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Atomic mappings on irreducible Hausdorff continua

by
William S. Mahavier (Atlanta, Ga.)

Introduction. Tn 1935, Knaster showed [3] that there is a monotone -
open mapping of a compact, irreducible, metric continuum onto an arc
with each point inverse nondegenerate and, also, & mapping from a com-
pact, irreducible, metric continunm onto an arc with each point inverse
an are. In 1949, Moise showed [5] that there is no open mapping of
a compact, irreducible, metric continuum onto an are with each point
inverse an arc, and, in 1953, Dyer showed [2] that there is no open mapping
of such a continuum onto an arc with each point inverse a decomposable
continwum. In 1966, Thomas [6] and the author [4] showed independently
that there is no atomic mapping from a compact, irreducible, metric
continuum onto an arc such that each point inverse is & nondegenerate,
hereditarily decomposable, chainable continnum. In this note we show
that if K is a compact metrie continuum, there is an atomic mapping
from a compact, separable, first-countable, irreducible, Hausdorff con-
tinuum onto an arc such that each point inverse is homeomorphic to K.
By an atomic mapping we mean & mapping f such that if ¢ is a continuum
which is a subset of the domain of f, then f(C) is degenerate or f~ If(0)1=C.
Tn the metric case little seems to be known about the corresponding
problem, even for monotone mappings. In particular, we do not know
if there is a mapping from a compact, irreducible metric eontinuum
onto an arc with each point inverse a simple closed curve. In the following
section we describe a general constructive procedure and, in a laber
section, specialize it to obtain the desired examples.

A Construction. Let M denote a compact metric eontinuum and
let T denote a mapping from M onto the closed interval [—1, 1]. Let E*
denote the set of real numbers and let 8 = F* xT7'(0). We shall next
introduce & topology on S, determined by T, under which § will be a first
countable Hausdorff space. If  is in F* and U is an open subset of
M—[TX~1) v T7}(1)] which intersects T7%0), let R(z, U) denote the
subset of & to which (¢, P) belongs if and only if either t =z and P is
in U~ T70), or Pis in T7(0) and T t—x) C U. The collection of
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all such subsets of § form a basis for the topology in § and members
of this basis will be called regions. As an example, if M is an are and T is
a mapping of M onto [—1, 1] such that T7(0) is an interior are of i/
and T Y(x) is degenerate if 2 # 0, then the subspace [0, 1] x T'7(0) of 8 is
homeomorphie to [0,1] x[0, 1] with the topology induced by the lexico-
graphie order. Theorems 1, 2, and 3 below yield the well known'fact that
this space is connected, first countable, compact and Hausdorff. Re-
turning now to the general case we infroduce some notation and state
two lemmas.

Notation. If ¢ and b are numbers and a < b, then S8(a) = {a} x
xI710), 8(a,b) = (a, b) xTY(0), and Sla, b]=[a, b] x T7(0).

In the remainder of this paper such sets will be considered as sub-
sets of the space 8 described above.

Lemma 1. If (¢, P) is a point of S and & > 0, there is a region R(t, U)
such that (t, P) is in R(t, U) and R(t, U)C S(t—e, t+e). ‘

Lemwa 2. If (t, P) is @ point of a region R(z, U) and x 1, then there
8 an &> 0 such that S{i—e,t-+¢) CR(z, U).

Proof. Suppose ¢ # z and (¢, P) is in R(z, U). Then T (t—2)C T,
and the set of all numbers in [—1, 1] whose preimages umder 7 are con-
tained in U is an open subset of [—1,1] and {—& is neither 1 nor —1,
so there is an &> 0 such that 7 (t—z—s, t—a+ &) C U. It follows from
the definition of R(x, U) that S(f—e,i+¢) C R(w, U).

THEOREM 1. 8 8 a first countable Hausdorff space.

Proof. We first show that if the point (@, P) is in each of the regions
E(w, U) and R(y, V), then there is a region R(z, W) containing (a, P)
and lying in R{z, U) n R(y, V). If # =y +# a, applying Lemma 2, there
is an &> 0 such that 8(a—¢, a+¢) C R(z, U) ~ R(z, V). By Lemma 1,
there i8 a region R(a, W) containing (a, P) and lying in 8(a—s, a+s).
Her=y=a, (a,P) i3 in B(a, U ~V) and R(a, UnV)CR(a, U)~
~E(a, V). The other cases follow by similar arguments. Now let (a, P)
and (b, Q) denote two points of § and suppose a # b. Let & = (1/2)|b—al.
There are, by Lemma 1, regions B, and R, containing (a, P) and (b, Q)
respectively such that R,CS(a—e,a+¢) and B, C8(b—g,b+6) and
thus E, ~ Ry=0. If a =b, then P 5= Q so there are mutually disjoint
open subsets U and V of ¥ —[T7(—1) v T7Y(1)] containing P and Q,
respectively. Then R(a, U)~ R(a,V)=10. To show that § is first
countable, let (a, P) denote a point of § and let {U;} denote a countable
base in M—[T7'(—1) v T7'(1)] at the point P. Suppose (a, P) is in
R(z, V). If a # », then there is an &£ > 0 such that S(a—e, at¢) CR(z,V)
and an n >0 such that U~ T7[—1, —&] U [s, 1]) = 0. Tt follows that
R(a, Us) CR(2,V). If a==, then P is in V so there is an n > 0 such
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that UnC V. Then E(a, Un) C B(a, V). We have then that {R(e, Uy)} is
a countable base at (a, P) in §.

That S[0,1] need not be regular, and thus not compact, may be
seen with the aid of the following example. Let 3 denote the subset
of I to which the point P belongs if and only if either (1) P is in the
horizontal interval [—1,1]x{1/2}, (2) P is in the vertical interval
{0} x[0,1], or (3) P is, for some positive integer i, in either the interval
{1/i} x [0, 1] or the interval {—1/i} x [0, 1]. For each point P in M let T (P)
denote the abscissa of P. The following theorem gives a condition under
which 8[0,1] is compact. :

THEOREM 2. If for each & >0, there is a 6 > 0 such that if |t| < & and
t £ 0, then diam[T($)] < s, then S[0,1] is a compact subset of 8.

Proof. Liet G denote a collection of regions covering S[0,1], and
suppose @ is in [0, 1]. We first show that there is &; > 0 and a finite sub-
set of @ covering S (z— ez, %+ &). If there is a point P in 77Y(0), a number
t # x, and a region R(f, U) in @ containing (#, P), then, by Lemma 2,
there is an &z > 0 such that S(@—eg, 2-1-er) C R(§, U). Otherwise, for
each point P in T7*(0), there is an open subset Up of M such that E(x, Ur)
is a region in @ containing (z, P). Since T7Y(0) is compact, there is a finite
subset H of T7*0) such that T %(0)CD = |JUp (P in H). There is
a 6> 0 such that T™'[—&,6]CD, and T™ '[—4, 8] is compact, so there
is an & > O such that each open subset of M of diameter less than ¢’ which
intersects T [—8, 6] is a subset of Up for some point P in H. By hypoth-
esis, there is a 0’ > 0 such that if |t < ¢’ and # 7 0, then diam[77Y1)]
< ¢'. Let &5 = min{s, 6’} and let ¢ denote a number such that 0 < [i—a]
< 6. Then [t—u| < &' and & @ so diam[T'(¢—=)] <¢. There is an
open subset ¥V of M of diameter less than &' containing Tt — ).
V ~ T7[—8,6] % 0 and so there is a point P in H such that V C Up.
80 T Y(i— =) C Upand 8(1) C R(z, Up). It follows that 8(2— ez, 21 €a) CD.
80 we have that if  is in [0,1], there is an & > 0 and a finite subset
of @ covering 8(#— &z, o+ £2). The fact that 0, 1] is compact now gives
that some finite subset of & covers S[0,1].

LeMMA 3. Under the hypothesis of Theorem 2, if HC[-1,1]—{0},

P is a point of T7X0) which is a limit point of T7YH), and t is a number,
then if R is o region containing (t, P), there is a number b in H such that
S8(t+1n)CR.

Proof. Let R(z, U) denote a region containing (¢, P). If ¢ # z, by
Lemmg 2, there is an s> 0 such that S(t—e,t+¢) C R(z, U) and there
is a number % in H such that 0 < [k < e so S(i+4) CR(=z, U). If t =z,
then P is in U and there is an ¢ >0 such that every point of M within
a distance s of P is in V. There is a 6 >0 such that if 0 < |s| < &, then
diam[T(s)] < &/2, and there is a number b in H such that (1) 0 < [h] < 8,
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a,n_c} (2) T7'(h) contains a point within a distance /2 of P. It follows that
T7Hr)C U and that S{E+h)CR(t, U).

THEOREM 3. If, in addition to the hypothesis of Theorem 2, T(0) ig
conmected, then S(0,1) is a connected subset of S.

Proof. Sl}ppose 8(0, 1) is the sum of two mutually separated sets 4
and B. There is a sequence {x;} of distinet numbers converging to a num-
ber = such that S(z) is a subset of one of 4 or B and, for each 4> 0
S(es) is a subset of the other. But 77(0) contains a limit point P oé

iUﬂT‘l(mi—w) and, by Lemma 3, (¢, P) is a limit point of OS(m),
=1

THEOREM 4. If, in addition to the hypothesis of Theorem 3, T70) is

a subset of the closure (in M) of M —T"I(O), then the closure (in 8) of 8(0,1) -

is a separable continuum, irreducible from 8(0) to S(1).

) Proof. We first note, with the aid of Lemma 3, that if R(z, U)
is a region containing a point of §(0, 1), there is a number ¢ in (0 1)—7{51;}
such that 8(t) C E(z, U). And, by Lemma 2, there is an open 7in13erva1
{@,b) in (0, 1) such that 8(a, b) C R(«, U). It follows that if P is in 77(0)
and C is the set of all points (2, P) of §(0,1) such that 2 is a rational
number, then € is a countable dense subset of the closure of 8(0,1)
It also follows that each region containing a point of 8 (0, 1) but no pt’)ini;
of §(0) w §(1) separates S(0, 1) so that the closure of S’(O 1) is an irre-
ducible continuum.from S(0) to S(1). ’

’Mz‘ippings on 8[0,1). In this section we let z denote the natural
projection of 8[0, 1] onto [0,1]. That is, if (z, P) is in 8[0, 1], n(z, P) = &
It follows from Lemma 1 that = is continuous since T’ is.’ If ’1’_1(0) ié
connected, then # is monotone. The following theorem gives a condition

~under which x is atomie.

KE?EOBEM 5. :If in addition to the hypothesis of Theorem 3, each point
of T7(0) is a limit point of both M—T7'[—1,0] and w- T7770,1]
then = is atomic, and the closure (in 8) of § (0,1) s 8[0,1]. T

Proof. Applying Lemms 3, we note that if (z, P) is i
(z, P) is a limit point of each component of & [0,( 1’]—18’(56)?’]?;1[1(1); if] ,Otiez
<b < 1., then S [a, b] is the closure of §(a, b). Furthermore, each re Yon
containing a point of S[a, b] but no point of §(a) v & (b) sepairates 8 [f b]
and so S[a, b] is irreducible from S (a) to § (). Now if € is a subcontin: :
of 870, 1], then there is an  such that ¢ C S(x) and =(0) is degen uuiin
or there is an interval [a, b] such that ¢ = S[a, b] so that n—l[n(%)] ?306

Application of the comstruction. Qur goal in this section is
the construction deseribed above to show:

sepaiﬁol}wﬁ' I];t Kbl’ies a compact metric continuum, there is g compact
, Jirst countable continuum H in o Hausdo ’
7ff space 8 and an

to apply
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atomic mapping w of H onto [0,1] such that (1) if @ is in [0,1], =) is
homeomorphic to K, and (2) H is an irreducible continuum from a=(0)
to w(1).

Proof. Tt is shown in [1] that if K is a compact metric continuum,
and X is a locally compact, non-compact metric space, there is a compact
metric space M containing a dense subset X’ homeomorphic to X and
such that M —X’ is homeomorphic to K. Furthermore, the compactifi-
cation M obtained in [1] has the additional property that if O is a sub-
continuum of M which intersects both X' and M —X’, then C contains
W—X'. Now let K denote a compact metrie continuum, let X = [-1, 1]~
—{0}, and let M denote such a compactification of X. Let T denote
a mapping of M onto [—1, 1] such that T70) = M—X' and such that
if # is in [—1,1]—{0} then T7z) is degenerate. T’ then satisfies the
conditions of Theorems 4 and 5 above so that §[0,1] is the closure of
§(0, 1) and is a continuum of the type desired and the natural projection
of 8[0,1] onto [0,1] is atomic.
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