On the singularity of Mazurkiewicz in absolute neighborhood retracts

by

Steve Armentrout (Princeton, N. J.)

1. Introduction. According to Borsuk [6], a compact metric space which cannot be expressed as a finite or countable union of compact absolute retracts of arbitrarily small diameter has the singularity of Mazurkiewicz. In [6], Borsuk raises the following questions:

1. Suppose \(X\) and \(Y\) are compact metric absolute neighborhood retracts. If \(X\) has the singularity of Mazurkiewicz, then does \(X\times Y\) also have the singularity of Mazurkiewicz?

2. If a polyhedron is represented as a cartesian product, is every factor free from the singularity of Mazurkiewicz?

The purpose of this paper is to give negative solutions to both of these questions. Our solution consists of the following: We give an example of an upper semicontinuous decomposition \(G\) of the 3-sphere \(S^3\) into a null sequence of arcs and points such that if \(X\) is the associated decomposition space, \(X\) has the singularity of Mazurkiewicz. By results of [7] or [9], \(X\times S^{3}\) is homeomorphic to \(S^{3}\times S^{3}\). By a theorem of Borsuk’s [6], \(X\) is a compact absolute neighborhood retract. Hence \(X\) is a compact metric absolute neighborhood retract with the singularity of Mazurkiewicz. \(X\times S^{3}\) is a polyhedron, and no polyhedron has the singularity of Mazurkiewicz [6]. Further, \(X\) is a factor of the polyhedron \(S^{3}\times S^{3}\). Indeed, the triangulable manifold \(S^{3}\times S^{3}\) can be factored into a product of compact absolute neighborhood retracts, one of which has the singularity of Mazurkiewicz.

The author would like to thank T. M. Price for calling his attention to the matters discussed here.

In this paper, by “retract” we shall always understand a retract of compact metric space. We use the abbreviations “AR” and “ANR” for “absolute retract” and “absolute neighborhood retract”, respectively.

If \(M\) is a manifold with boundary, then \(\text{Bd } M\) and \(\text{Int } M\) denote the boundary and interior, respectively, of \(M\).
2. Antoine's necklaces. In the construction of the decomposition, we use sets similar to the standard Antoine's necklaces in S^3, and which we shall also call "Antoine's necklaces". In Section 3, for each positive integer r, we shall construct such a set. In this section, we describe the construction, notation for the construction, and certain auxiliary sets.

Suppose r is a positive integer (fixed in this section). Suppose Σ_r is a polyhedral solid torus in S^3, and suppose that $(T_{i1}, T_{i2}, ..., T_{im_i})$ is a chain of linked polyhedral unknotted solid tori in $\text{Int} \Sigma_r$ circling Σ_r exactly once; see Figure 1. We suppose that if $i = 1, 2, ..., m$, T_{ri} has diameter less than one. If $i = 1, 2, ..., m$, let $(T_{ri}, T_{r_1i}, ..., T_{r_{im_i}})$ be a chain of linked polyhedral unknotted solid tori in $\text{Int} T_{ri}$ circling T_{ri} exactly twice; see Figure 2. We suppose that if $j = 1, 2, ..., m$, T_{r_1j} has diameter less than $\frac{1}{2}$, and then let $(T_{r_1j}, T_{r_2j}, ..., T_{r_{im_i}j})$ be a chain of linked polyhedral unknotted solid tori in $\text{Int} T_{r_1j}$ of diameter less than $\frac{1}{2}$, circling T_{r_1j} exactly once. Let this process be continued, with subsequent chains circling exactly once, and let $M_r, M_{r_1}, M_{r_2}, ...$ denote $\bigcup_{i=1}^{m} T_{ri}, \bigcup_{i=1}^{m} T_{r_1i}, \bigcup_{i=1}^{m} T_{r_2i}, ..., \bigcup_{i=1}^{m} T_{r_{im_i}i}, ...$, respectively.

Let $N_r, N_{r_1}, N_{r_2}, ...$ denote $\bigcap_{i=1}^{m} M_i; N_r$ is an Antoine's necklace of type A circling Σ_r. Note that $N_r \subset \text{Int} \Sigma_r$.

In the construction of $N_r, T_{ri}, T_{r_1j}, \ldots$, and $T_{r_{im_i}j}$ are the solid tori of the first stage of the construction of N_r, the solid tori T_{r_1j}, where $1 \leq i \leq m$, and $1 \leq j \leq m$, are the solid tori of the second stage of the construction of N_r, and so on.

Fig. 1

Fig. 2

If n is a positive integer, then n is a stage n index in the construction of N_r, if and only if there exist integers $i_1, i_2, ..., i_n$, and i_n such that $1 \leq i_1 \leq m$, $1 \leq i_2 \leq m_{i_1}$, ..., and $1 \leq i_n \leq m_{i_{n-1}}$. The statement that α is an index (in the construction of N_r) means that for some positive integer n, α is a stage n index.

It is easy to see that if x is any point of $\text{Int} \Sigma_r$, we may construct N_r so that $x \in N_r$.

Now we shall describe certain arcs associated with N_r. Suppose $i = 1, 2, ..., m$. Consider the first stage torus T_{ri} and the second stage tori $T_{r_1j}, T_{r_2j}, ..., T_{r_{im_i}j}$ lying in T_{ri}. It is well known that if $j = 1, 2, ..., m$, there is an arc a_{ri} lying in $\text{Int} T_{ri}$ and containing $N_r \cap T_{r_1j}$.

We shall construct arcs $b_{ri}, b_{r_1j}, ..., b_{r_{im_i}j}$ so that $\bigcup_{i=1}^{m} a_{ri}$ is an arc A_{ri} with certain properties. We regard T_{ri} as a copy...
of $D^2 \times S^1$ where D^2 is a disc and S^1 is a circle. The copies of $D^2 \times \{0\}$, where $i \leq j$, will be called cross-sections of T_i. We give S^1 an orientation, "clockwise", and use the induced orientation on the family of all cross sections of T_i. We assume that $a_{m_0}, a_{m_1}, \ldots, a_{m_{m_0}}$ are constructed so that if $1 \leq j \leq m_{m_1}$, we may label the endpoints of a_{m_1} by x_i and y_i in such a way that if we start at x_i and go clockwise through the cross sections of T_i, these points occur in the order $x_i, y_i, x_i, \ldots, y_i, x_i$, and y_i, x_i, \ldots, y_i, respectively. Then $1 \leq j \leq m_{m_0}$, b_{m_0} is to be an arc in Int T_{m_0} from y_i to x_i, intersecting precisely those cross-sections of T_i that are encountered in going from y_i to x_i in the clockwise direction.

We suppose the construction done so that all of the cross sections intersecting b_{m_0} is a 3-cell. Further, it is to be true that $(\bigcup_{j=1}^{m_0} b_{j})$ is an arc A_{m_0}. Then $N_i \cap T_{m_0} \subseteq A_{m_0}$.

3. Construction of the decomposition. Let Σ_0 be a polyhedral solid torus in S^3. Let (x_1, x_2, \ldots) be a countable dense subset of Int Σ_0.

Let J_i be a polygonal simple closed curve in Int Σ_0, circling Σ_0 exactly once, and containing x_i. Let Σ_i be a polyhedral tubular neighborhood of J_i lying in Int Σ_0.

Let N_i be an Antoine's necklace of type A circling Σ_0 (and hence lying in Int Σ_0 and circular Σ_0) such that $x_i \in N_i$ and J_i of the first stage solid tori used in describing N_i has diameter at most 1.

If $i = 1, 2, \ldots, m_{m_0}$, there are no A_{m_0} lying in Int T_{m_0}, containing $N_i \cap T_{m_0}$ and constructed as described in Section 2. The area $A_{m_0}, A_{m_1}, \ldots, A_{m_{m_0}}$ are mutually disjoint, and each has diameter less than 1. Let A_i denote $\bigcup_{j=i}^{m} A_{j}$. Let Σ_i be a polygonal simple closed curve in Int Σ_0, circling Σ_0 exactly once, and containing x_i. Let Σ_i be a polyhedral tubular neighborhood of J_i lying in Int Σ_0 and disjoint from A_i. Let N_i be an Antoine's necklace of type A circling Σ_0 such that (1) $x_i \in N_i$ and (2) each of the first stage solid tori used in describing N_i has diameter at most 1.

If $i = 1, 2, \ldots, m_{m_0}$, there are no A_{m_0} lying in Int T_{m_0}, containing $N_i \cap T_{m_0}$ and constructed as described in Section 2. The area $A_{m_0}, A_{m_1}, \ldots, A_{m_{m_0}}$ are mutually disjoint, and each has diameter less than 1. Let A_i denote $\bigcup_{j=i}^{m} A_{j}$. Note that if $i = 1, 2, \ldots, m_{m_0}$ and $j = 1, 2, \ldots, m_{m_0}$, A_i and A_j are disjoint.

Let this process be continued. There results a sequence N_1, N_2, N_3, \ldots of Antoine's necklaces of type A in Int Σ_0, each circling Σ_0, and a sequence $A_{m_1}, A_{m_2}, \ldots, A_{m_{m_0}}, A_{m_{m_0+1}}, \ldots$ of mutually disjoint arcs in Int Σ_0, such that for each positive integer n, the following hold:

(1) $N_n \subseteq A_{m_0} \cup A_{m_0+1} \cup \ldots \cup A_{m_{m_0}}$.

(2) $x_n \in \bigcup_{i=1}^{m_0} (A_i \cap A_{i+1} \cup \ldots \cup A_{m_{m_0}})$.

(3) If $j = 1, 2, \ldots, m_{m_0}$, then $(\text{diam}(A_j)) < 1/2^n$.

Let a denote the collection $(A_1, A_2, \ldots, A_{m_1}, A_{m_2}, \ldots, A_{m_{m_0}}, \ldots)$. Then a is a null collection, i.e., for each positive number ϵ, at most finitely many sets of a have diameters greater than ϵ.

Let G denote the collection consisting of the arcs of the family a together with the singleton subsets of $S^3 - \bigcup \{A : A \in a\}$. Since a is a null collection, it follows that G is an upper semicontinuous decomposition of S^3.

Throughout the remainder of the paper, we shall let X denote the decomposition space associated with G, and we shall let P denote the projection map from S^3 onto X.

Each nondegenerate element of G lies in Int Σ_0, and thus $P(\text{Int} \Sigma_0)$ is open in the associated decomposition space. Further, since (x_1, x_2, \ldots) a dense in Int Σ_0, it follows that if U is any open set in the decomposition space intersecting $P(\Sigma_0)$, then for some λ of a, $P[\lambda] \subseteq U$.

An open set W in S^3 is saturated if and only if W is a union of elements of G.

4. Preliminary lemmas. If T is a solid torus, then D is a meridional disc in T if and only if D is a disc in T such that $D \cap D' = \emptyset$, $D \cap D' = \{p\}$ on ∂D, and $D \cap D' = \{p\}$ Int T. We shall use the projection map from T' onto T. Let p_1 be a copy of D in T'. It is easily seen that p_1 intersects Σ_1. Let p_2 be a point of $D_1 \cap \Sigma_1$. Let p_3 be an integer such that $\phi(p_3) \in T_{m_0}$. Let T_{m_0} be the copy of T_{m_0} in T' containing p_2.

Let $T_{m_0, t_1, t_2, \ldots, t_{m_0}}$ and $T_{m_0, t_1, t_2, \ldots, t_{m_0}}$ be copies in T' of T_{m_0}, T_{m_0}, T_{m_0}, respectively, so that $T_{m_0, t_1, t_2, \ldots, t_{m_0}}$ forms a (linear) chain. Let $T_{m_0, t_1, t_2, \ldots, t_{m_0}}$ and $T_{m_0, t_1, t_2, \ldots, t_{m_0}}$ be copies in T' of T_{m_0}, T_{m_0}, T_{m_0}, respectively, so that $T_{m_0, t_1, t_2, \ldots, t_{m_0}}$ forms a (linear) chain and (2) T_{m_0} links T_{m_0}.

Fundamenta Mathematicae, T. LXIX
Let D_1 and D_2 be copies of D in T^* such that D_1 is adjacent to D_2, D_2 is adjacent to D_1, D_2 separates D_1 and D_3 in T^*, and D_2 intersects T_r^*. Let p_r be the point of D_2 such that $\varphi(p_r) = \varphi(p_1)$. Finally, let A^* and A_2^* denote the copies in T^* of A_1^* containing p_r and p_1, respectively. We shall establish the following:

Proposition 1. Every point of $\varphi^{-1}(N_k) \cap \bigcap_{r=1}^n (T_r^* \cup T_r^*)$ lies either in A^* or in A_2^*.

Proof. First consider $\varphi^{-1}(N_k) \cap \bigcap_{r=1}^n (T_r^* \cup T_r^*)$. Clearly, if $r = 1, 2, \ldots, m_s$, or $m_s + 1$, the subarc a_{rs} of A_1^* lying in T_{rs} and containing $N_k \cap T_{rs}$ lifts to an arc x_{rs} lying in T_r^*. Let x_{rs} and y_{rs} be the points of x_{rs} such that $\varphi(x_{rs})$ and $\varphi(y_{rs})$ are the endpoints x_{rs} and y_{rs}, respectively, of a_{rs}.

We regard T^* as $D^2 \times E^2$ where D^2 is a disc and E^2 is the real line. We may suppose that if $t \in E^2$, $\varphi(D^2 \times \{t\})$ is a cross-section of T_r. Further, we suppose that the positive direction on E^2 corresponds to the clockwise orientation on S^1. Suppose $t \in E^2$. Then it follows from the construction of b_{rs} that there is a copy of b_{rs} in T^* with endpoints x_{rs} and y_{rs}. Clearly then, $A^* = (\bigcup_{r=1}^n a_{rs}) \cup (\bigcup_{r=1}^n b_{rs})$. Thus each point of $\varphi^{-1}(N_k) \cap \bigcap_{r=1}^n (T_r^* \cup T_r^*)$ lies in A^*, and by a similar argument, $\varphi^{-1}(N_k) \cap \bigcap_{r=1}^n (T_r^* \cup T_r^*) \subseteq A_2^*$. This establishes Proposition 1.

It is easily seen that there is a point p_r of $D_1 \cap \varphi^{-1}(N_k) \cap \bigcap_{r=1}^n (T_r^* \cup T_r^*)$. Thus $p_r \subset A^*$ or $p_r \subset A_2^*$. Hence one of A^* and A_2^* intersects adjacent ones of D_1, D_2, and D_3. Thus there is a subarc B^* of A^* or A_2^* with endpoints on adjacent ones of D_1, D_2, and D_3 and so that $\varphi(B^*)$ misses $D_1 \cup D_2 \cup D_3$. Let B_3^* denote $\varphi(B^*)$. It is clear that B_3^* satisfies the conclusion of Lemma 1.

Suppose that M is a polyhedral 2-manifold in S^3, A is a polyhedral singular disc in S^3 such that $Bd A$ misses M, and M and A are in relative general position. Let D_3 be a 2-simplex, and let f be a piecewise linear map from D_3 onto A such that at each point of $f^{-1}(A \cap M)$, f is locally a homeomorphism. It follows that each component of $f^{-1}(A \cap M)$ is a simple closed curve. The statement that γ is a curve of intersection of A with M means that for some component y_1 of $f^{-1}(A \cap M)$, $\gamma = \varphi(y_1)$.

Lemma 2. Suppose that k is a positive integer, $i = 2, \ldots, m_m$, and U is a saturated open set in S^3 containing a singular disc A such that $Bd A \subset T_{m_m+1}$ and $Bd A = 0$ in T_{m_m+1}. Then U contains a loop γ such that $\gamma \subset T_{m_m}$ and $\gamma = 0$ in T_{m_m}.

Proof. We may suppose that A is a polyhedral singular disc, in general position relative to $Bd T_{m_m}$. If there exists a curve of intersection γ of A with $Bd T_{m_m}$ such that $\gamma = 0$ in T_{m_m}, then the Lemma is established. Hence we shall suppose that each such curve of intersection is homotopic to 0 in T_{m_m}.

If every curve of intersection of A with $Bd T_{m_m}$ is homotopic to 0 on $Bd T_{m_m}$, it would follow that T_{m_m} and T_{m_m+1} are not linked, a contradiction. Thus for some curve of intersection γ of A with $Bd T_{m_m}$, $\delta = 0$ on $Bd T_{m_m}$. It follows that there exists a curve of intersection γ of A with $Bd T_{m_m}$ such that $\gamma = 0$ on $Bd T_{m_m}$ but (2) if α is a subdisc of A bounded by λ and γ is any curve of intersection of A with $Bd T_{m_m}$ lying in T_{m_m}, then $\gamma = 0$ on $Bd T_{m_m}$.

Let T_{m_m} be a polyhedral solid torus in $Int T_{m_m}$, concentric with T_{m_m}, and such that $A_3 \cap (T_{m_m} \cup T_{m_m+1}) \subset Int T_{m_m}$. For each curve of intersection γ of A with $Bd T_{m_m}$ such that $\gamma = 0$ on $Bd T_{m_m}$, replace the subdisc of A bounded by γ by a singular disc on $Bd T_{m_m}$, and deform this new singular disc slightly into $(Int T_{m_m}) \backslash T_{m_m}$. This yields a singular disc A' such that $\alpha' \subset (Int T_{m_m}) \backslash T_{m_m}$.

By the loop theorem [10, 12], there is a polynomial disc D in T_{m_m} such that $D \subset Bd T_{m_m}$, $D \cap 0$ on $Bd T_{m_m}$, and D lies in a small neighborhood of A'. Indeed, we may assume that $D \subset T_{m_m} \subset U$. We suppose D and $Bd T_{m_m}$ to be in relative general position.

Since D is a meridional disc in T_{m_m}, it follows that D contains a punctured disc D_{m_m} such that $Bd D_{m_m} \subset Bd T_{m_m}$, and $Int D_{m_m} \subset Int T_{m_m}$, one boundary curve μ_0 of D_{m_m} is not homotopic to 0 on $Bd T_{m_m}$, and every other boundary curve is homotopic to 0 on $Bd T_{m_m}$. Note that $Bd D_{m_m} \subset U$. Now we may construct a polyhedral meridional disc F in T_{m_m} by (1) attaching to D_{m_m} an annulus in $T_{m_m} \backslash Int T_{m_m}$ having μ_0 as one boundary curve and having as its other a simple closed curve μ on $Bd T_{m_m}$ such that $\mu = 0$ on $Bd T_{m_m}$, and (2) capping every other boundary curve of D_{m_m} with a disc lying, except for its boundary, in $(Int T_{m_m}) \backslash T_{m_m}$. We may suppose that F is constructed so that $\gamma \cap T_{m_m} = D_{m_m}$.

By Lemma 1, there is a subarc B_3 of A_3 such that (1) the endpoints of B_3 lie on F and $Int B_3$ misses F, and (2) the two ends of B_3 abut on F from opposite sides. Clearly the endpoints of B_3 lie in D_{m_m}. Hence $D_{m_m} \cup B_3$ contains a loop γ such that $\gamma = 0$ in T_{m_m}.

Since $D_{m_m} \subset U$, A_{m_m} intersects U. Since U is saturated, $A_{m_m} \subset U$. Hence $\gamma \subset U$. Clearly $\gamma \subset T_{m_m}$. This establishes Lemma 2.

Lemma 3. Suppose k and n are positive integers, U is an open set, T_n is a stage n torus in the construction of X_2, and if $i = 1, 2, \ldots, m_m$, T_{m_m} contains a polyhedral simple closed curve γ_i such that $\gamma_i = 0$ in T_{m_m}.
Singularity of Manin's results in absolute neighborhood retracts

S. Armentrout

$y_I \subset V$, and $y_I \sim 0$ in U. Then T_{m}^n contains a polygonal simple closed curve γ such that $\gamma \subset U$ and $\gamma \sim 0$ in T_{m}^n.

Proof. If $i = 1, 2, \ldots$, or m_{n+1}, we shall assume that y_I bounds a polyhedral singular disc A_I in general position relative to $Bd T_{m}^n$.

Suppose there is an integer j, $1 \leq j \leq m_{n+1}$, such that some curve of intersection of A_I and $Bd T_{m}^n$ is not homotopic to 0 in T_{m}^n. If we let y_I be such a curve, then y_I satisfies the conclusion of Lemma 3. Thus we may assume that if $1 \leq j \leq m_{n+1}$, each curve of intersection of A_I with $Bd T_{m}^n$ is homotopic to 0 in T_{m}^n.

Let T^* be the universal covering space of T_{m}^n, and let y_I be the projection from T^* onto T_{m}^n. Let $A_I, A_{I+1}, \ldots, A_{m_{n+1}}$ and $y_I^*, y_I^*, \ldots, y_{m_{n+1}}^*$ be copies in T^* of $y_I, y_{I+1}, \ldots, y_{m_{n+1}}$ and y_I, respectively, so that $y_I^*, y_{I+1}^*, \ldots, y_{m_{n+1}}^*, y_I^*$ forms a (linear) chain of loops.

If $j = 1, 2, \ldots$, or m_{n+1}, let f_I be a piecewise linear map from a standard 2-simplex A_I onto A_I such that $f_I(Bd A_I)$ is a homeomorphism onto y_I. Some component of $A_I - f_I^{-1}(Bd A_I)$ contains $Bd A_I$, and f_I denote this component. Let A_I denote $f_I[A_I]$. Then A_I is a polyhedral singular punctured disc with y_I^* as one boundary curve and such that every other boundary curve of A_I is on $Bd T_{m}^n$ and is homotopic to 0 there.

If $j = 1, 2, \ldots, m_{n+1}$, there exists a singular punctured disc A_{m}^* in T^* and a piecewise linear map g_I from A_{m}^* onto A_I such that $g_I(Bd A_{m}^*)$ is a homeomorphism from $Bd A_I$ onto y_I. This may be seen as follows: Since each boundary curve of A_I other than y_I is homotopic to 0 in T_{m}^n, there is an extension h_I of $f_I(Bd A_I)$ to all of A_I, so that $h_I[A_I] \subset T_{m}^n$. There is a map g_I from A_{m}^* into T^* such that $g_I(Bd A_{m}^*)$ is a homeomorphism from $Bd A_I$ onto y_I. This may be seen as follows: Since each boundary curve of A_I other than y_I is homotopic to 0 in T_{m}^n, there is an extension h_I of $f_I(Bd A_I)$ to all of A_I, so that $h_I[A_I] \subset T_{m}^n$. There is a map g_I from A_{m}^* into T^* such that $g_I(Bd A_{m}^*)$ is a homeomorphism from $Bd A_I$ onto y_I.

By a similar argument, there is a singular punctured disc A_{m}^* in T^* and a piecewise linear map g_I from A_{m}^* onto A_I such that $g_I(Bd A_{m}^*)$ is a homeomorphism from $Bd A_I$ onto y_I. This may be seen as follows: Since each boundary curve of A_I other than y_I is homotopic to 0 in T_{m}^n, there is an extension h_I of $f_I(Bd A_I)$ to all of A_I, so that $h_I[A_I] \subset T_{m}^n$. There is a map g_I from A_{m}^* into T^* such that $g_I(Bd A_{m}^*)$ is a homeomorphism from $Bd A_I$ onto y_I.

PROPOSITION 2. If $1 \leq j \leq m_{n+1}$, y_I^* intersects A_{m}^*, and if $1 \leq j \leq m_{n+1}$, y_I^* intersects A_{m}^*.

Proof. We establish only the first assertion; the second follows by an analogous argument.

Suppose $1 \leq j \leq m_{n+1}$, y_I^* does not intersect A_{m}^*, then let D be a cross-sectional disc in T^* such that D misses y_I^*. Then $D \cap Bd T^*$ is simply connected. Then since each boundary curve of A_{m}^* distinct from y_I^*, lies on $Bd T^*$, there is an extension d_I of g_I to all of A_I so that d_I sends $A_I - \text{Int } A_I$ to $D \cap Bd T^*$. Thus y_I^* bounds a singular disc in T^* missing y_I^*. This is a contradiction since y_I^* and y_{I+1}^* are linked in T^*. Hence y_I^* intersects A_{m}^*. This establishes Proposition 2.

Let x be a point of y_I^*, and (1) if $n = 2$, let y be a double translate of x belonging to y_{I+1}^*, and (2) if $n \neq 2$, let y be a translate of x belonging to y_I^*. (Recall that, in each first stage solid torus, the chain of second stage solid tori circles twice, but for every other n, the chain of $(n+1)$-st stage solid tori in a stage n solid torus circles only once.) It is easy to see that $A_1 \cup A_2 \cup \cdots \cup A_{m+1} \cup A^n$ contains a path β from x to y such that $\beta(\beta)$ is a loop in T_{m}^n circling T_{m}^n once (if $n \neq 2$) or twice (if $n = 2$). Since each of A_1, A_2, \ldots, and A_{m+1} lies in U, $\beta(\beta)$ lies in A. A slight adjustment of $\beta(\beta)$ yields a polygonal simple closed curve γ such that $\gamma \subset U$, $y_I^* \subset T_{m}^n$, and $y_I^* \sim 0$ in U. This establishes Lemma 3.

LEMMA 4. Suppose that $U_{i+1} \subset U_i$, ..., is a sequence of open sets in S^3 such that for each i, $U_{i+1} \subset U_i$ and each loop in U_{i+1} is homotopic to 0 in U_i.

Suppose V is an open set, $V \subset \bigcap_{i=1}^{m} U_i$, and for some integers k and j, $A_{k+1} \subset V$.

Then there is a polygonal simple closed curve γ in $U_{m} \cap T_{m}^n$ such that $\gamma \sim 0$ in T_{m}^n.

Proof. Now $X_{k+1} \cap T_{m}^n \subset A_{k+1}$, and since $A_{k+1} \subset V$, there is a positive integer n such that each stage n torus in the construction of X_{k+1} lying in T_{m}^n lies in V.

Now consider the set U_1. Since $V \subset X_{k+1}$, then each stage n torus in the construction of X_{k+1} lying in T_{m}^n lies in U_1. Consider any stage $(n+1)$ solid torus T_{m}^n in the construction of X_{k+1} lying in T_{m}^n. Then T_{m+1}, T_{m+2}, \ldots, and T_{m+n} are the stage n solid tori in T_{m}^n. If $r = 1, 2, \ldots$, or m_{n+1}, let y_I^* be a polygonal simple closed curve in T_{m}^n such that $y_I^* \sim 0$ in T_{m}^n. Since $T_{m}^n \subset U_{r}$, $y_I^* \subset U_{r}$. Then $y_I^* \sim 0$ in U_{r}.

By Lemma 3, there is a polygonal simple closed curve y_I^* in $T_{m}^n \cap U_{r-1}$ such that $y_I^* \sim 0$ in T_{m}^n. Thus, if T_{m}^n is any stage $(n+1)$ solid torus lying in T_{m}^n, then there is a polygonal simple closed curve γ such that $\gamma \subset T_{m}^n \cap U_{r-1}$ and $\gamma \sim 0$ in T_{m}^n. Hence the argument above may be repeated, using any stage $(n+1)$ solid torus T_{m}^n and the stage $(n+1)$ solid tori in the construction of X_{k+1} that lie in T_{m}^n.

After at most n repetitions of this argument, we obtain a polygonal simple closed curve γ lying in some of U_1, U_2, U_3, \ldots, and hence in U_n such that $\gamma \subset T_{m}^n$ and $\gamma \sim 0$ in T_{m}^n.
Singularity of Mazurkiewicz in absolute neighborhood retracts

5. Additional preliminary results. The following lemma is a consequence of (113), Theorem 4 and the fact that each AR is simply connected.

Lemma 6. Suppose M is a compact absolute retract in an LCn locally compact metric space, and suppose that U is an open set containing M. Then, there is an open set V such that $M \subset V \subset U$ and each loop in V is homotopic to 0 in U.

By repeated application of Lemma 6, we may establish the following result.

Lemma 7. Suppose M is a compact absolute retract in an LC2 locally compact metric space, and suppose U_0 is an open set containing M. Then, there is a sequence U_0, U_1, U_2, \ldots of open sets such that for each i, $U_{i+1} \subset U_i$ and each loop in U_{i+1} is homotopic to 0 in U_i.

The following lemma is just a restatement of Corollary 12.14 of Chapter V of [9]; it is also established in [4].

Lemma 8. If X is an ANR, R is an upper semicontinuous decomposition of X into compact subsets, and S' is the associated decomposition space with X the projection map from S' onto X. Suppose that U and V are open sets in S' such that $V \subset U$ and each loop in V is homotopic to 0 in U. Then each loop in $\pi^{-1}(V)$ is homotopic to 0 in $\pi^{-1}(U)$.

Proof. Suppose g is a loop in $\pi^{-1}(V)$. Then $g \pi = g'$ is a loop in V and thus $g \pi^{-1}$ is a loop in U. Let F' be a map from a disc D into U such that $F'[D] = g'$. Then $\pi^{-1}(F'[D])$ is a compact set in $\pi^{-1}(U)$, and is a union of elements of G.

For each point x of $F'[D]$, let W_x be an open set such that $\pi^{-1}(y) \subset W_x \subset \pi^{-1}(U)$ and each loop in W_x is homotopic to 0 in $\pi^{-1}(U)$; such an open set W_x exists since each element of G is a CAR. We further assume that each such W_x is a union of elements of G.

By compactness of $\pi^{-1}(F'[D])$, there is a finite subset $\{s_1, s_2, \ldots, s_r\}$ of S' such that $\{W_{s_1}, W_{s_2}, \ldots, W_{s_r}\}$ covers $\pi^{-1}(F'[D])$. If $1 \leq i \leq r$, we denote $W_i = W_{s_i}$, then $\{W_1, W_2, \ldots, W_r\}$ is an open cover of $\pi^{-1}(F'[D])$. Note that if $x \in F'[D]$, $\pi^{-1}(x)$ lies in some set of W. It follows that $\{\pi(W_1), \pi(W_2), \ldots, \pi(W_r)\}$ is an open cover of $F'[D]$. Let T be a triangulation of D such that $F[X] \cap \pi(T)$ refined W.

We now construct a certain singular disc in $\pi^{-1}(U)$. We shall do this by "lifting" $F'[D]$ into $\pi^{-1}(U)$. If $x \in \pi^{-1}(F'[D])$ and $y \in \pi^{-1}(T)$, let x' be a point of $\pi^{-1}(F'[D])$.

Since x' is a vertex of T on $D \times I$, let $y' \in \gamma(x')$. If $\pi(x)$ is a 2-simplex in $\pi^{-1}(F'[D])$, then $\gamma' \in \pi^{-1}(U)$ is a 2-simplex in $\pi^{-1}(F'[D])$.

Select open sets W_i' and W_j' in W_j so that $F'[D] \subset \pi(W_i')$ and $F'[D'] \subset \pi(W_j')$. Then W_i' and W_j' belong to the same component of $W_i \cap W_j$, and let σ' be an arc in this component of $W_i \cap W_j$. We use W_i' and W_j' to construct $W_i' \cap W_j'$. It is a 1-simplex of σ on $D \times I$, and σ' denotes $\gamma(x')$.

Suppose A is a 2-simplex of $\pi^{-1}(F'[D])$ with 1-dimensional faces $\partial_0 A$, $\partial_1 A$, and $\partial_2 A$. Let W_k be a set of W so that $F'[D] \subset \pi(W_k)$. In W_k, we have constructed arcs δ_0, δ_1, and δ_2 so that $\delta_0 \subset \delta_1 \subset \delta_2$ is a loop μ. Now $\mu \subset \pi^{-1}(U)$ by construction of W_k. Let A' be a singular disc in $\pi^{-1}(U)$ bounded by μ.

It is clear that $\bigcup_{D \subset T} (A \cap D)$ is a singular disc in $\pi^{-1}(U)$, and that this singular disc has boundary γ. Hence $\gamma \subset \pi^{-1}(T)$.

6. The main result.

Theorem 1. The space X described in Section 2 is a compact absolute neighborhood retract with the singularity of Mazurkiewicz but such that $X \times S^2$ is homeomorphic to $S^2 \times S^2$.

To prove Theorem 1 we first establish two lemmas:

Lemma 10. $X \times S^2$ is homeomorphic to $S^2 \times S^2$.

Proof. It follows from Theorem 5 of [9] (and from [5]) that if G is a monotone decomposition of E^2 into countably many arcs and points, and W is the associated decomposition space, then $W \times S^2$ is homeomorphic to $E^2 \times S^2$. With no essential change in the proof, an analogous result could be established for S^2 (in place of E^2).

In the proof of Theorem 5 of [9], the E^0-factor of the product $E^0 \times E^2$ is divided into a sequence $L^1, L^2, \ldots, L^1, L^2, \ldots$ of closed intervals of equal length and, corresponding to each interval I_j, certain homeomorphisms h_j of the product $E^0 \times E^2$ are defined. Now the homeomorphisms corresponding to different intervals are constructed by "copying" those for one interval, so that for any I_j, there is an order-preserving translation g_j from I_j onto I_j such that if $x \in E^0$, $t \in I_j$, and $h_j(x, t) = (x', t')$, then $h_j(x, g_j(t)) = (x', t + g_j(x))$. It follows that such homeomorphisms can be constructed for products of the form $E^2 \times S^2$ and $S^2 \times S^2$, since, in the case of S^2, the factors repeat cyclically.

Thus by a similar modification of the proof of Theorem 5 of [9], we have the following result: If G is a monotone decomposition of E^2 into countably many arcs and points, and W is the associated decomposition space, then $W \times S^2$ is homeomorphic to $S^2 \times S^2$. Hence Lemma 10 follows.
Corollary. \(X \) has dimension 3.

Proof. It is known that if \(S \) is a compact metric space of finite dimension, then \(\dim (S \times S) = 1 + \dim S \). Thus \(\dim X = 3 \).

Let \(\Omega_k \) denote a polyhedral solid torus in \(S^3 \) such that \(\Omega_k \cap \text{Int} \Omega_1 \), and \(\Omega_2 \) and \(\Omega_3 \) are concentric.

Lemma 11. There exists no \(AM \) in \(X \) such that (1) \(M \subset \text{P}[\text{Int} \Omega_3] \), and (2) if \(i(M) \) denotes the (topological) interior (in \(X \)) of \(M \cap \text{P}[\text{Int} \Omega_3] \), then for some integers \(k \) and \(j \), \(\text{P}[\text{A}_2] \subset i(M) \).

Proof. Suppose there is such an \(AM \). By Lemma 8, \(X \) is an ANR, so \(X \) is \(L^0 \). Thus by Lemma 7, there exists a sequence of open sets in \(X \), \(\text{P}[\text{Int} \Omega_3], W_n, W_{n+1}, \ldots \) such that for each \(i \), \(M \subset W_{n+i} \subset W_i \), each loop in \(W_{n+i} \) is homotopic to 0 in \(W_i \), and each loop in \(W_i \) is homotopic to 0 in \(\text{P}[\text{Int} \Omega_3] \). Further, the interior (in \(X \)) of \(i(M) \) of \(M \cap \text{P}[\text{Int} \Omega_3] \) has the property that for each \(i \), \(i(M) \subset W_i \). Since \(\text{P}[\text{Int} \Omega_3] \subset \text{Int} \Omega_n \), \(X \) is an ANR.

Let \(V \) denote \(\text{P}^{-1}(i(M)) \), and for each \(i \), \(U_i \) denote \(\text{P}^{-1}(W_i) \). Then by Lemma 9, for each \(i \), each loop in \(U_{n+i} \) is homotopic to 0 in \(U_i \), and each loop in \(U_i \) is homotopic to 0 in \(\text{Int} \Omega_3 \). Since for some integers \(k \) and \(j \), \(\text{P}[\text{A}_2] \subset i(M) \), then \(\text{P}[\text{A}_2] \subset V \). By Lemma 5, there is a loop \(\gamma \) in \(\text{Int} \Omega_3 \cap U_n \) such that \(\gamma_0 = 0 \). From the construction of \(\Omega_k \) and \(\Omega_3 \), it follows that \(\gamma - 0 \in \Omega_3 \). However, each loop in \(U_3 \) is homotopic to 0 in \(\text{Int} \Omega_3 \). This is a contradiction, and Lemma 11 is established.

We return to the proof of the theorem.

Proof of Theorem 1. By the Corollary to Lemma 10, \(X \) is finite dimensional. Hence by Lemma 8, \(X \) is an ANR.

The referee pointed out the following simple proof that \(X \) is an ANR. \(X \) is a retract of \(X \times S^3 \). But \(X \times S^3 \) is an ANR since, by Lemma 10, \(X \times S^3 \) is homeomorphic to \(S^3 \times S^3 \).

Now we shall show that \(X \) has the singularities of Mazurkiewicz.

We suppose \(X \) is not a retract of \(X \times S^3 \). Then there is a positive \(\epsilon \) such that any set in \(X \) of diameter less than \(\epsilon \) and intersecting \(P[\text{Int} \Omega_3] \) must lie in \(\text{P}[\text{Int} \Omega_3] \). Suppose \(X \) is covered by at most countably many absolute retracts, each of diameter less than \(\epsilon \). Let \(C \) be the family of those that intersect \(P[\text{Int} \Omega_3] \); each set of \(C \) lies in \(\text{P}[\text{Int} \Omega_3] \).

Let \(C' \) be \(\{ c \cap \text{P}[\text{Int} \Omega_3] \mid c \in C \} \); \(C' \) covers \(\text{P}[\text{Int} \Omega_3] \) and is countable. By the Baire theorem, some set of \(C' \) has nonvoid interior relative to the locally compact metric space \(\text{P}[\text{Int} \Omega_3] \). Let \(M \) be a set of \(C \) such that \(M \cap \text{P}[\text{Int} \Omega_3] \) has nonvoid interior in \(\text{P}[\text{Int} \Omega_3] \). Since \(\text{P}[\text{Int} \Omega_3] \) is open in \(X \), then \(M \cap \text{P}[\text{Int} \Omega_3] \) has nonvoid interior \(i(M) \) in \(X \).

By the construction of \(C' \), each open subset of \(\text{P}[\text{Int} \Omega_3] \) contains, for some integers \(k \) and \(j \), \(\text{P}[\text{A}_2] \subset i(M) \). Thus for some \(k \) and \(j \), \(\text{P}[\text{A}_2] \subset i(M) \).

Thus if \(X \) is covered by at most countably many absolute retracts, each of diameter less than \(\epsilon \), then \(X \) contains a subarc \(i(M) \subset \text{P}[\text{Int} \Omega_3] \) for some \(k \) and \(j \), \(\text{P}[\text{A}_2] \subset i(M) \).

7. Local properties of \(X \). The methods of this paper are closely related to those used in other papers studying local properties of decomposition spaces, especially [1]; see [2] and [3] also. In this section we consider further the local structure of \(X \).

The argument of Lemma 11 can be used to establish the following result.

Lemma 12. If \(x \in P[\text{Int} \Omega_3] \), there is no compact, locally connected, simply connected neighborhood of \(x \) (in \(X \)) lying in \(P[\text{Int} \Omega_3] \).

The conclusions of Lemmas 11 and 12 hold if, in the hypotheses of those lemmas, “compact AR” is replaced by “compact, locally connected, simply connected set.” For Lemma 6, this follows from ([11], Theorem 4).

Theorem 2. It is not true that each point of \(X \) has arbitrarily small compact, locally connected, simply connected neighborhoods.

The following may be established by a modification of the argument given in this paper.

Lemma 13. If \(x \in P[\text{Int} \Omega_3] \), there is no simply connected open neighborhood of \(x \) lying in \(P[\text{Int} \Omega_3] \).

We shall say that a topological space is simply locally simply connected if each point of the space has arbitrarily small simply connected open neighborhoods. Thus we have the following result:

Theorem 3. The space \(X \) is not simply locally simply connected.

In proving Lemma 13, we use the following consequence of Corollary 5.4 of [5].

Lemma 14. If \(U \) is a simply connected open set in \(X \), then \(P^{-1}(U) \) is simply connected.

The proof of Lemma 13 is essentially the same as that of Lemma 11, except that, in place of the sequence \(U_0, U_1, U_2, \ldots \) of open sets, we can use a single open set.

A topological space is locally peripherally spherical if each point of the space has arbitrarily small neighborhoods whose (topological) boundaries are (topological) 2-spheres.

Theorem 4. \(X \) is not locally peripherally spherical.

Theorem 4 follows from Lemmas 12 and 15. For a proof of Lemma 15, see [1].
Lemma 15. If W is a compact neighborhood of a point of a simply connected metric space such that the topological boundary of W is a 2-sphere, then W is compact, locally connected, and simply connected.

Thus we have proved that the space X described in Section 2 is a 3-dimensional ANR but (1) X is not strongly locally simply connected, (2) X is not locally peripherally spherical, and (3) it is not true that X has arbitrarily small compact, locally connected, simply connected neighborhoods.

8. Remarks.

1. By representing S^2 as the union of two solid tori T_1 and T_2, and carrying out the construction of Section 3 in each solid torus, we obtain a 3-dimensional totally non-locally compact space Y such that $X = S^3$ is homeomorphic to S^3.

2. For each of the results mentioned above, there is a corresponding result obtained by decomposing F^n.

3. According to Borsuk [6], a topological property is multiplicative provided that for every two spaces X_1 and X_2 with the property, their product $X_1 \times X_2$ has that property. Borsuk raises the following question [6]: Is the singularity of Mazurkiewicz multiplicative?

Kwan [8] established the following theorem: Suppose m and n are positive integers, a and b are arcs in F^m and F^n, respectively, and A and B denote the spaces obtained by collapsing a and b, respectively, to points. Then $A \times B$ is homeomorphic to F^{m+n}.

One may conjecture that Kwan’s result holds in the case of upper semi-continuous decompositions of euclidean spaces into at most countably many arcs. If this conjecture is true, then the construction of Section 2, applied to F^n, would yield a space Z with the singularity of Mazurkiewicz but such that $Z \times S^2$ is homeomorphic to F^4. It seems plausible to conjecture that, for locally compact metric spaces, the singularity of Mazurkiewicz is not multiplicative.

References