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A Kakutani type coincidence theorem

by
Helga Schirmer (Ottawa)

1. Introduction. Brouwer’s classical fixed point theorem for single-
valued maps of the n-ball B" into itself has been extended to the case
of coincidences of two maps in [9]. There it is shown that if f: B"—B"
maps the boundary of B™ onto itself with non-zero degree, then every
pair f, g: B"—B" has a coincidence. Here we prove a theorem which
extends in a similar manner Kakutani’s fixed point theorem [7] to
coincidences of “acyclic® upper semi-continuous functions. The main
result is stated in Theorem 5.1 below.

This result and its proof depend on the concept of the degree of an
acyclic upper semi-continuous function. It was shown by J. W. Jawo-
rowski [6] how an acyclic upper semi-continuous function ¢ on an #-sphere
S§" induces a homomorphism @,: Ha(8")—>Hn(S"). This homomorphism
is used to define for such a function a degree which is a generalization
of the Hopf degree of a single-valued map (§ 2). Various properties of

. the degree of ¢ are described in § 3; some are used in the later proofs,

the others serve mainly to supply some examples of functions which
satisty the assumptions of the coincidence Theorems 4.2 and 5.1.

We work with Cech cohomology rather than Vietoris homology as
was done in [6], but all results quoted from [6] carry over immediately,

2. Definition of the degree. The term wupper semi-continuous will
be defined in 2.1. This definition is the same as used e.g. in [1], p. 109
and equivalent to “weakly continuous” in [12]. Lemma 2.2 shows that
it is also equivalent to the definition of continuity in [6].

DEFINITION 2.1. A multifunction ¢: X —Y from a topological space X
to a topological space ¥ is a correspondence which assigns to each point
of X at least one point of ¥. — @: XY is use (upper semi-continuous)
at the point @, ¢ X if for every open set V C ¥ containing ¢(z,) there
exists an open set U C X containing #, such that ¢(U)C V.—g: XY is
use if it is use at each point # ¢ X and if also () is compact for each z e X.

We reserve the term map for continuous single-valued functions. —
All spaces and all pairs of spaces will be assumed to be compact Hausdorff.
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The  following well-known property of use functions will be
frequently used.

LuMMA 2.2. p: X—Y is usc if and only if it is closed (i.e. if and only
if its graph {(®,y)| ze X,y e ¥,y ep(@)} in X xT is closed). (See [1],
p. 112.) )

Let H denote reduced Cech cohomology with integer coefficients.
Then we say that the function ¢: XY is acyclic if H“(qo(m)) =0 for
all ¢ X and all integer g. Note that this definition is- equivalent to
that in [6].

Both the definition of the degree of an acyclic use function (see 2.4
below) and the proof of the results of this paper rely heavily on the Vietoris-
Begle mapping theorem, which we use in the following form.

PROPOSITION 2.3 (Vietoris—Begle mapping theorem). Lef f: (X, A)—
(¥, B) be a closed surjective map such that H(f(y)) =0 for all y ¥
and every integer q. Then f induces isomorphisms INT’( Y)zﬁq(X) and
HYY,B)~ HYX, A) for every integer q. (See [11], p. 344.)

We now define the degree of an acyclic usc function ¢: 87— 87,
where 87 (i=1,2) are two spaces which have the cohomology of an
n-sphere.

Let G C 87 x 8 be the graph of ¢, and let p;: G—>87 (i=1,2) be
the restriction of the projections S x85—87 to G It follows from
Lemma 2.2 that the p; are closed. They induce homomorphisms p%: H*(87) -
—H"(@), and from the Vietoris—-Begle mapping theorem 2.3 it follows that

ot HY(SY) =~ HM@)
is an isomorphism. Then
g* = ptTpk: HY(S3)->HYST)

is the homomorphism ingueed by ¢ (see [6], p. 263). Orient the §7 by
choosing generators z; ¢ H"(S}).

DEFINITION 2.4. The degree dege of ¢: 87— 87 is the unique integer
which satisfies

#*(2o) = (degg)z, .

If ¢ is single-valued then p, is a homeomorphism and ®=pyopi’,
80 that definition 2.4 is equivalent to the usual definition of degree in
the single-valued case. As maps are acyclic use functions, we see that
degp can assume all possible integer values.

3. Some properties of the degree. Most of the properties of dege

described in this paragraph are straightforward consequences of results
in [6].
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Let us first investigate the invariance of degy under homotopy.
It was already pointed out in [6], p. 261 that a restrietion should be
placed on the homotopies considered, as e.g. the identity map of §* is
“multi-homotopic® to zero ([13], corollary 1.1). A more drastic result
is shown in the following proposition, in which I denotes the unit inter-
val 0 <t <L,

PROPOSITION 3.1. If ¢: XY 4s an arbitrary wusc function, then
there exists an usc function ®: X X I—+Y suchthat $(z, 0) = ¢(z) and Oz, 1)
is a constant map.

Proof. Let ¢: X—+Y be a constant map given by ¢(z) = y, for all
2z ¢ X. Construet @: X xI-Y by

p(z) for 0<t<1/3,
D(z,t) =Y for 13<t<2/3,
Yo for 23<i<1.

Lemma 2.2 shows that @(z,?) is use as its graph in X xI XY is the
union of the three closed sets {(#,?,¥) #eX,0<1<1/3,y ep()},
X x[1/3,2/3]xY and X x[2/3,1] X {y,}, and hence closed.

Therefore it seems sensible to restrict homotopies between acyelic use
functions to “acyelic® homotopies, i.e. to define that two acyclic use
functions ¢y, ¢;: X+ are acyclically homotopic if there exists an acyelic
use function @: X x I—Y such that O(xz, 0) = gi(2) and D(z, 1) = ¢,(=),
as was done in [6], p. 265. The homotopy invariance of degep is then
contained in the following theorem, which is a consequence of [6],
Theorem 3.

THEOREM 3.2. If ¢y, g1 ST—>8% are acyclically homotopic, then

deggp, = dege, .

Note that we do not prove the converse of Theorem 3.2 although
it seems likely to be true. It is equivalent to the fact that every acyelic
usc function between n-spheres is acyclically homotopic to a map. Bub
the existence of such a homotopy has so far been only established in
special cases; the most general one known to me is that of “cellular¥
functions [2], [8]. :

If f: 8§7—8% and ¢: 85—>S5 are maps, the

deg(g ) = degf- degy -

Tt is in general not possible to extend this formula to acyclic use funetions,
as the composite ¢ o ¢ of two acyelic functions ¢ and y need not by acyclic.
But in special cases it can be generalized.
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PROPOSITION 3.4, If f: Z7—8% is a map, ¢: 8i—~87 an acyclic usc
Sfunction and  h: S5~~Z23 a  homeomorphism  between  cohomology
n-spheres, then

® deg(p f) = degf- degy ,
(id) deg(h o g) = degyp-degh .

Proof. (i) is an immediate consequence of [6], Theorem 2, and (ii)

follows at once from the definition 2.4 of degp.
Theorem 1 in [6] implies the following result.

PROPOSITION 3.5. If the map f: S1—8% is a selection of the acyelic
use function p: 87—8% (i.e.if f(z) = p(x)for every x € 87), then degp = degf.
We finally determine deg ¢ for some special functions.

PROPOSITION 3.6. If the acyclic usc function 12 8"—8" on & cohomology
sphere is an identity (i.e. if @ € 1(x) for all x e ") then dege= 1.

Proof. From proposition 3.5.

PrOPOSITION 3.7. If the acyclic usc function p: 8"~>8" on a cohomology
sphere is an involution (i.e. if y e p(x) implies © e p(y)) then degp= L 1.

Proof. As the graph G of the involution ¢ is symmetric about the
diagonal of 8" x 8" we see that in this case not only p,, but also p,: G~>8"
satisfies the assumptions of the Vietoris-Begle mapping Theorem 2.3.,
80 that both pf and p3 are isomorphisms. Hence ¢*(2,) = 42, in the
Definition 2.4 of degg.

Note that in the remaining two cases S" has to be a proper sphere
and not only a cohomology sphere.

PrOPOSITION 3.8. If the acyclic use function a: 8*—~8" on a sphere
is antipodal (i.e. if —x € a(z) for all x < 8") then dega = (—1)"*",

Proof. Let a: 8"—>8" be the antipodal map given by a(z) = —a.
As it is a selection of a the assertion follows from Proposition 3.5 and the
fact that dega = (—1)"*.

ProroSITION 3.9. If the acyclic use function @: 8"—>8"™ on a sphere
has mo fized point (i.e. if for mo me 8™ is © e p(z)) then degp = (—1)"*%,

Proof. It is shown in [6], lemma p. 266 that if for every z ¢ 8" the
set p(x) does not contain the antipode of a map f: 8" 8" then ¢ i§ acyclic-
ally homotopic to f. Hence the fixed point free function ¢ is acyclically
homotopie to the antipodal map a: 88" so that degp = dega = (—1)"

.4. A coincidence theorem for the n-ball. We now come to the main
subject of the paper, the coincidence theorems. First we prove a special
case concerning coincidences of funetions of n-balls.
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DEFINITION 4.1. A coincidence of a pair of functions g, y: X—¥ is
a point # e X with @(2) ny(z) # 0.

Let B" = {# ¢ R"| ||z}l < 1} denote the n-ball in Fuclidean n-space R™

PROPOSITION 4.2. Hvery pair @,y: B"~>B" of acyclic use functions

in which @ transforms the boundary of B"™ onto itself with non-zero degree
has @ coincidence.

Proof. Let
G={(®,9,2) e B"XB"XB"| £« B", y e p(#), 2 e p()}

be the graph of the product function ¢ xy: B"—B"x B". Denote the
centre of B" by ¢, the boundary of B" by B", and define

F={(r,y,2) e B"xB"xB" 0 e B y e p(), 2 e p(2)}
B={®,9,0eB"xB" xc| s By ep(a)},
D={(®,y,?) eB"xB"xXB"| y=z}.

We assume that the pair g, v has no coincidence on B"—otherwise there
is nothing to prove — and consider the following diagram

HY G, F) < A"B"x B"x B", B"x B"xB™\D)
¥ o
(4.3) Fp) <LH(B" x B” x BA\D)
a* i*
Y B % ox0) Zs AV Y(E) B B"xB"x0)
23
i

HYexB"xe).

The homomorphisms are defined as follows: 4%, j*, and j'* are induced
by inclusions, 8, & are coboundary operators, p} is induced by pi(z, ¥, ¢)
= (@, ¢, ¢), p¥ and p* are induced by py(z,y,¢) = (¢, y, ), ¢* is induced
by ¢(®,9,2) = (,9,0). ,

It the pair @, v has no coincidence on B, then @ C B"x B x B"\D.
‘We prove that this cannot happen by showing that j* cannot be the
zero homomorphism.

(i) The diagram is commutative: Clearly j* 2=29"oj™. To see the
commutativity of the rest, consider the deformation retraction of B™ x
X B"xB"\D to B"xB" x¢ defined by

(W) flo, ot (1= D)y, 7) = (o, L~ 4 (L =24y, (L—De+1d),

Fundamenta Mathematicae, T. LXIX . 18
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where z ¢ BY, y e B, 2 ¢ B,y #2, 0 <A <1, 0 << 1. It shows that ¢* is
an isomorphism, and that its inverse

*: BPYB" x B™ x 0) ~H"{(B" x B" x B"\D)

is induced by the retraction r = f;. Hence if (@, ¥, #) ¢ F, then (with A= 0
in (4.4))
porej(®,y,2) = (c,y,0)=1Ds° q@,9,2),

go that
j'*ﬁi*_1°]7*=q*°p§.

(ii) The homomorphisms 3%, pi, p*, ¢*, 0, and o' are isomorphisms:
That * is an isomorphism was proved in (i). The Vietoris-Begle mapping
theorem 2.3 shows that pf, p*, and ¢* are isomorphisms: & is an isomorphism
as B"xB"xB" is contractible. Finally, the map p,cgq: (&, F)—
~(B"x6Xe¢,B"x¢xc) satisties the assumptions of the Vietoris—Begle
mapping theorem 2.3 because of the Kiinneth formula and hence induces
isomorphisms ¢f and ¢ in the commutative diagram

'@, 7)<E_ BB xcx 0, B*x¢x0)
4 7
FUm) E B e xo) -

The coboundary operator 8” of the exact sequence of (B" %o xe, B x
X ¢ % ¢} is an isomorphism, and therefore &' is an isomorphism.

(ii) Select a generator z of the infinite cyclic group
BYB" xB" xB", B"xB"xB"\D):
Then p*~* o i* 0 97 z) = 2, is a generator of A" (¢ xB" x ¢), and by the
definition 2.4 of degy-we have
(4.5) P o pi(z) = (degg) 'z # 0,
where 2, is a generator of ﬁ"”’l(B“xc x ¢). But (4.3) shows that
(4.6) JHE) =8 o g*optop* T 0i* 007 (2) = 8 o ¢* o pi(2n) .

If the pair ¢, v had no coincidence on B", then j* would be the zero
homomorphism, and (4.6) would imply p3(2,) = 0 in contradiction to (4.5).
Hence Proposition 4.2 follows.

Holsztynski [5] called a map f: X—Y universal for all maps of X
into Y if every map g: X—X¥ has a coincidence with f. The more precise
term coincidence produeing for the same property was suggested in [10].

©
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TUsing the latter terminology, we can formulate the following corollary
to Propositions 4.2 and 3.6 to 3.9.

CoroLLARY 4.7. If the acyclic usc function g: B"—>B" transforms the
boundary of B" onto itself and is on this boundary either an identity, an
involution, antipodal, or fized point free, then it is coincidence producing
for all acyclic use functions of B™ onto ilself.

5. The main theorem. We now derive the general case concerning
coincidences of acyclic use functions on convex subsets of R". The proof
uses the well-known result ([3], p. 31) that every compact convex subset C
of R" is homeomorphic to an r-ball (r < n). Hence the boundary of € is
a cohomology (r—1)-sphere, so that the degree of an acyelic use function
of the boundary of C into itself is defined.

THEOREM b5.1. Hwvery pair @,w: O—0 of acyclic use functions of
a compact convex subset of B™ into dtself in which ¢ transforms the boundary
of C onto itself with non-zero degree has a coincidence.

Proof. Let h: ¢—B" be a homeomorphism and consider the pair
hogoh ™ hopoh™: B"—>B". By Proposition 3.4 it satisties the as-
sumptions of Proposition 4.1, so that there exists a point p ¢ B" with
hopoh (p) nhoypoh(p)#@. Then A (p) = e C has the property
g(x) ~ny(x) # O, and therefore Theorem 5.1 is proved.

If ¢ is the identity map, we obtain the result shown in [4]:

COROLLARY 5.2. Let C be a compaci convex subset of R™ and y: O~C
an acyclic usc function. Then v has a fized point.

As every convex subset of " is acyclic, Kakutani’s theorem [7] is
obtained as the following special case.

COROLLARY 5.3 (Kakutani). Let C be a compact convex subset of R"
and p: O —C an usc function such that the set y(x) is convex for every x e C.
Then v has a fized point. )
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On minimal regular digraphs with given girth
oy . ‘

Mehdi Behzad (Teheran), Gary Chartrand (Kalamazoo, Mich.),
Curtiss E. Wall (Olivet, Mich.)

Introduction. A problem in graph theory which has received much
attention in recent years is the determination of the smallest number
f(r,n) of vertices that a graph G may posses such that G has degree r
and girth n. (See [1], for example.) With few exceptions, the numbers
f(r,n) are unknown for 7 > 3 and » > 5. The purpose of this article is
to study the analogous problem for digraphs (directed graphs).

The Function ¢(r, #). For a vertex v of a digraph D, we denote by
idv and odv the indegree and outdegree, respectively, of o. If idv
= odw = 7, then we speak of the degree of v and write degv = r. If every
vertex of D has degree 7, then D is said to be regular of degree » or simply
r-regular.

The girth of a digraph D containing (directed) cycles is the length
of the smallest cycle in D. For n > 2 and r > 1, we define g(r, n) as the
minimum number of vertices in an »-regular digraph D having girth ».
It is obvious that g(1,n) = n since the n-cycle has the desired properties
and is clearly minimal. The cycle is a member of a more general class
of regular digraphs which we now describe.

For r>1 and n>2 we denote by D(r,n) the digraph whose
r(n—1)-+1 vertices are labeled »;, 4=1,2,.., r(n—1)+1, and such
that v, is an are if and only if j = 41, ¢+ 2, ..., 447, where the numbers
are expressed modulo 7(n—1)+1. The digraphs D(2, 5) and D(3, 3) are
shown in Figure 1.

Clearly, D(r,n) is r-regular and, furthermore, it is easily seen that
D(r,n) contains cycles of every length k,-n <k<7(n—1)+1 but of
no length k, % < u, so that D(r, n) has girth . This construction implies
the following. ‘

THEOREM 1. For each r =1 and n > 2, the number g{r,n) ewisis and,
‘moreover,

(1) glrym) < r(n—1)+1.
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