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On convex metric spaces V

. by
R. Duda (Wroctaw)

§ 1. Introduction. Let X be a metric space with a metric ¢. By
a hyperspace of X we shall mean any family $(X) consisting of non-
empty compact subsets of X. Of particular importance will be the hyper-
space Comp(X) consisting of all non-empty compact subsets of X, the
hyperspace C(X) consisting of all non-empty compact and conneeted
subsets (i.e., of all subcontinua) of X, the hyperspace Conv(X) consisting
of all non-empty compact and convex subsets of X, and the hyperspace
X (1) consisting of all one-point subsets of X.

Evidently, X(1) C Conv{X)C ¢(X)C Comp (X).

In the case of X being a subset of an n- dimensional Euclidean space E*
of 1mpormnce will be also the hyperspace

Gonv = {4 € Conv(X): Int(4) = 0}.

Recall that a subset 4 of X is called conves if, given any two points a
and b of A, the set A contains a metric segment joining @ and b (not
necessarily one only). If for every two points @ and b of 4, the set 4
contains exactly one metrie segment joining @ and b, 4 is called strongly
conves. .

As is well known (cf. [13], pp. 87-89), a complete metric space X is
convex if and only if for every two points a and b of A4 there exists a point
¢ ¢ X which lies between a and b (iLe., g(a,7 ¢)+ole, b) = ¢(a, b)) and is
distinet from both @ and b. This result will be applied below several times
without reference. .

Each hyperspace of X will be considered as a metric space with
the Hausdorff metric o' defined by the formula ([7], p. 291, see also [11],
I, p. 106).

{1) 0'(4, B) = maxfsupe(s, B),supe(4, )],
aed beB
where ¢(%, Z) = ing oftx, 2).
ZE€
Formula (1) is easily equivalent to the formula

@) o'(4, B) = inf{y > 0: ACQ(B,n) and BCQ(4,n)},
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where Q(Z,7) denotes a generalized metric ball in X, i.e.
QZ,n)={weX: o(z,2) <7}

Similarly, @%(C,¢) will denote a metric ball in Comp(X) with the
center C e Comp (X) and radius &> 0, i.e. .
@0, &) = {D e Comp(X): ¢(0, D) <&}

As follows from (1), X(1) is isometric to X itself and it is known
that if X is a continuum, then so are Comp(X) and C(X) (see [9], p. 25).
However, it is not the case with Conv(X) (see § 4 below).

The paper is devoted to' some questions concerning convexity of
hyperspaces. In § 2 we define a certain property of hyperspaces, related
to convexity and called property (8). Some relations between that prdperty
and convexity of hyperspaces are established in § 3, and theorems of §3
‘yield a sequence of corollaries. Thus, for instance, it is shown in § 4 that
the hypcrspace Comp (X) is convex if and only if the underlying compact
metric X ig convex, the hyperspace ('(X) i3 convex if and only if the
underlying metric continunm X is a dendrite with a convex metrie, and
topological properties of the underlying metric space X like completéness
compactness and local compactness are preserved by the hyperspacé
Conv(X). Results of § 5 pertain to the hyperspaces Conv(X) and O(J)rnv(X)
in the case of X being a subspace of a Euclidean space E™

Theorems of § 5 seem to form a natural topological background for
considering convex subsets of B". It turns out that some known theorems
on convex sets in E” proved so far by direct metric considerations (like
Auswablsatz of Blaschke, theorem of Hadwiger, etc.) follow easily and
sore other (like Minkowski theorem on approximation by polviledra)
receive a clear topological formulation. ’

Notions and notation not defined in the paper come from [11]and [12].

§ 2. Property (8). Let A and B be two compact subsets of a metric
space X such that for each two points @ ¢ A and b e B there i at least
one segment ab in X (for a=b this segment is reduced to one point)
We call a b?"idga in X between A and B, and denote it by P(4, B) an);
compact union of segments ab, i.e. a compact set containing at ’leasiu one
segment .a,b with each pair of points a ¢ A and b ¢ B and such that each
point of it lies-on a segment ab, where a e 4 and b ¢ B (131, p. 24) c

The following proposition is known to be true (see [3’:[, :2.1).

2.1. If X is a compact convez space, then for ever i e
a bridge P(A, B) does ewist. ! f Y pair 4, B « Comp(X)

Remarks. If the space X is not strongl ;
need not be unique. strongly convex, bridge P(4, B)

And if X is a complete convex space iti i » k
| : 2 pace, Proposition 2.1 is false. Indeed
yeonsider .Cartensian product “0’ x I of the Cantor ternary set ¢ and thé
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gegment I =[0,1], and identify each pair of points (¢;,%) and (¢, i}
such: that ¢; and ¢, are end-points of a segment complementary to -C and
i-= 0 or i= 1. After identification the set €' x 0 becomes a: segment, denote
it by A, and the set € x1 becomes a segment disjoint with 4, denote
it by B; the set X obtained in this way from C x I consists of uncountably
many ares joining points of 4 to points of B and otherwise disjoint. If we
metrize now X according to the length of an arc, assuming that each
segment ¢ xI is now an arc of length 1, then X becomes a complete metric
space and (4, B) = 1. Evidently, any bridge between 4 and B must
contain each “arc ¢ x I’ and thus the only bridge between A and B is.
the whole space X which is not compact. .

A hyperspace $(X) of X will be said to have propérty (S) if for each
pair of sets 4,BeH(X) a bridge P(4,B) in X does exist (however,
we do not assume it to be an element of $(X)) and for some & satisfying
inequalities 0 < ¢ < ¢'(4, B) the seb

(3) P(A;B)AQ(A:E)’\Q(B’Ql(-A)B)'_e)
belongs to $(X). '

Some examples of hyperspaces possessing property (8):

1. If X is a convex continuum, there are in general many hyper-
spaces of X which have property (8). Such is, for instance, each hyper-
space $H(X) which satisfies the following three conditions:

(i) if Ae$(X), then also @(4,n) e H(X) for each 7> 0,

(ii) if 4,Be $H(X), then there exists a bridge P(4,B)C X,

(iii) if 4, B e $(X), then also 4 ~ B e H(X).

For each family 9 C Comp(X) one may consider the least hyper-
space Hm(X) containing M and satistying conditions (i)~(iii). In view
of 2.1 such a hyperspace does exist and it has property (8), of course.

" Tt can be shown without much difficulty that if 3 is closed in Comp (X), -

the hyperspace Hm(X) is closed in Comp(X), hence compact.

The hyperspace X (1) and the hyperspace Comp (X) both have.
property (S).

9. I X is a convex continuum such that each subcontinuum of X
is also convex (i.e., if ¢(X)= Conv(X)), then the hyperspace C(X) has.
property (8).

In fact, if 4, Be ((X), then a bridge P(4,B) in X does exist by
virtue of 2.1, and all three sets P(4, B), @(4,¢) and @ (B, M4, B)—¢)
are strongly convex for each 0 <e< o4, B) (see [3], 2.5). Hence the
common part (3) is compact convex and so it must be an element of C(X)-

3. If X is a convex subspace of an »-dimensional Euclidean space E”,

then the two hyperspaces Conv(X) and 0$nv(X ) both, have property (8).
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In fact, if A4 is compact convex, then Q(4,¢) is compact convex
for each ¢ > 0, because @ (4, &) is equal to the Minkowski union, @4, ¢)
= A+Q(p, ), of two compact convex sets and such a union is known
to be compact convex ([6], p. 12-13). Therefore the common part (3) ig
compact convex, and since P(4, B) iy contained in X by the convexity
of X, then (3) is an element of Conv(X).- Hence the hyperspace Conv(X)
has property (S).

To prove that also the hyperspace Ognv(X) has property (8) it
remaing to show that if 4, B e anv(X), then the common part (3) has
non-empty interior. To that end show first that

{4) ifA4,Be Ognv(X), then there exist points @ € Int(4) and b e Int(B)
such that g(a, b) < (4, B). ‘

Indeed, let a be any point of Int(4). Since, in view of formula (2),
ACQ(B, ¢{(4, B)), then each point of 4 lying on the boundary of
Q(B, ¢'(4, B)) belongs to the boundary of A. Hence & is not on the
boundary of Q(B, ¢4, B)) and so g(a, B) < ¢4, B). Consequently,
there+must exist a point b, ¢ B such that ola, by) < ¢'(4, B). Assumption
B e Conv(X) implies that Int(B) is dense in B and so there exists a point
b € Int(B') such that o(by,b) < ¢'(4,B)—¢(a,b,). Therefore, by the
triangle mequ&hty: ela, b) < o(a, b))+ 0(bs; ) < Ql(Aa B).

Hence (4) is established. Assume that ¢ and b satisfy (4). Since
aeInt(4) and b eInt(B), there exists an 5> 0 such that Q(a,n)C4
and @(b, n) C B. Let ¢ be a point of the segment ab such that ¢ (a, ¢) < &
and g(e,b) < g'(4, B)—e, where 0 < &< g4, B). Obviouosly, @(c, 7)
CP(Qa, ), Q(b,n) CP(4, B). Since Q(c, 7) is a translation of Q(a, )
for less than e, then @ (¢, 7) C Q (4, e). Similaxly, @ (¢, ) C @ (B, o*(4,B)— g).
Henog the common part (3) contains @(c, ) and, consequently, belongs
to Conv(X). Thus it is shown that also the hyperspace Ognv(X) has

property (8).

r§ 3._Convex1'ty of hyperspaces. We shall now show several theorems
on [relations between convexity of hyperspaces and convexity of the
“underlying space.

To this purpose recall first a lemma ([3], 2.3).

3.1. Let X be a meiric space and let A and B be two compact subsets
of X such that there exists a bridge P(A, B) in X between A and B. If ¢ is
o nwmber such that 0 < & < g4, B), then the set

H=P(4,B)n Q(4,e) ~Q(B, o4, B)—e)
satisfies the conditions
(4, H)=¢ and ¢{H,B)= g(4,B)—s.
This lemma leads to the following -
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THEOREM 3.2. Let $(X) be a hyperspace of a metric space X. If $(X)
is complete and has property (8), thén H(X) is conves.

Note, however, that for some metric spaces X there exist hyper-
spaces which are complete and convex but do not possess property (8).
Such is, for instance, the hyperspace of E* consisting of all eircles of
diameter 1.

Theorem 3.2 yields a sequence of corollaries on particular hyper-
spaces of particular spaces (cf. § 4 and § 5 below). Here, however, we
shall yet prove two more theorems.

In the proof of the first theorem we shall need a simple lemma which
states that a set lies between some two points (in the sense of metric o?)
if and only if each point of it lies between them (in the sense of metric p).
More precisely,

3.3. Let X be a metric space, p and q two points of X, and Z a sub-
set of X. If & is a number such that 0 < & < o(p, q), then the following two
conditions are equivalent

) M), 2) = md ¢(2,(0) = ¢, @) —e,

6) op,r)=¢ and (2 q)=0o(,0—e foreach zeZ.

Proof. Assume (5) and let z¢Z. By the definition of Hausdorff
metric (see (1) or (2)), o*((p), Z) = ¢ implies ¢(p,2) < ¢ and, in view of
@{(»), (@) = e(p, ¢, the second equality of (5) implies ¢(2, ¢) < e(p, P—e.
And if for some 2 ¢ Z we would have o(p,2) <& or g(z,9) < e(p, 9)—¢
then, by the triangle inequality, o(p, ) < ¢(p,2)+elz, @) <e+telp, O)—
—&=o(p, ¢) which is clearly impossible.

Hence (b) implies (6). )

The converse implication follows easily by the definition of Haus-
dorft metric. ‘

THEOREM 3.4. If X is a complete metric space, then the following three
conditions are equivalent:

(a) X -is convew,

() there emists a hyperspace of X which is a complete meiric space,
has property (8) and contains X (1),

(c) there ewists a hyperspace of X which is convex and contains X).

Proof. (a)=-(b). I X is convex, then the hyperspace X (1) has
property (S). And since X (1) is isometric to X itself, X (1) is complete.

(b) =(e). This implication follows by Theorem 3.2,

(e) =(a). Let H(X) be a hyperspace of X which is convex and con-
tains X (1), and let p and ¢ be any two points of X. Since (p) and (g) are

“-Dboth in §(X), the hyperspace H(X) contains a segment between (p)

and (g) composed of subsets of X. It means that the inequality 0 < e
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< gi((p) , (g)) implies existence of a set- Z C X such that (5) holds. By
virtue of 3.3, there exists then a point 2 ¢ X which lies between.p and ¢
and is distinct from both. Hence X  is convex.

THEOREM 3.5. Let X be a complete metric space. If H(X) is a conver
hyperspace of X, contained in C(X), and containing all subarcs of X, then
the underlying space X contains no simple closed curve, is convez, and. each
element of H(X) is convew. .

Proof. By virtue of Theorem 3.4 space X is convex.

If we shall show that each element of $(X) is convex, it will imply
that X cannot contain any simple closed curve. In fact, for if X wounld
contain a simple closed curve 8, there would also exist an arc L C § which
ig not convex ([3], 2.4). But since L ¢ H({X) by hypothesis, I must be

~ convex. A contradiction.

It remains then to show convexity of each element of H(X). Suppose,
& contrario, that there exists an element 4 ¢ $(X) which is not convex.
Since X is convex, there exist two points p, g e A such that for each
metric segment pg there is pg\A4 # 0. If there are two such segments,
choose o simple closed curve in their union. If there is only one segment pg,
join p t0 ¢ with an arc in a sufficiently small (not to enclose pg) Dhall
Q(A,n) (4 itself may a priori not contain such an are, but since X i
locally convex, each ball Q(4, ) does), and choose a simple closed curve

in the union of that arc and of the segment pg. In any of the two cases"

we Teceive a simple closed curve 8§ which containg a rectilinear
segment. »

Choose two distinet points, p; and p,, ingide a segment of § and
denote by P; the subsegment of that segment which has length &> 0
and the middle point of which is p;, ¢ = 1, 2. Let a, be a poéitive number
such that segments Pi° and P5° exist and are disjoint. The set S\ (P5° v P§%)
consists of two components; choose a point s; in each of them, i =1, 2.
If 0 < a < ay, then by 87 we shall mean the component of S\(P§w Pj)
which contains s i=1, 2. .

First we show that there exists a number a such that 0 < a < aq and

) o(Ps, S\P;-’°)>§ for both i=1 and i=2,
and
(8) o(8%,85)> 2.

" Indeed, for if, contrary to (7), we would ha&e 0 (P% S\P?) <

for ea,t.zh. @< qp and some ¢ =1 or 2, then taking a sequence {aptn=1gz,...
of positive numbers a, << a, converging to 0, we would be able to. choose

DR

* ©
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sequences of points”
9 €. E_P¢
@ " n=1,2,..
10) Yn€ NP
such, that )

3 ' a }
(11) e (@n, Yn) <5 for n=1,2,..

By virtue of (9) and of the definition of P{" we infer that o{wn, P:)
< %i‘ for n=1,2,.., whence and from (11) it follows, l?y virtue of the
triangle inequality, that ¢ (pi, ¥s) < an forn=1,2,.. Hence t]?e sequence
of Points {Yn}n=1,,.. is convergent to pi, and this implies, in view of (10),
that p: eS\P‘%". A contradiction to p; being the middle point of the
segment Pi. .

. . . a
To prove (8) suppose, ¢ contrario again, that (81, 82) < 3 for

each a:< . Taking now, as before, a sequence {an}n=12.. converging
to 0 and consisting of positive numbers an < &, we would Dbe able to
choose sequences of ‘points

a2 Lest and AeSF, n=1,2,.,
sﬁéh‘ﬁhat
(13) 9(z?,z§”)<%’3 for n=1,2, ..

Since S8 is compact, sequences {21 n=1,2,0ne and {z&'}nﬂ;’m“ contain
subse;;[uences convergent, in view of (13), to a common limit P01153 zel.
Without loss of generality we may assume that lim# =2 = hmzZ:

Let S; be that subarc of § which contains s; and has end-points P
and p,, 4= 1, 2. From (12) and from obvious inclusions 8" C »S’,-,' where
an <'8; we infer that el formn=1,2,..and for i =1, 2. Since S:
is closed in &, the limit point 2 must belong to both §; and 8;. Thus 2= P
or 2= P,. )

Suppose z=p; (case 2=, is analogous). Since bothq gequenees
(et a0d {)nmr,.. ave convergent 072 =Py by supposition, there
must exist an index n, such that

(14) 27 e PP ~ ST for each’ n> npand for i=1,2.

However, the segment P3° is rectilinear and so (14) implies that
(e, &%) = S[PIN\(ST" v 82")] = S(Fi") = an

for each n > g, contrary to (13)..
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Hence both (7) and (8) are proved, and in the sequel we agsume
that a is fixed and satisfies (7) and (8).
" Put

A=8uPiu8 and B=guPiug.

Both 4 and B are arcs and so elements of $(X), and we shall proceed
to show that there is no subcontinuum H -of X which lies in the middle
between 4 and B. In view of the hypothesis $(X)C C(X) this will be
a contradiction to the convexity of §(X).

With this end in mind we show first that

(15) . d4,B=3.

Indeed, for if a € A and g(a, B) > 0, then a e P, and so

sup g¢(a,B)=sup g(a,B).
aed aept

Since B can be written in the form B = P{\ P! o S\P{*, then

(16)  supe(a, B) = min[supe(a, PY\PY), supo(a, S\PY)] .

aePf aePy

And since, in view of a < ¢, and the rectilinearity of P, we have

an supe(a, PI\FPY) = 7,
. aeP}

and; by virtue of (7), also

1s) supe(a, S\P{*) > 2

. acP§ 2

then taking into account both (17) and (18) we infer from (16) that
(19) supe(a, B) = 7.
- Analogous argument works to the effect that
= g ,
and the two equalities, (19) and (20), yield (15).

Now we show that

@ dunafaofs. e ofs.).

20 ’
=0) supo(4, b)
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In fact, in view of the definitions of A and B we have
ofa,=ofes ) ol wofe.3).
)=l ol ol
Hence, if there would exist a point

pelofas i) ol g\ oleng) v ofs ]

then we would have p ¢ Q(P’l‘ , g) ~ Q(P;, g) , whence, consequently,

(22) ‘ oL P <3

But this is impossible, because P;C P3*C S\PY" and so, in view
of (7), o(P%, P3) >s§ contrary to (22). Hence (21) holds.
Note also that

(23) el re(smg)-o,

since otherwise there would be o(87, ) < §, contrary to (8).
Let H be an arbitrary subcontinwum of X. We shall yet show that if

(24) ECQ(smg) o ECo(s,3),
then simultaneously R

a
(25) o4, H)> g and o(H,B)>7.

a .
In view of the symmetry we may assume that HC Q(S:, Z)' This
. a
assumption implies o(H, 82) > Z (for otherwise o(S1, S;) <3z contrary

to (8)) and therefore, in view of the inclusions §: C 4 and 8z C B, we have

4
The two inequalities yield (25).

a
supo(H,a)>7 and supe(H,b)>7.
aed beB
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Now we may complete the proof, Suppose ‘then that there exists
a continuum H C X such that

R -

(26) Q4 H)=(H, B)=
By the formula (2) it follows then that B C Q (A', g) and HCQ (B, g),

whence HCQ(A, g) ~ Q(B, g)
infer that one of the inclusions in (24) hblds,.lfﬂowe“’er', any inclusion in (24)
implies both inequalities (25). A contradiction with (26).

Hence, in view of (21) and (23), we

§ 4. Applications to hyperspaces Comp (X), ¢(X) and Conv. (X). The
first theorem below is known ([3], Theorem 4.1), but inserting it here
for the sake of completeness we supply it with a new proof.

TeEOREM 4.1. Let X be a compact metric space. Then X is conveis if
and only if Comp(X) is convex.

In fact, if X 'is convex, then the hyperspace Comp(X) is compact
(see [11], IT, p. 21) and has property (S), and so, by Theorem 3.2, it must
be convex. Conversely, if Comp(X) is convex, then by virtue of Theo-
rem 3.4 the underlying space X iy convex too. : :

Remarks. If X is a complete convex space, the hyperspace Comp(X)
need not be convex. An example is provided by the space X constructed
in remarks following Proposition 2.1. In fact, if there were a compact
set € C X such that ¢4(4, 0) = ¢(C, B) = §, then, in view of formula (2),
we would have 0C@(4,%) ~@(B,$), and since the common part
Q(4,%) ~Q(B, 1) consists of middle points of all “arcs ¢ x I’’, hence is
uncountable with the discrete topology, then (' were a finite subset of
that common part. It is easy to check that in such a case there would
be %13 ela; 0) > % and §1€1£ 0(b, C) > %, whence, by the formula (1),
o(4,0)> % and o0, B)> 4; a contradiction. Hence the hypersimce
Comp(X) is not convex. . .

Note, however, that if X is a complete metric space and the hyi)ér-
space Comp(X) is convex, then the space X is convex by virtue of
Theorem 3.4. : '

Before proceed to the hyperspace (X) we shall need some simple
lemmag. ‘ : '

4.2. Let X be a metric space and Ay, Ay, As, ... a sequence of subsets
of X. If

@n © limei(ds, 45) =0,

Ay is dlosed in X, and each set A, A,, ... s’ conmected, then A, is connected.

. @ '
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Proof. Assume, a conlrario, that each set A;, 4,, ... is connected\
but 4, is not. Then there are two non-empty closed subsets F; and I,
of X such that 4,=F, v F, and F,; ~ F, = 0, and, consequently, there
are two open subsets Gy and @, of X such that F,C6Gy, F,CG, and
Gy Gy=0. )

Since 4,C Gy v G, and Gy v G, is open, there is 4, C Gy v @ for n
sufficiently large. And since F, = 0 F,, there is also A NG #0
# Ay~ G, for n sufficiently large. But then A, cannot be connected.
A contradiction.

4.3. Let X be a metric space and Ay, A,y As, ... a sequence of subsets
of X. If (27) holds true and each set A;, As, ... is bounded (respectively,
totally bounded), then the set A, is bounded (respectively, totally bounded).

Proof. Condition (27) implies that
(28) for each &> 0 there exists n(c) such that g(dww, Ao <.

Hence and from the formula (2) it follows that A,C @ (Ang, &), and
therefore 8(Ag) < 6(Ame) -+ 2¢. Boundedness of Angy implies that of A,.
Now suppose that each set Ay, 4;,.. is totally bounded and Aq
is not. Hence for some 7> 0 there exists a sequence ¢, Gy, ... of poia}ts
of A, such that o(ex, ¢;) > 37 for k = 1. Balls @(cx, ) are then pairwise
disjoint and if we choose for each k=1,2,... a point az € Q(¢x, 1), then

(29) olox, @) =0 for k1.

By virtue of (28) we have now o"(Aagm, 4o <, Whence and from
the formula (2) it follows that Aum~ Q(cx, %) 0 for F=1,2,..,
because o € A,. Choosing now & point ax € Anwm ~ @k, n) for k=1,2, ...
we come, in view of (29), to a contradiction with the total boundedness
of 4,.

4.4. Let X be a complete metric space and Ay, Ay, A, ... o sequence
of closed subsets of X. If (27) holds true and each set Ay, 4, ... 18 compadt,
then A, i8 compact.

Indeed, as 2 closed subspace of a complete space, 4, is & complete
space itself (see [11], I, p. 315) and by virtue of 4.3, A, is totally bounded.

Hence 4, must be compact (see [11], II, p. 2). ) )
Recall that a dendrife is a locally connected metric continumm

containing no simple closed curve.

TeRoREM 4.5. Let X be a complete mebric space. Then the following
conditions are equivalent: -

(a) X is convex and coniains no simple dlosed curve,

(b) every subcontinuum of X is a convew dendrite,

(¢) O(X) is comvew.
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Proof. (a)=(b). Assume, a contrario, that X contains a sub-
continuum ¢ which is not a dendrite. Were ¢ locally connected, it ‘would
contain a simple closed curve and this is impossible, because X does
not contain any simple clogsed curve. Thus € is not locally connected
and so it must contain a sequence of pairwise disjoint subcontinua {4,}
convergent to a subcontinuum 4 disjoint with each 4, (ef. [11], I, p. 176).
Choose n such that

2-0'(4, 4n) < min[6(4), §(4a)]
and choose points a,b e A and @y, by € Ay such that
(30) 2-0(a; as) <minfe(a, b), ¢(an, bu)],
(31) 2-0(b, by) <minfg(a, b), 0(an, ba)] .

Covering now 4 with a finite number of convex sets, each digjoint
with 4,, we can choose an arc L C X joining a to b and disjoint with 4,.
Similarly we can choose an are L, C X joining ay to b, and disjoint with L.

Space X is convex by hypothesis (a), there exists a segment b5, C X.
The union L v bb, w Ly is locally connected (cf. theorem of Hahn-Ma-
zurkiewiez—Sierpitski, [11], II, p. 185) and so it contains an arc M of
ends a and a,. In view of (31), §(M) > 4 min[e(a,d), ¢(an, by)]. Hence

‘in‘viei of (30) a segment aay, is not contained in M and so the union
M v aa, contains a simple closed curve. A contradiction.

Thus it is shown that each subcontinuum of X is a dendrite. Were
such a dendrite not convex, we would come, in view of the assumed
convexity of X, to a contradiction with the hypothesis that X contains
no simple closed curve.

Hence the proof of implication (a) =(b) is completed.

(b) =(c). Let 4 and B be two subcontinua of X. Take two arbitrary
points @, ¢ A and b;e B and consider the union. A u 4Dy v B. In view
of (b), this union is a convex dendrite, hence a strongly convex continuum
and a bridge between A and B. Since moreover, as is easy to check
(ef. [3], 2.5), balls Q(4,¢) and Q(B, oY(4, B)—s&) are both strongly
convex for each 0 < &< g4, B), then the common part

(4 abywB)nQ(4, &)~ Q(B, o4, B)—s)
ig strongly convex, hence a continuum. Thaus it is shown that the hyper-
spa,ce_C(X) has property (9).
‘Since X is complete by hypothesis, the space 2% congisting of all
non-empty boqnded subsets of X and metrized by Hausdorff metric is

also complet.e (see [11], I, p. 814), and by virtue of 4.2 and 4.4 the hyper-
space 0(X) is closed in 2%, hence complete itself (see [11], I, p. 315).
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Now (c) follows by virtue of Theorem 3.2.
(¢)=(a). Follows by Theorem 3.5.
The just proved Theorem 4.5 yields immediately

CoROLLARY 4.6. Let X be a melric continuum. Then the following
conditions are equivalent:

(a) X is a dendrite with a conver meiric,

(b) every subcontinuwm of X is convem,

(¢) O(X) is convex.

Remarks. :As is known (see [1] or [15]), every locally eonnected
metric continuum. can be supplied with a convex metrie. It follows then,
in view of Corollary 4.6, that dendrites can be distingnished in the class
of all metric continua X by the following characteristie property: there
exists a metric in X such that the hyperspace C(X) is convex.

Implication (b) = (¢) of Corollary 4.6 has been known ([3], Theorem 3.2)
and implication (e)=-(b) is a positive answer to the problem P2 stated
in[3]. Equivalence ()<= (c) is then an answer to the problem P1 from [31-

Corollary 4.6 says little on the topological structure of the hyp.er—
space C(X) for X being a dendrite. It is then.perhzf,ps worth.to mgntmn
here that hyperspace ¢(X) for X being ﬁmite. de{ldrltes were investigated
in [5]. In particular, a topological characterization of these hyperspaces
has been obtained there. )

As Menger has proved (see [18], p. 92), if in & compact metric space X
there is a convergent sequence of segments {anbn} Whosg EDd—pOID_tS On
and b, converge, then its limit is a segment in X between limas and hmb,,i
The following proposition generalizes Menger's result to the case O
a complete metric space.

4.7. Let X be a complete metric space and let {a,,}hand .{b,,}SZ; mt:;

oints of X such that for each m=1,2,... there 18 a
Ziq;:,egcg.j . OIff:qiman =f a, limb, = b and C is & closed subset of X such that

lim gY(anba, €)= 0,

then € is a segment in X between a and b (). ’
Proof. Sinee ( is compact by 4.4, it suffices to apply Menger’s result
to the space (v | anbs.
4.8. Let X be a complete meiric space and let Ay, Ay, Ay, ... be a.sequmoe
of compact subsets of X. If (27) holds true and each set Ay, Ay, ... 18 CONVET,
then A, 18 convem.

1 . PR — G)

The le () i replacing hypothesls lim el(a,‘b,., =0 by
) mma remains true after ep.
a weaker one, Limapbn = g, but the pl‘ODf is different and somewhat more lenghhy.
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Proof. Take two arbitrary points a, b € 4, and choose two sequences
of points @y, by ¢ Ay such that a=lima, and b = limb, (such sequences
exist by virtue of (27) and formulas for ¢').

By convexity of A, there is a segment a,b, C Ay, and since com-
pactness of 4, v (J A, implies that of 0(4, v {J4s) (cf. [9]), then we
may assume that the sequence of segments {anby} is convergent to, say, ¢.
By virtue of 4.7, ¢ is a segment between @ and b, and since @b, C Ay
for each n=1,2, .. and LimA4, = 4, (see [7], p. 149; cf. also [11], I
P. 248), then CC 4,. Hence 4, is convex.

THEOREM 4.9. Let X be a metric space. Then

(a) X 4s complal\te if and only if Conv(X) is complete,

(b) X is compact if only if Conv(X) is compact,

(e) X is locally compact if and only if Conv(X) is locally compact,

Proof. (a) If X is complete, then the space 2* congisting of all non-
empty bounded subsets of X and metrized by Hausdorff metric is also
fsomplete (see [11], I, p. 314). By virtue of 4.4 the hyperspace Comp (X)
is closed in 2%, hence complete (see [11], I, p. 315). And by virtue of 4.8
the hyperspace Conv(X) is closed in Comp(X), hence also complete.
) The converse implication holds, because the hyperspace X (1),
Isometric to X itself, is a closed subspace of the hyperspace Conv(X).

(b) If X is compact, then the hyperspace Comp(X) is compaet
(see [11], II, p. 21) and by 4.8 the hyperspace Conv(X) is closed in

Comp(X), hence also compact.
) Thg converse implication holds, because the hyperspace X (1),
Isometric of X itself, is a closed subspace of the hyperspace Conv(X).

(e) If X is locally compact, then for every A e Conv(X) there exists
an ¢>0 such that X ~Q(4,¢) is compact. By virtue of formula (2),
X nQ4, &) contains all subsets B of X with the property o4, B) ¢,
and 80 Conv(X n Q4, s)) is a neighbourhood of 4 in Conv(X). In view
of (b), Conv(X ~Q(4,¢)) is compaet. Hence the hyperspace Conv(X)
i3 locally -compact. .

Since the hyperspace X (1), isometric to X"itself, is a cloged subspace
of the‘hypers‘pace Conv(X), and a closed subspace of a locally compact
space is locally compact itself (see [10], p. 146), the converse implication
holds toe.

Thus the proof of Theorem 4.9 is completed.

Remarks. The
of §2 and §3.

'Strange enough, the hyperspace Conv(X) does not preserve con-
vexity. To show this consider firgt an example of the wunit ecircle,
X = {(@,9): 2®+9* =1}, with the geodesic metric. Since any convex
gubcontmuum of X is either an arc of length not greater than = or X it'self,-

)

proof of Theorem 4.9 does not depend on. results
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tnen one can show (cf. [4], § 3, example 2) that the hyperspace Conv(X)
is here topologically equivalent to the union of an annulus X xI and
of an isolated point. Hence Conv(X) need not be. connected (to say
nothing of convexity) even although X itself is convex. And the example

o
of a continuum X = (0, 0) v |J Sk, where S is the circle in the plane
. %=0

of center (3/2%7% 0) and radius 1/2°*" provided with the geodesic metric
(X is again a convex continuum) shows that Conv(X) need not be even
locally connected.

. The problem of characterization of those metric spaces for which
the hyperspace Conv(X) is convex can be fully answered, as will be shown
in the next section, in the case of X being a subspace of a Euclidean space.

§ 5. Hyperspaces Conv(X) and C?;nv(X ) in the Euclidean case.
One of the most interesting is perhaps the case of X being a subset
of a Buclidean space E™ and $(X) being the hyperspace Conv(X) or
anv(X). The two hyperspaces have to-day a well developped theory
going back to J. Steiner, H. Brunn and H. Minkowski. In its present
shape the theory appears to refrain from any topological reference (cf.
a neat presentation of it in the Hadwiger’s book [6]), but it seems that
it can profit even by a little of topologisation.

Some topological results on the hyperspace Conv(X) have been
collected in the following

TrEoREM 5.1. Let X be a subspace of o Buclidean space E". Then

(a) X is complete if and only if Conv(X) 18 complete,

(b) X is compact if and only if Conv(X) is compact,

(¢) X is locally compact if and only if Conv(X) is locally compact,

(4) X is conven if and only if Conv(X) is conves.

Proof. (a), (b), and (c)— see Theorem 4.9 above.

(d) Let X be convex, and let 4 and B be any two elements of.the
hyperspace Conv(X). In the considered here E}lchdean case the bm.dge
P(A, B) does exist (and is unique), and since X is convex by assumption,
P(A, B)C X. Both A and B are convex, 50 is I?(A, B). As we have shown
in § 2, Conv (P (4, B)) has property (§), and by virtue of (b), Conv (P (4, B))
is compact. Hence, in view of Theorem 3.2, it fo]lqws that Conv(P(4, B))
is convex. In particular, it does contain a metric sggment between A
and B. Since inclusion P(4,B)C X implies inclusion Conv (P(4, B))
C Conv(X), this segment is contained in the hyperspace Conv(X). Hence
the hyperspace Conv(X) is convex. ) )

To prove the converse note that if p and ¢ are any two pomts of B,
then the only subsets of E" which lie between (p) and (¢) (in the sense

of Hausdorff metric o) are points. Indeed, for if 0 <e<d= (P, @)
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and if Z is a subset of E" such that ¢'((p), Z) = ¢ and ¢'(Z, (g)) = d—o,
then by virtue of 3.3 there is ¢(p, 2) = ¢ and g(#, ¢) = d—=¢ for each z ¢ Z,
But since B" is strongly convex, there is only one point #z € E™ for which
the last two equalities hold. Hence it must be Z = (2). Therefore, if
9, ¢ ¢ X and the hyperspace Conv (X) is convex, then the space X containg

a metric segment between p and ¢. Thus it is shown that convexity of-

Conv(X) implies that of X.

Hence the proof of Theorem 5.1 is completed.

The hyperspace OJornv(X) is clearly a subspace of the hyperspace
Conv(X) and it is non-empty if and only if X has non-empty interior.
But topological properties of CSIIV(X) are not so good as those of Conv (X).
For instance, as an example of a sequence of concentric balls in X with
diameters tending vers 0 shows, the hyperspace Ognv(X) is neither
compact nor complete independently of whether X is such or not.
Nevertheless, we have the following

TEEOREM 5.2. Let X be a subspace of a Budidean space B™ with the
non-empty inierior. Then

(a) anv(X) is open in Conv(X),

(b) if X is locally compact, then so is C?)-nv(X),

(¢) if X is conves, then so is OKnV(X),

(d) #f X 1is open or comvem, then Ognv(X) s dense in Conv(X).

Proof. (a) To show that OBan(X) is open in Conv(X) take an
arbitrary 4 e anv(X) and for each straight line p in B passing through
the origin O denote by w(p) the width of A in the direction of p. Treating
then such a p as a point of the projective space P! and taking into
account that w(p) is a continuous function (see [6], p. 10) and that w(p)>0
for each p € P*~* we infer by the theorem of Weierstrass (see [11], IT,
p. 15) that :

(32) wy= inf w(p)>0.
ﬂePﬂﬁl
The proof will be completed when we show that if
(33) 0<e< iy,

then the ball Q'(4, &) in Conv(X) with the center 4 and of the radius &

. . . +
lies entirely in Conv(X). For that purpose take an arbitrary element B
of Q%(4, ¢), i.e., a compact convex subset of X satisfying

L 34) ¢4, B)<e,

and suppose, @ contrario, that Int(B) = 0. This means that there exists
an (n—1)-dimensional hyperplane H with

(35) BCH.
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Let P« P"™* be the straight line perpendicular to H, and let H,
and H; be planes parallel to H and realizing the width «(p,). In view
of (32) and (33),

(36) &< o (po) -

By the definition of width there exist points ¢ ¢ A ~H, and
¢, € A ~ Hy, and since the three hyperplanes H, H, and H, are all parallel,
then either g (¢, H) = $w(p,) or ¢(e;, H) > Lw(p,). Whatever of the two
inequalities holds, there is 513 e(a, H) > w(p,), whenee, in view of (35),

sup e(a, B) > fo(po), and, consequently, ¢'(4,B)> }w(p), contrary
aecd

to (34) and (36).

(b) Since, as we have just proved, the hyperspace anv(X) is an
open subspace of the hyperspace Conv(X), and in the considered case
the latter is, by virtue of Theorem 5.1 (c), locally compact, the former
must be locally compact too ([10], p. 146).

(e) Since the hyperspace Ognv(X ) is not a complete metric space,
then to prove its convexity we need more than mere statement that this
hyperspace has property (8). Namely, for any two elements 4 and B
of Ognv(X) we shall construct a family {H,},.r, where I" denotes the set
of dyadic rationals of the real segment [0, 1], of sets H, such that

(37) H,=A and H;,=238,
(38) if y eI, then H, is a compact convex subset of P(4, B),
(39) i yy, yae Iy then oH,, H) = [y1—7al-¢(4, B),

(40)  there exists an a>0 such that the #x-dimensional volume
v(H,) > a for each y e

Put A = Hyand B = El. By virtue of (4) there exist points &, e Int(H,)
and hy, e Int(H,) such that o(hy, k) < o'(Hy, H;). Since hy e Int(H,) and
hy € Int(H,), there exists an n > 0 such that Q(h,, ) C Hyand @ (h,, ) C H;.
Putting a=2(Q(k,#)) we infer that o(H,)>a for y=1,2.

Let %y be the middle point of the segment Tohy. Obviously, Q(hys 1)
CP(Q(ho, 1), @(hy, 77)) C P(Hy, H,). Since @Q(%3,7) is a translation of
Q(ho, m) for o(hg; by) < $¢'(Hy, Hy), then Q(hy,n)C Q(Hoy, $o'(Ho, Hy))-
Similarly, @(hy, n)C @ (Hy, $0'(H,, Hy)). Hence the compact convex seb
defined by the formula

Hi- = P(H,, H;) n Q(Huy %Ql(Hm Hl)) g Q(Hll %QI(HD: Hl))

lies, in view of 3.1, in the middle between H, and H;, and contains
Q(hy, n). Consequently, v(Hy) > a. Moreover, g(ho, k) < *(H,, Hy) and
o(hy, k) < @'(Hy, Hy).
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In analogous manner one defines now sets Hy and Hg, and by an
easy induction the whole family {H,},cr of compact convex sets satisfying
(37)-(40).

Now, since the bridge P(4, B) is compact convex, so is, in view
of Theorem 5.1 (b) and (d), its hyperspace OOnv(P(A,B)). Hence in
view of (37)-(39) the closure of the family {H,},er in the hyperspace
Gonv(P(A , B)) is a metric segment between A and B ([13], p. 87-89).

However, if ( is an element of this segment, then in view of (40) and of .

the cOntInulty of volume there must be v(C) = a. In other words,
GeOonv(P(A B)). And since P(4,B)CX by the convexity of X,
then Oonv (P4, B)C Oonv(X), and 8o this metric segment between A

and B lies in Oonv(X). Hence the hyperspace anV’(X) is convex.

(d) Let X be an open subset of E". If 4 is any given element of the
hyperspace Conv(X), then 4 = o(4, X\A) > 0. Consequently, 0 < & < g4
implies @(4,¢) C X. Hence @(4, ¢ eOonv( ) and, as follows from (2),

4,94, e)=¢e °

And if X is convex and 4 is again any element of Conv(X), then
take a point p in the interior of X at a distance from 4, say e (such a point
surely exists since Int(X) is dense in X), and a ball @(p,n) of radius
7 < &. Then the bridge P(A Q(p, ) is compact convex, lies inside X,

and has non-empty interior. Hence P(4,Q(p,7 ) eOonv(X) and it is’

easy to check that gl(A, P(4,9(p, ) < 2.

Remarks. None of the implications of Theorem 5.2 can be reversed.
In fact, consider in the plane E* a sequence of pairwise disjoint quadrangles
converging to a segment and let X be the union of all these quadrangles

and of one point of the segment to which these quadrangles converge..

It is easy to check that Oonv( ) is locally compact (but X is not, hence
the converse of (b) does not hold) and that Ognv (X)is dense in Conv(X)
(but X is neither open nor convex, hence the converse of (d) does not
hold either). And the example of an open half-plane with two points of
its bougdary adjoined shows that also the converse of (¢) does not hold.
Part (c) of Theorem 5.2 has been known for X = E" Namely,
Shephard and Webster have pointed out that the segment in anv(X)
between its two elements A and B with the chstance o'(4,B)=1"is
defined by the Minkowski linear system f: [0, 1]—>Conv(X) where f(t)
= (1—-1)A+tB ([17], theorem (23)). It is to be noted, however, that

(A-9)4+iB=P(4,B)~Q(4,1-1) nQ(B,1),

and 80 in this particular case their idea overlaps with that of ours
(ef. 3.1 above).

icm®
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An easy consequence of Theorem 5.1 (b) is the following well known
(see [2]; § 18) and for the theory of convex sets most important

5.3. AUSWAHLSATZ OF BLASCHKE. Any sequence of compact convex
sets lying in o bounded region of B" contains a subsequence comvergent to
a compact convew subset of H".

In fact, to infer it we need compactness of the hyperspace Conv(X)
only, where X is a sufficiently large ball in E™ containing that sequence.

Note that Blaschke’s Auswahlsatz holds in a much more geperal
setting: in view of Theorem 4.9 (b) it remains true for a sequence of
compact convex sets lying in an arbifrary compact space (compare this
to [18] and [8], 5.2).

Similarly easy consequence of Theorem 5.1 (c) and of Theorem 5.2
(b) is the following theorem proved first by Hadwiger in the case of
Conv (E") for real continuous functions (see [6], p. 21).

5.4. Let X be a locally compact subspace of a Euclidean space E". If f is

. . . + . ,
a continuous mapping from either Conv(X) or Conv (X) into a metric space,
then f is locally wniformly comtinuous.

In fact, a continuous mapping from a compact metric space into
a metric space is by a theorem of Heine uniformly continuous ([11], IT;
p. 16), and in the considered case each element of Conv(X) and of
Ognv(X) has a compact neighbourhood.

Minkowski theorem on approximation of a convex set in B" by
polyhedra ([14], § 5; see also [2], § 17, and [6], p- 23) ean be stated in
the form

5.5. MINKOWSKI THEOREM. If X is a conver subspace of a BEuclidean
space E", then the family B(X) consisting of convex polyhedra contained
in X 4s dense in the hyperspace Conv(X).

This statement implies more precise statements of Minkowski theorem
as those given in [2], § 17 (note that Conv(X) can be replaced here by
C?)an(X) and that the hyperspace PB(X) is convex itself). Also other
theorems on approximation (cf. [16], [8], etic.) can be stated in a like form.
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Concerning the ordering of shapes of compacta

by
K. Borsuk and W. Holsztynski (Warszawa)

The purpose of this note is to give answers to one question concerning
the existence of maximal shapes (majorants) and to another question,
concerning the existence of continuously ordered families of shapes.

§ 1. Basic definitions. Let X, ¥ be two compacta lying in the Hilbert
cube §. A sequence of maps fx: Q@ -0 is said to be a fundamental sequence
from X to Y (notation: {fx, X, ¥}, or f: X Y. Compare [2], p. 225)
if for every neighborhood V of ¥ there is a neighborhood U of X such
that

fi/U=frsa/U in V for almost all k.

In particular, if fi is the identity map of @ onto itself for every
k=1,2,.., then {fi, X, X} is said to be the fundamental identity se-
quence ix. Two fundamental sequences f = {fr, X, ¥} and g = {g¢, X, ¥}
are said to be homotopic (notation: f~ g) if for every neighborhood ¥ of ¥
there is a neighborhood U of X such that

folU~ge/U in V for almost all % .

The family of all fundamental sequences homotopic to a given
fundamental sequence f: X ¥ is said to be the fundamental class [f]
from X to Y. B

Tt X,Y,Z are compacta lying in @ and if f={fi, X, T}
g= {gx, Y Z)} are fundamental sequences, then {gxfx, X, Z} is a funda-
mental sequence, called the composition of f and g; it is denoted by gf.

Two compacta X, ¥ (not neeessarﬂy Iying in Q) are said to be “of
the same shape (notatlon Sh(X) = Sh(¥) (see [4]) if there are two
compacta X', ¥’ CQ, homeomorphic to X a,nd Y respectively, and two
fundamental sequences f: X' +¥, g: Y'»X' such that gf ~ix- and
fg=iz. If we assume only that I and g satisfy the first of those homo-
topies, then Sh(X) is said to be not greater than Sh(Y) (notation: Sh(X)
< Sh(Y)). If Sh(X) < Sh(¥), but the relation Sh(¥) < Sh(X) does not
hold, then we say that Sh(X) is less than Sh(Y) and we write Sh(X)
< Sh(Y).
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