Finally, we note that the first statement of Theorem 4 (concerning isotope maps) is trivial from Theorem 1 if \(K \) has a zero. If \(K \) has a zero define
\[
f(\langle A \rangle) = \bigvee \{ f(A') || A' \leq A \}.
\]
f obviously satisfies all the requirements. If no \(A_0 \) exists, then, of course, \(f(\langle A \rangle) = 0 \).

Non-existence of certain Borel structures

by

B. V. Rao (Calcutta)

This note conceptually simplifies the proofs and extends the theorems of [1] and puts them in a more general setting.

Let \((X, B)\) be any separable (countably generated and containing singletons) Borel space, where to avoid trivialities \(X \) is assumed to be uncountable. Sets in \(B \) are to be called Borel subsets of \(X \). Throughout, \(B \) is fixed.

Theorem 1. For any \(\sigma \)-algebra \(\Sigma \) on \(X \) containing \(B \), the following are equivalent:

(i) Any one-one real \(\Sigma \)-measurable function on \(X \) coincides with a \(B \)-measurable function on an uncountable Borel subset of \(X \).

(ii) Any separable \(\sigma \)-algebra \(S \) on \(X \) with \(B \subseteq S \) coincides with \(B \) on an uncountable Borel subset of \(X \), that is, on some uncountable Borel subset of \(X \) the restrictions of \(B \) and \(S \) coincide.

Proof: Given (i), we can prove (ii) by looking at the Marczewski function associated with any countable generator for \(S \). Conversely, given (ii), we can prove (i) by looking at the separable \(\sigma \)-algebra induced by the given function and \(B \).

Definition 1. A \(\sigma \)-algebra \(\Sigma \) on \(X \) containing \(B \) and satisfying any one of the above two equivalent conditions is said to be a \(B \)-Souslin \(\sigma \)-algebra for \(X \) (with due respect to the work done by Souslin).

Definition 2. A \(\sigma \)-algebra \(Z \) on \(X \) is said to be \(B \)-mixing if \(Z \) contains \(B \) and any uncountable Borel subset of \(X \) contains an element of \(Z - B \).

From the above definitions and Theorem 1, we have the following theorem, which can be easily proved by contradiction.

Theorem 2. Let \(Z \) be any \(B \)-mixing \(\sigma \)-algebra on \(X \). Let \(\Sigma \) be any \(B \)-Souslin \(\sigma \)-algebra containing \(Z \). Then there is no separable \(\sigma \)-algebra on \(X \) containing \(Z \) and contained in \(\Sigma \). Consequently, no separable \(\sigma \)-algebra containing \(Z \) can be a \(B \)-Souslin \(\sigma \)-algebra.

Remark 1. Throughout this paragraph let \(X \) be \(I \) the unit interval, \(B \) its usual Borel \(\sigma \)-algebra, \(Z = A \) the \(\sigma \)-algebra generated by its usual
On uniform universal spaces

by

W. Kulpa (Katowice)

The aim of the paper is to prove (Theorem 2) the existence of a universal space for the class of all uniform spaces whose uniformities have a dimension not greater than \(n \) and have a base of cardinality not greater than \(\gamma \), consisting of coverings of cardinality not greater than \(\tau \), where \(n \) is a finite number, \(\gamma \) and \(\tau \) are infinite cardinal numbers. A theorem of Nagata [6] concerning a universal metrizable space of a given topological dimension may be regarded as a special case of our theorem for \(\gamma = n \).

The condition limiting the cardinalities of the coverings from the base of the uniformities is necessary, because the class of uniform spaces of a given dimension and a fixed cardinality of bases for uniformities, such that each two spaces of the class are not uniformly homeomorphic, does not form a set in general. For example, the class consisting of all discrete spaces (they have uniformities consisting of single-point-set coverings) do not form a set.

The proof of the existence of this universal space is based on Theorem 1, which presents a strengthened form of a factorization theorem from [3].

I wish to express my gratitude to Docent J. Mioduszewski for helpful conversations during the writing of this paper.

§ 1. Preliminaries. A pseudouniformity \(U \) on set \(X \) is a family of coverings of \(X \) such that:

1. \(U \) is directed with respect to star refinement,
2. If \(P \in U \) and \(P \prec P' \), then \(P' \in U \) (\(P \prec P' \) — this means that \(P \) is a refinement of \(P' \)).

A subfamily \(B \) of \(U \) such that each \(P' \in U \) has a refinement \(P \in B \) is said to be a base of \(U \).

If a pseudouniformity \(U \) is such that:

3. for each distinct point \(x' \) and \(x'' \) from \(X \) there exists a \(P \in U \) such that \(x'' \notin st(x', P) \),

then \(U \) is said to be a uniformity.