y) is peripheral.

Proof. Suppose that # and y arve both inner. Then there exists an
open set U, which surrounds # and an open set U, which surrounds y.
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v . . Let V, be an open neighborhood o is an open set aboub p and is contained in W. By the generalized homotopy
ZZ) zt:z;):d Z; XUT{T zféo?ffd:n(%pi)n neigh;)orhoo a gf y eoimin ed in é:; theorem, if 7 and j are inclusion maps, the following diagram commutes:
There exist non-negative integers p and g such that H.p( -X, W) s
»—)Hn(X; X\U1) and Ha( Y; Y\Vz)*Hq(Y: Y\U2) are non-trivial, Siﬂce H*(X9 ‘X\V,) “"t—’h* H*(X? X\VV)
we are assuming the coefficient group is a field, by the Kunneth formula S
[97, p- 360, the horizontal homomorphisms in the following commutative A\ /r/*
square are isomorphisms: \ . ¢
' ' . B\, V)
D H(X, I\ @ B(Y, T\V,) »H (X K X, (V)XY © XX (T\T)
itmptg 4, il Since H*(X\V', XZ\V')= 0 it must be that i* = 0, but this i contrary
2 H(X,\U,) @ H (Y, T\U,) »~H X« ¥, (X\U}) x Y u X (T\T,) to the faet that W surrounds p. Thus the proof is complete. :
i+7=p+e DerINITION 3.5. Let X Dbe a metric space. The space X is uniformly
Again, since the coefficients are a field, the homomorphism inner at @ if there exists an open set U containing # and an &> 0 such
HY(X, X\V,) @ HYY, T\V,) into H"(X,X\U,)® H{Y, Y\U,) it non- that if ¥ € U, then N(y; &) surrounds y.

trivial; hence the left vertical homomorphism is non-trivial. Hence the
right vertical homomorphism is mon-trivial. Since for any open set ¥
containing (z, y) and contained in U, x U,, there exist open sets ¥, and V, i o o
such that (z,y) eVy xV,CV, we conclude that (z,y) is inner. . Proof. We again set

A similar argument shows that if » or y is peripheral, then (z,y)
is peripheral..

THEOREM 3.6. If each point of alocally compact metric space X is mner,
then the set of uwiformly inner points is open and dense.

By = {@ e X: N(x;1/n) swrounds =} .

We note that by passing to compact neighborhoods and employing We saw in the proof of Theorem 3.1 that X = (JF%. If V is an open
Theorems 1.5 and 1.6 the preceding theorem generalizes to products of subset of XX, there exists an integer m such that (F%)° A V # © by Baire’s
locally compaet spaces. A similar result also obtains for locally compact theorem. Since I C Fpyy, we conclude that FoynV # @, Taking

fiber bundles by making use of the locally trivial structure.

The next theorem is due to K. Hofmann and is included here with
his kind permission. Note that the contrapositive gives a condition for the
existence of peripheral points.

U=TFpi1nV and e = 1/(m+1), we conclude that X is uniformly inner
at each point of U. Hence theuniformly inner points are dense. Tt follows.
easily from the definition that they are open.

The next theorem states that the property of being uniformly inner
THEOREM 3.4. Let X be a compact Hausdorff space, T a topological is a local property.
space with distinguished point 1, and I': T XX X a continuous function
with I'(1, @) = @ for each » in X. If p is an inner point of X there is an
open set U containing 1 so that if t is in the component of 1 in U, denoted
Cy(T), then p e I'({t} x X).

Proof. Suppose that the conclusion is falge. For tel, wo let

TreorEM 3.7. Suppose X and Y are locally compact metric, U is an
open neighborhood of @ in X,V is an open neighborhood of y in Y, and b is
a homeomorphism from U onto V taking = to y. If X is uniformly inner at ,
then Y is uniformly inner at 4. '

© Proof. By passing to smaller neighborhoods if necessary we may
: X functi i = I Jj ig 1 r - ' : g i )
?" XX b.e the function defined by I') = I'(t, 2). Since p is m%wl assume that % is defined on U*, U* is compact, and there exigts &> 0
in X there is an open set W that surrounds p. Choose an open set ¥ e ' . *
. . such that N (a’; &) surrounds o' for all 4’ « /. Then V* is also compact;
containing p so that V*C W. Then I(X\W)C Z\V* TFor xe¢X\W . . N ) g
) . - , hence there exists , > 0 such that if the distance between ¥, and y, in V'
choose an open set V, containing x and U, containing 1 so that for ¢t e Uy . X -1 -1 N
we have I'(Vs)C X\V*. Since X\W is compact there is a finite set ig less than &, then the distance between % (y1) and h~(y,) is less than &.
i A P . Pick 4, such that N(y; 24,) CV. Let 6 = min{é,, &} and W = N(y; o).

13
Veiy ey Vau} that covers I\W. Set U =) U, Then for t e U we have To show Y is uniformly inner at y, we show N (y'; 6) surrounds ¢’ for
=1 R . ) : 1 .
T{X\W) CX\V*C X\V. By the assumption that the conclusion of the any ve W. Since 6 < 4,, we ha:re li(’y 752 CV. Bince 6 < ‘Sl_’lh ’(N s 9)
" theorem is false there is ¢ Oy(U) so that p ¢ I'(X). Thus V! =V ~ INHX) CN(h (¥'); 5)- By Theorem 1.7, h (N(y H 5)) surrounds A (y )., Since &
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is a homeomorphism and by use of excigion techniques as in Theorems 1.3,
1.4, and 1.6, we conclude that N(y';d) surrounds. Y.

The next theorem is an analog for uniformly inner points of Theo.
rem 3.4.

THEORENM 3.8. Let X be a compact, metric space, I' a continuous mapping
from T xX into X, and 1 € T such that I'; is the identity map on X. If X is
uniformly inner at p, then there ewists an open set U containing 1, an open
set V containing p, such that if 1€ Co(U), then V C I'y(X).

Proof. There exist an open neighborhood W of p and &> 0 such
that if y « W, then N (y;¢) surrounds 4. Choose & such that N(p; 8)C W
and 6 < ¢/2; choose an open get V containing p such that V7* C N (p; ).
Ag in the proof of Theorem 3.4, there exists an open set U containing 1
such that I'X\N(p; 8)) CX\V for all t¢ U.

Suppose there exists ¢ e Oy(U), y eV, such that y ¢ [y(X). We set
Vi=V n (I\T(X)); then y ¢ V,. If z¢ N(p; 6), then

aly,2) < dly, p)+d(p,2) <26 <e. '

Hence X\N (y; 2) C X\N (p; 6); thus for all s e Cy(U), I's(X\N (y; &) C I\
CX\V;. Let j be the injection of (X\V;, X\V;) into (X, X\V,). The
following triangle is commutative:

¥ .
HYX, X\V,) —-————-—>H*(X, X\N (y; a))y
TN\ /
\ i
HYX\Vy, X\V))

By the generalized homotopy lemma (see [4]) the horizontal T} induced
by I' is equal to I'f. Sinee I is just the injection of '(X y NN (y; e)) into
(X, Z\V,) and since. H¥(X\V,, X\V;) is trivial, we conclude the injection
induces a_trivial homomorphism. This contradicts the fact N (y; &) sur-
rounds ¥. i

If a space X has all uniformly inner points, we get the following
stability condition on X.

KOOROLLARY 3.9. Suppose X and T satisfy the hypotheses of the preceding
theorem with the added assumption that all points of X are uniformly inner.

Then there evists an open set U containing 1 such that if te Oy(U), then
T{X) = X. o

Proof. Choose for each z ¢ X -an open set U, containing 1, an open
set V, containing @, such that if ¢ Cy(U,) then FyX)D Ty

icm®
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By taking a finite subcover of {V;}.cx, intersecting the correspond-
ing Uz, we get the desired open set’ U. }

A space X is sald to be locally homogeneous if given %,y e X, there
exist open neighborhoods U and V of # and y resp. and a homeo-
morphism from U onto ¥ which carries = to y. Note that any homogeneous
space is locally homogeneous.

TEEOREM 3.10. Let X be a locally homogeneous locally compact metric
space. If X has an inner point, then all points of X are uniformly inmer.
In particular, if X is finite dimensional, then all points of X are wniformly
inner.

Proof. Suppose X has an inner point # and y ¢ X. Let h: (U, x)
~(V,y) be a homeomorphism of open neighborhoods. By Theorem 1.6
¢ is inner in U, and hence y is inner in V. Again by Theorem 1.6, y is inner
in X. Hence all points of X are inner. It then follows from Theorem 3.6
that X has an uniformly inner point, and from Theorem 3.7 that all
points are uniformly inner. :

If X ig finite dimensional, then X has an inner point by Theorem 2.6.

As a corollary of thiy theorem, we note that all points of Euclidean
space are uniformly inner. Thus by Theorem 3.7 if a point in a metric
space has an Euclidean neighborhood, then the point is uniformly inner.

Corollary 3.9 and Theorem 3.10 imply if X is a finite-dimensional,
locally homogeneous, compact metric space and F: X x I ~X is a homo-
topy of X, then Fy(X) = X for all # in some neighborhood of 0 i F, is
the identity. Bing and Borsuk [1] have raised the question whether a re-
tract of an m-cell can be locally homogeneous. If one could show such
retracts admitted a homotopy F such that F, was the identity and the
range of F; was proper when ¢ # 0, then it would follow that none of
them could be locally homogeneous.
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A class of topologies with Ti-complements

by
B. A. Anderson* (Tempe, Ariz.)

1. Introduction. Let A be the family of all T, topologies definable
on an arbitrary set X. When 7, ¢ 4 and v, e 4, 7; < 7, if every set in 7,
is in 7,. Under this order, 4 is a complete lattice. The greatest element
of 4 is the discrete topology, 1, and the least element is the cofinite
topology 0 = {U: U =@ or XU iz finite}.

Recently several papers have been published dealing with the structure
of the lattice 4. An example [17] was given to show that 4 is not a com-
plemented lattice, unless X is a finite set. In [19], a T;-complement for
the reals with the usual topology is constructed. This result was gener-
alized in [1] to yield the fact that every T, space with a countable dense
metric subspace has a T';-complement. For other results on the lattice 4,
see [4]. ‘

The main purpose of this paper is to show that the construction
used in [19] can be made to do much more than has been previously
realized. It turns out to be quite an interesting exercise to see how much
of the construction in [19] can be jettisoned. Now it appears that large
classes of nice topological spaces have T,-complements. For example,
it can be proved that every first axiom Hausdorff space has a T, -comple-
ment and that every locally compact Hausdorff space has a T;-comple-
ment. Actually the theorems deduced here are quite a bit stronger than
these statements..Another rvesult of [1] is extended to show that there
is a large clasy of spaces (X, 7T) and that T is one of three mutually
T,-complementary topologies on the set X. Furthermore, it is shown
that every 7, space is an open and closed subspace of a T, space that
has a T,-complement.

Lastly, some questions are raised. T am indebted to Roger Countryman
for an interesting conversation on the properties of Fréchet spaces and
symmetrizable spaces.
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