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Finitely generated semigroups
of continuous functions on [0,1]

by
Sam W. Young (Salt Lake City, Ut.)

1. Introduction.

DrriNiTIoN 1.1. Let ¢ denote the topological semigroup of continuous
function of [0,1] into [0,1] employing the composition product and
imiform topology. We will use the norm notation for the uniform metric
lf—gl= sup 1f(@)—g(@)].

DEFINITION 1.2. Let C, denote the subsemigroup of ¢ consisting
of those elements of ¢ which map [0,1] onto [0,1]. )

Tn [2], the anthors ghow that there exist two elements of C which
together generate a dermse subsemigroup of €. One of the functions is
g(z) = ¥+ 4> and the other containg “copies” of elements of a countable
dense subset of 0. The main result of this paper is Theorem -3.6 which
asserts that there are two fairly elementary elements of U, which together
generate a dense subsemigroup of C,. The techniques of proof in this
paper are entively different from those in [2].

The motivation for this work comes from the theory of inverse limit
spaces. One would like to choose the minimum number of functions and
the simplest possible functions as bonding maps in an inverse limit system.
In this regard, the corollaries following Theorem 3.6 may be useful. [1]
and [B] are applications of [2] to inverse limit spaces.

Without gpecific reference, all of the functions in this paper are
agsumed to be in .

2. The prime fumctions.

DEFINTIION 2.1. A function fe O is called prime if f is not a homeo-
morphism and f = f,f, for fi, fo € Uy implies that either f; or f, is a homeo-
morphism.

Derrvmrion 2.2. Let PM denote the subsemigroup of C, consisting
of those functions which are made up of a finite number of gtrietly mono-
tone pieces. That is, f e PM if there exists a partition 0= do <t < -
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< ay=1 n =1 such that f is increasing or decreasing on each interys]
[@i-1, as], i=1,2, .., n. Note that PM contains the polynomials in ¢,

Lemma 2.3. If f is prime then fe PM.

Proof. We note first that f must be light. Suppose, on the contrary
that f is constant on some interval [a, b]. Let f, be a function such th;é
fol@) =z for all x¢[a,b], fila,b]) =[a;b] and f, is'not monotone on
[a,b]. Then f = ff, and neither f nor f, is a homeomorphism.

Since f is not a homeomorphism, there exist numbers a and b such
that 0 < a <b <1 and f(a) = f(b). We can now apply Theorem 1 of [4]
and obtain a factorization f= fif, where f; is a polynomial and for all
ze[0,1], [fo(z)—o] < }(b—a). Tf we suppose that f, is not a homeo-
morphism, then f; must be a homeomorphism and f,fy(a) = f,fo(b) implies
that fo(a) = fo(b). o ‘ ~
fi@) <at-§(d—a)=3(a+d) and fya)=7Fub)>b—%(b—a)=f(atb)
and so the assumption that f, is not a homeomorphism leads to a contra-
diction. It follows that f= f,f, e PM.

PEFI’NITION 2.4. If f<PM, then the standard partition for f is the
partition 0 = @, < @; < @y ... < @y = 1 such that fis monotone on each
of the intervals [a;-1, @], i =1, 2, ..., n, and

[fla) —flai)][f(a) —fla] <0, i=1,2,...,n—1.
f is said to have n pieces. " v
. Levma 2.5. If f is prime and f has more than two pieces, then
f ({0: 1}) = {07 1}'

. Proof. If we suppose that the theorem is false, then we can suppose
without loss of generality that there exists a number a between 0 and 1
such that f(a)=0 and f([e,1])=1[0,1]. Let b be such that [0, 5]
= f([0, al).

Let f1 and f, be defined as follows:

fulm) = {m](@ , & linear function of 0, a] onto [0, b],

Mo(x) , a linear function of [a,1] onto [0,1];
~1
f._;(a'?) — {m,l..lf(m) on [07 “] ’
me f(x) on [a,1]. ¢

fi and :f2 are well defined and continuous and f= f,f,. f, it not a homeo-
morph}sm since by hypothesis, either m;'f or 'm-;:'l f must have at least
two pieces. We need to show that f([0, i]): [0,1]. Choose = €[0,a]
such that f(z)=1b. Then fy(z)= mi f(z)=mi'(h)= 0. Next choose
Y ela,1] such that f(y)="1. Then fyy) = ms' f(y) = 7'n‘._71(1) = 1. Thus

the factorization f= f,f, is contrary to t thesi i i
rary to the hypothesis that f is prime
and so the lemma is proved. P Jm
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The technique of factorization which was used in the proof of
Lemma 2.5 will be used again in later proofs but with less detail.

peFINTroN 2.6. Let I denote the identity function and J =1—1L1.

DEFINITION 9.7. The functions L, V and Z are defined as follows:
- 1 -2 for O0<a<},

Tle—}  for  b<e<l;
2 for 0<z<i,
Z(my={l—a for }<az<},
201  for F<a<l;

V() = jgm for 02 gg ,
|28 for J<a<l.

PepmNrioN 2.8. The functions f, g e ¢, are said to be topologically
equivalent if . there exist homeomorphisms h, ke ¢, such that f= hgk.
This is denoted by f=g. : .

Tmmma 2.9. If f is prime, then f is topologically equivalent to one of
the functions L; V or Z. .

Proot. Bvery member of PM which has only two pieces is topologically
equivalent to either L or V and so it remains to. show that if f is prime
and has more than two pieces, then f~Z.

' Suppose [ is prime and has more than two pieces. By Lemma 2.5,
we have either Case 1. f(0)=20 and f(1)=1 or Case 2. f(0)=1 and
f(1) = 0. We need to consider only Cage 1 since Jf is prime if and only
iff is prime.

Tt 0= @ << 0y < Gy << oo < tn =1 be the standard partition for f.
Now f is increasing on [0, a4] and decreasing on [ay, a,] with 0 < flas) -
< flay) < 1. Let b == min {(ay, 1] ~F7f (@)} For all a, < @ < b, f(#) < flai).
We ocan now show that f ix increasing on [b, 1]. Suppose not and define
fi and f, as follows: )

' ' [/m(m) , ~ a linear function of [0, b] onto [0,f (b)]‘,
filw) = ‘lf(m) for b =ia <1y

" flwy for 0w LD,
{.«n for b slawl;

- Li(w)

fir) =

§=ff, and neither factor iy a homeomorphism. .
“We now choose (! hetween a, and b such that fle) = min f(z).

ap<siesb
Define f; and f, as follows:
fla) for 0 si@ < ay, ;
fu(@) = my(2), & linear function of [a,, ¢] onto [f(c),f(a})],
= mo(n), o linear function of [c, b] onto [f(e); F(B)T
?

(i) a linear function of [b, 1] onto [fivy, 115
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z for 0 <z<a,
mif(m) for @ <z<e,
Jolw) = —1 .
mg f(x) for ¢c< 23’),
mf(w) for b<w<l;

f=fif, and since f is prime and f, is not a homeomorphism, then fois

a homeomorphism. Therefore f~Z since f,~Z. ’
THEOREM 2.10. f is prime if and only f f 4s topologically equs

to one of the functions L,V or Z. Pty equivalimt

) Theorem 2.10 completes the characterization of the primes but we
will need to prove two more lemmas first.

DEFINITIC!N: 211. If fePM and 0=a,< a, < .. <ap=1 ig the
standard partition for f, then {ay, ..., @,—y} is called the set of vertices

of f. v(f)=n—1, the number of vertices of f. Note that v i
v(f) = . = 0 if
only if f is & homeomorphism. W wd

Lemua 2.12. If fi, f, « PM, then o(f,f,) = v(fy)+v(f).
Proof. First we observe that if f = f,f, , then

(1) each vertex of f, is a vertex of f,
and

(2) i a is a vertex of f,, then each number in fola)
a vertex of f. J

If a is. a vertex of f;, then there exists .a number in () w.

not a vertex of f,. Let 0 = a, < & < ..<a,=1 be the standard

titio.n for f, aJ.nd for each i=1,2,...,n, let 4; denote the number ¢
vertices of f, in f,((a:-1, as)). Then by application of (1) and (2)

’

v(f) = v(fify) >2A¢+v<fz) > o(f)+v(fy) .

Levwa 213, If f= £, f, € PM, then f,,f, e PM.
Proof. First suppose that fa

i ¢ PM. Then e iti
contains an interval on which f, Smarotem, i o]

al i8 not a homeomorphism. Thug ever
Partition of [0, 1] contains an interval which containg a point » in itS;

ﬁg}l}or such that if O is an open interval containing @, then there exist
§ SQQHfﬁeea 6 b Eo 0 Osuch that' fzga) = fz(b.). It follows that there exists
a s 15 Uz, Us, .. of disjoint open intervals such that for each ¢ > 1,

Te are numbers aq, b; € Oy such that Falaw) = fo(be). But if folas) = fu(be),

then f(as) == f(bs). This is a contradicti
such a property. radiction because fe PM cannot have

) Now suppose that f,
in the same manner for fi.
(open relative to [0 , 1)

¢ PM and .choose sequences {0}, {a;} and {bs}
For each i > 1, there exists an open interval U
such that f,(U:) = 0. Choose ¢, ds e Uy such
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that Jalon) = @ and fo(ds) = by. We are led to a contradiction as before

' gince the intervals {U:} are disjoint and f(e:;) = f(ds).

Proof of Theorem 2.10. We now need only to show that each
ot I, V and Z is indeed prime. Lemmas 2.12 and 2.13 imply that if f e PM

and fi8 not prime, then v(f) > 2. Thus each of L and V is prime.

Now suppose that Z is not prime. If Z = f,f,, then f;,f, ¢ PM and
s(f)=0(f)=1 by application of Lemmas 2.12 and 2.13. It follows
that each. of f; and f, is topologically equivalent to either L or V. So there
oxists & homeomorphism % such that one of the following holds: Case 1.
Z~VIV; Cage 2. Z= LLV; Oase 3. Z=VhL; or Case 4. Z~TIhL.

Case 1 and Case 2 are impossible because VAV (0) VAV (1) = Vh(0)—
_Vh(0)=0 and LhV (0)—LhV (1) = Lh(0)~Lh(0) = 0. Case 3 is impos-
sible because VAL (0)—VhL($) = Vh(1)-Vh(0) = 0.

Cage 4 is digposed of by considering that [0, §1 ~ Z 270,34y = 4
is a nondegencrate closed interval and LhL takes 4 homeomorphically
onto [0,1]. 4 contradiction is reached in each case and so the theorem
is proved. .

TamorEM 2.14. If f e PM and f is not a homeomorphism, then f can
be factored = fify ... fo where for cach i=1,2,...,n, fi is iopologically
equivalent to L, V or Z. That is, there ewists a positive integer n and a factori-
gation f = hy gy hafa - Puhna where hyts o homeomorphism, i= 1,2, ..., n+1,
and gs is one of the functions L,V or Z, i=1,2,..,n

Proof. If f is a prime, then the conclusion follows trivially. If f is
not a prime, then f iy the product of finitely many nonhomeomorphisms
in PM. The number of terms in the product may not exceed v(f) because
of Temma 2.12. 8o if f==fify...fn where n is maximum, then each
factor fi, i=11,2, ..., n, is prime. This completes the proof.

As a consequence of Theorem 2.14, we have that if H denotes the
group of ail homeomorphisms in C;, then PM, a dense subsemigroup of Gy,
is generated by {L,V,Z}w H. Furthermore, by making use of [3] we
can still obtain a dense subsemigroup of €, by choosing only two ele-
ments of H.

COROLLARY 2,15, There ewist two inereasing homeomorphisms 0y, Oy
such that {L,V, Z, 0y, 0,} generates o dense subsemigroup of Cy.

Proof. In [3), Knichal proves that there are two increasing homeo-
morphisms 0, and 0, which together generate & dense subsemigroup of
the group of all inereasing homeomorphisms. (Knichal’s Theorem i
generalized by Theorem 3.3 of this paper.) It follows immedidtely that
{01, 05, J} generates a dense subsemigroup of the group of all homeo-
morphisms. The corallary will be proved if we can show that J can be
approximated by finite commpositions of L, 0 and 0,. For this purpose,
suppose 1> &> 0 and let h and & be the increasing homeomorphisms
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defined as follows: h(3) = e and % is linear on each of the intervalg [o, i1
and [4,1]. k(1—¢) = and k is linear on each of the intervals [0, 1—¢]
and [1—e&,1].

We will show that [|J —hLk|| < & First suppose 0 <& < 1—e L ig
linear on [0,1—¢] and since ALKk(0)=1 and hLk(l—e) = ¢ it followy
that J () = hLk(z). Now suppose 1—e <z <1. Then } <k(z) <1 and
0 < Tk(z) < 1 and so 0 < hLk(x) <e It follows that [l — hLE|| < &.

Since h and k can be approximated by finite compositions of 0, and 0,
the proof is now complete.

3. A dense subsemigroup of C, generated by two elements. We begin this
section by showing that there are two homeomorphisms which together
generate a dense subsemigroup of the group of all homeomorphisms.

DEPINITION 3.1. An increasing homeomorphism % is said to be above
the identity if for all 0 <z < 1, h(z) > or below the identity if for all
0<e<l, hir) <z

Lemva 3.2. There exists an mmeasmg Lomeomorphism . above the
identity with the following property:

Given sequences 0 <y <y < ... < e <Ll and 0 <b <by < ...< by <1
and &> 0, there emist sequences 0 << ¢, <0, < .. < e <1 and 0 < d; <d,
< ... < dp < 1 and positive integers m ond % such that [ci— ag| < &, |di—bi| <&
and @"JQ T (e) = di, i=1,2,..,7

Proof. By the lemma of [3], there exist increasing homeomorphisms 6,
above the identity and 6, below the identity with the following property:

(x) Given sequences 0 < & < dy < .. <@ <1 and 0 < b, <by<

.< by < 1 of rational numbers, there ex1st posmve integers m and n such
tha,t 01 Ba(ai) = bt, i = 1,2,

‘We choose such a pair 91, 62 and choose a number « such that

0 <a< } and 6,(a) < }. Note that

IO J (L—a) = J(a) >J(a) > % .
Let ¢ be the homeomorphism defined by letting ¢ (2) = 6,(x) for 0 <z <a
@) =dJ0J (%) for 1—a <2 <1 and ¢ is linear on [a,1—a]. It is not

diffieult to check that ¢ is above the identity and each of JgJ and et is
below the identity.

Let 0<ay<apy<..<ap<land 0<b <b<<.. b <1 be given.
There exists a positive integer n, such that J¢™J (a,) < a and there exists
a positive integer m, such that ¢~™(b,) < a.

Now we can choose sequences of rational numbers 0 < af < 6
<..ar<a and 0<by <by<<..b, <o such that

Mo Md(a)—asd <&  and g™y —bi <&, i=1,9,..,7
Let ¢; = Jp ™7 (a7) and d;= ¢™(by).

icm°®
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BY (%), We can choose positive integers m, and n, such that 67°65%a’})
—b, i=1,2,..,7 Now consider ¢"J¢" I (¢1) where m = m,+m, and
n= ’Vbl'}' Hg-

(Pm—!—anq;M“‘mJ (e) == qf"”nmgr/'(pm"id”'zef (J (p_mJ ((LQ)) = (pm‘"%sz (pn’J (af)

— ()’Jmﬂ-m’e/e]OZ:WJJ(a'i) - mlovlnz%bz( /_) — (P ( ) d

marorEM 3.3. There ewists an increasing homeomorphism ¢ above the
identity such that if h is a homeomorphism and ¢ > 0, there exist positive
indegers m and . such that [h—¢"Jg"J| < e in case h s increasing and
Jh—e T < & in case b is decreasing.

Proof. Let ¢ be as in Lemma 3.2, In case b i increasing, the proof

: is essentially the same ay the proof of Theovem 1 in [3]. If h is decreasing,

then hJ is increasing and [hd — ¢"Jg"d| = |h—¢"Jg"}.
DerNITION 3.4, The function f is defined as follows:

($1)
i-ha  for ()]
b g for
I@=Ys 1 for = .
1o for &9
3 o
. iy

Lemva 3.5. If @ is a homeomorphism as in Theorem 3.3 and & >0,
then there ewist positive integers m amd n such that |lg"fg"—J| < e.

Proof. If I > & > 0, there exist posmve integers m and n sueh that
lo"Je" —dJ)| < & and 1mgc enoug,h that ¢"(s) > 4 and ¢"(})>1—e

TFirst suppose that 0 < o < ¢ "(§) and note that @ ") < &. Then
0<g¢"w) < { and o ‘

L fe) <t and  1—e<g"(}) <¢"fo"(z) <1.
Tt follows that if 0 <&« "({), then
| ") =T (@)] < & |
Now suppose ¢ "(4) = @ = 1. Then § < ¢"(#) <1 and so
faw) o= Jge)  and  oMf"(@) = ¢"T"(@) -
Thus if 0 = w -0 1, then
" f" (1) - ()] < &

. g : ” - Y
TrRoREM 8.6, If ¢ is @ homeomorphism as in Theorem 3.3, then {p, f}
generates o dense subsemigroup of Oy,
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Proof. Let I denote the closure of the semigroup generated by {p, f'}_
Lemma 3.5 gnarantees that J e I and thus by Theorem 3.3, every homeo-
morphism-is in I. If we can show that L, V and Z are in I, then Corol.
lary 2.15 implies that I'= C,.

" Instead of presenting a detailed proof that L, V, Z ¢ I', we can outling
the proof by the diagrams which follow. The symbols ~ and =~ gtang
for “is topologically equivalent to” and “is approximately equal to®
respectively. :

F=

I

<4
1]
=~
R

2

R
1
N

COROLLARY 3.7. {L,Z} v H generates a dense subsemigroup of Cq
where H denotes the group of all homeomorphisms.

Proof. By Theorem 2.14, f can be expressed as a finite product of -

functions eac.h topologically equivalent to L, V or Z. In fact, there exist
homeomorphisms -k, h, and hy such that f = h, Zh,Lh,. Since by Theorem

3.6, {ft v H generates a dense subsemigroup of (,, then {L,Z}v H
does also. )

COROELARY 38 {L,Z,p,J} generates o dense subsemigroup of Cy
‘where ¢ is as in Theorem 3.3.

Proof. This is a consequence of Corollary 3.7 and Theorem 3.3.

2 © .
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CoROLLARY 3.9. There ewists « function L' topologically equivalent
to L such that {L', Z, @} generales a dense subsemigroup of C,. Again ¢ is
as in Theorem 3.3.

Proof. We choose L’ such that L' is topologically equivalent to I
and L'(z) = 1—2 = J (z) for all { <2 < 1. In the statement of Lemma 3.5,
the function f can be replaced by L. Once J is approximated by finite
compositions of L’ and ¢, we can apply Theorem 3.3 and Corollary 3.8.

CoROLLARY 3.10. Same as Corollary 3.9 except {L, Z', ¢}.

We conclude with a theorem which indicates that Theorem 3.6 is
“best; possible.” )

TueoREM 3.11. If {fi,f.} generates a dense subsemigroup of C,, then
one of the functions, say fi, is monotone and the other function f, must have
the following properties:

(1) fo does not map two non-overlapping intervals onto [0, 1].

(2) f; does not map an interval homeomorphically oo [0, 1].

(3) Hither f,(0) or fy(1) s between 0 and 1.

Outline of proof. If neither f; nor f, is monotone, then monotone
functions cannot be approximated by finite compositions of f; and f,.
Consider the following lemma whieh is stated without proof.

LemMA 3.12. If g € O, and ¢ is not monotone, then there exists a positive

cmomber 8 such that for any g’ e Gy and monotone h, |lgg'—h|| =4.

Properties (1) and (2) are necessary in order to approximate Z by
finite compositions of f; and f,. Property (3) is necessary in order to
approximate L. '
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