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A general invariant metrization theorem
for compact spaces

by
Karl H. Hofmann (New Orleans, La)

0. Introduction and background

The question of metrizability of uniform spaces may be considered
to be more than 50 years old; it is true uniform spaces were introduced
in 1937 by A. Weil [18] who immediately establithed their general prop-
erties (including the one that a uniferm space is isomorphic to a metric
uniform space if and only if its uniform structure hag a countable basis);
but as early as 1917 Chittenden [5] established wnat in suitable inter-
pretation might be considered as the first metrization theorem for uniform
spaces. Nowadays these questions are treated as standard in any topology
text (such as N. Bourbaki’s Topologie Génerale, 1948 and J. L. Kelley's
General Topology, 1955). The standard method in a special case appears
in a paper by Birkhoff ([3], 1936). In fact this latter paper produces
a metric on a topological group which is computivle with the topology
and is such that all left translations (say) are isometries. 4 necessary and
sufficient condition for existence of such a metric is the existence of
a countable neighborhood basis for the identity. Independently this was
at the same time noted by Kakutani [13] who even stresses the invariance
of the metric. The proof has found entrance into the texts about topological
groups, such as Montgomery and Zippin’s - Topslogical Transformation
Groups, 1955; the version in Hewitt and Ross’ Abstract Harmonic Analysis,
1963, is a slightly different variant. In fact, for groups with a countable
basis for their topology the existence of invariant metrization has been
established by van Dantzig ([6]) in 1928 who used a process which is
based on the ideas of Urysohn of 1925 ([17]). For Lie groups, invariant
metrization was probably known much earlier as would be indicated in
the 1930 monograph by E. Cartan ([4]). A slightly more general question
is the metrization of a topological space X one which a topological group &
operates on the left as topological transformation group, whereby one
wants a metric Telative to which the group operations are isometries.
Stuch metries should be called invariant. If @ is a Lie group and X a quo-
tient space modulo a compact subgroup, then the metrizability as indicated
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was known to Cartan (op. cit.) 1930. The predecessor of most of the wop
in this direction, however, is a crucial paper by Eilenberg ([8] 1937)01'k
which the invariant metrizability is established for metrizai),le X -
compact G. On this result rests the observation made by Arens'in 1946 &f "
that invariant metrization is possible for a uniform X with a count([bl])
basis for its uniformity and for an equicontinuous @. This in turn is L? g
by Hudson [12] to prove invariant metrizability for the coset spacesef
a compact group (which part of Hudson’s results is contained in Ril :
perg’s) thereby obtaining what Kristensen [14] had proved independe “3}
in 1958 (apparently unaware of the gemerality of Rilenberg’s res:lllty
%}Iore rgeently, in the investigation of compact semigroups (which genera,ll).
is eonsidered as one of the youngest branches of topological algebr y
sevexia‘l authors have established the existence of metrics d on. a cfm : )1;
mefrizable ‘topological semigroup § such that d(sz,ty) < d(» y)pfgr
all s,%,2,y 8 (Friedberg [10], 1968, Hofmann and Mostert [113 1966
;Schnepe‘rx.nan [16], 1966); however Hofmann and Mostert are noi} hut hé
in surmising that this was new at the time (loc. cit. p. 60) because Eﬂin-
berg’s pa,pfar contains this result and in fact the more general one that
on a metrlzal?le space X on which a compact topological semigroup &
operates continuously on the left, there is a metric d with d(f % ?
.< d(z,y) for s,te8, z,y ¢ X. (Metrizability is assumed also for ;S"byi):
is only used in talking about sequences.) ’
one iﬁtﬂe:?s ]1111stt01]'11010ut1li;ne (which does not claim to be exhaustive)
o wondors i;zvt'a t fele might be left to be desired in the topic of in-
ey et a (;m; 0h co_mpact spaces. Yet let us consider the compact
potive gthep1 of the ring of p-adic integers. If |x|, denotes the p-adic
ot % meirignegt T t};en one has |24yl < max{|z|,, |yl,}. If one
S iata 3y 20 )On . by d(z,y)= [#—ylp, then d(a+a,b+y)
amber thoory wo odl 4 an wvametr s, Mo gonomnt, b e
b y : ric. More generally, if G is a (multi-
jgl;czm‘vely wnt.ten) tol).ologlca:l group or semigroup, th’en an ultw(zmetrie
‘ is 2 metric d which defines the topology of & and satisties
(U) d(az, by) < max{d(a,b), d(z,7)}.

8 P - . .

. uch a metric is much more speclal than an in variant group (or
semy; oup) me tric. On eI ur y : 'Wh to [)()10 ical
o ) aturall agks the question . at g' (

oups are i i
group. ultrametric? The answer is a comparatively simple exercise: '

1 . :
4 topological Hausdorff group G hes an ulirametric if and only

if it has a countable nei i i ;
S neighborhood basis for the identity consisting of sub-

thatilz?f; :;z zlilIZgrogp with an interior point is open closed, this meané
ooy zero d el‘;smnal groups .ha.ve an ultrametric. Conversely if & is
Pact and zero dimensional, then the neighborhood filter of
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the identity has & basis of compact open subgroups. Thus for groups
even the question of ultrametrics does not provide any difficulties. The
gituation, however, is strangely different for topological semigroups,
even compact ones. While the invariant metrization theorem for compact
gemigroups follows without much additional effort from the standard
metrization construction of uniform spaces (if one does not want to go
‘pack to Rilenberg’s construction, which is different), this is definitely
not the case for ultrametrics. An example of an ultrametric on a semi-
group which is not a group is the ordinary distance d(z,y)= lo—y| on

the unit interval I relative to the (semilattice) multiplication (#,¥)

| min{z, y}. None of the multitude of slightly different constructions
seems to be of help. Let us look at the problem this way: For a metric &
on a space X and any real number r 2> 0 let Ud,r) = {=,9): d(z,y) <7}
If X is a semigroup, then d is an ultrametric if and only if all TU(d,r)
are subsemigroups of X xX. Let us call a semigroup 8 uléra-umiform,
if it has a uniform structure with a basis consisting of subsemigroups
in 8% 8. (In such a semigroup multiplication is clearly uniformly con-
tinuous.) Tt is in fact possible to observe “this property in a variety of
compact semigroups. The metrization process which we are going to
describe is specifically designed to yield the following result:

2. A topological Hausdorff compact semigroup S has an ultrametric
if and only if it is wltra-uniform and has a countable basis for ils (unique)
uniform structure. )

Tn fact, our metrization process is so general that it contains all
the other invariant or subinvariant metrization processes known to me
as long as compact spaces are involved.

Phere are some applications which are of a purely topological nature,
Tor instance it is not hard to derive from our Main Theorem that

3. On a compact connected locally connected metrizable space there is
o metric relative to which all open and closed balls are conmected.

This is in fact a special case of a much stronger theorem proved
in 1949 independently by Bing [2] and Moise [15] saying that every space
a5 described in 3 allows a convex, metric where & metric d is called convex
if for any pair @,z of elements there is an element y such that 2d(z,y)
= 2d(y,2) = d(z,2). (This result golves a classical problem posed by
Menger in 1928).

Unfortunately, I do not see how our main construction could be
carried on to uniform spaces which are essentially more general than
compact ones.

Tn the first section we formulate the definitions and the main results
and draw the essential conclusions. As usual, everything carries over to
pseudometrics.
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The bulk of the proof is given in Section 2. It is completely algebrﬁig'
and in fact semigroup theoretical. However, Urysohn’s classical ideag
still shine through. Section 3 finishes the proof of the main theorem ang
Section 4 contains an outlook on some applications which emphasgize
the significance of the concept of ultrametrics in a compact semigroup
theory. ‘

I am grateful to Jim Rogers for pointing out referenceg [2] and [15]
to me.

1. Definitions and main results

1. Let X be a set. A get 4 C X x X is called a relation on X, If 4 and B
are relations on X, the composition 4 B is the relation defined by
{(@, b): there is an ¢ X with (@,2) ¢4 and (z, b)-« BY; the converse
relation A of 4 is {(z,y): (y,) e A}. The diagonal Ax of X XX (or
equality on X) is the set {(z,®): & ¢ X}. The set R(X) of all relations
on X containing the equality iy a semigroup relative to composition
with identity Ax and zero X xX; and the function A >4 is an in-
volution of R(X) satisfying (4 o B ™ =BV s 4" A subset A of
R(X) is called involutive it A e implies A ¢, The containment
relation C on R(X) is a partial order such that 4 C B implies 0 « ACC - B
and 4-CCB-C, A™CB™, and AC(4do0)n (¢ o A) for all 4
B, ¢ in R(X). ,

2. Recall that a uniform structure on X is a involutive filter A C R(X)
on X xX with the following property:

For any U<l there is & V e U with ¥ « V C 1. The pair (X, )) is
ea].]led a uniform space. We recall that the neighborhood filter A of the
. {ha,gona;l‘Ax in X xX for a compact space X is a uniform structure and

in fact the only one compatible with the topology.

3. LuMumA. Let X be a compact Hausdorff space and W its uniform

st:n-wtwe. Let A, B be closed subsets of X xX. Then the following con-
dition is satisfied:
S(4, B): For all U el there is aVell such that

AeVoBCUcA-B.T.

Proof. First we observe th

a.t U ° .A o B o 1 10
AoB; hence Tod B el s U is a neighborhood of

alns an open neighborhood W of A o B.
It 8(4, B) were false then for any Velf ’uher:aD would exist elements
g’;; uV)tE J:ﬁ (ur,br) €V, (vp,bp)eB with (ap, by) ¢ W. Since X is
Sincga(cu7 ” eﬂm?[: Vi>(ar, ur, vy, by) has a cluster point (&, u, v, b).
@ i € =4, we have u = . Since 4 and B are closed, then

1#) €4 and (v,b) ¢ B, whence (a,b) is in 4 o B. On the other hand,
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(a, D) 18 2 cluster point of the net (ap, by) which is outside the open set W,
whence (4,5) ¢ W, so in particular (a,b)¢ 4o B. This contradiction
finishes the proof.
Now we define the crucial concept of a property of a uniform space.
4. DEFINITION. A property of a uniform space (X, U) is an involutive
subsemigroup P of R(X) containing the zero X XX and satisfying the
following condition: ’ .

U~ P is a basis of U,

Tt all sets in P are closed and condition S(4,B) of Lemma 3 is
satisfied for all A,Be%P, we say that P is a smooth property. If
any C-totally ordered subcollection of P which has a lower bound in U
has its intersection in 9B, then P is called complete.

Note that R(X) is a property. If R.(X) denotes the set of all elosed
members in R(X) then R(X) is a smooth complete property whenever
X is compact Hausdorff. In fact all properties contained in RAX) are
then automatically smooth by Lemma 3. Less trivial examples will
follow below.

5. If X is a set, then a pseudometric on X is a function d: X xX —~R*
(the set of non-negative reals) such that

(a) d(z,y) = d(y,») for all z,y e X,

b) diz, y)+d(y,2) <d(@,z2) for all ,9,7¢X.

Tt is called a metric, if moreover

(¢) d{z,y) =10 implies z =y.

If d is a pseudometric, we set U(d; r) = {(z,¥) ¢ I XX: d(z, y)g r}
and B(d) = {U(d;r): 0 <r}. If U(d) is the filter generated by the filter-
basis B (d), then U (d) is a uniform structure on X. If Dis a set of pseudo-
metrics, then U(D)= (") {U(d): deD} is called the wuniform stm‘wtmje
associated with D. The pair (X, D) is called a pseudometric space, and if d is
a metric, then (X, d) is called a metric space. )

To the classic results of Weil’s [17] about uniform spaces belongs
the one that for any uniform structure X on a set there is a set D of
pseudometrics with 2 = W(D). )

We now define the concept of a property of a psendometric space.

6. DEFINITION. A property of a pseudometric space (X,D) is an
involutive subsemigroup B of R(X) containing the zero AX x X and
satistying

B(d)CP for all deD.
Note that any pseudometric space has property R(X).
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Now let us proceed to consider further examples (and in fact the
ones motivating the preceding definitions):

7. Let X Dbe a set and § a semigroup operating on X on the left.
(I.e. there is a function (s, @) =>8 21 SxX—>X with (st) 2= 3s-(t-2)).
Then 8 acts on X xX under s-(#,y)=(s-w,s-y). The set P of all
ACXxX such that §-4 C 4 is an involutive subsemigroup of %(X)
containing X x X and being closed under intersections.

Proof. Let 4, B ¢ %P, and take (a,b) ¢ 4 o B. Then there isanwe X
such that (a,2)eAd and (z,b)eB. Now let se 8. Then (s-a,s-z)
=s-(a,2)c4d and (s-@,s-b)=s(x,)) «B. Hence s:(a,d)=(s-a,sb)
edoB. Thus 8-(4 o B)C A - B. The remaining assertions are even more
trivial.

The following are special cases of 7.

7 (a). Let G be a semigroup. Let X = § = ¢ and s o= sz.

7 (b). Let G be a semigroup and G the semigroup on the set on
which @ is based with the multiplication g o h = hg. Set X = &, 8§ = Gx &
and (g, b)-z = gzh.

If (X, 9R) [resp., (X,D)] is a uniform [resp., pseudometric] space
having property P of 7, then U [resp. D] is called invariant. In Case 7 (a)
the term left subinvariant has been used. :

8. Let § be a semigroup. The set P of all subsemigroups of §x§
containing the diagonal is an involutive subsemigroup of R(X) containing
X xX and being closed under intersections. The proof is not more com-
plicated than the one of 7 and is omitted.

If N [resp. D] is a uniform- structure [resp. a set of pseudometrics]
on § such that (X, U) [resp. (X, D)] has property P of 8, then (8, U) is
called an wltra-uniform semigroup [resp. (8, D) is called an wulira-pseudo-
metric semigroup]. Multiplication in an ultra-uniform semigroup is uni-
formly continuous. An ultra-psendometric ¢ on § is characterized by
the condition

d{az, by) < max{d(a,bd), d(z,y)} for a,b,z,yef,.

A metric which is an ultra-pseundometric is called an wultrametric.
Now we formulate the general pseudometrization theorem.

9. MATN TeroREM. Let (X, W) be a uniform space with a smooth and
complete property P. Then there is a set D of pseudometrics such that (X, D)
has property B and U(D)= U. If U has a countable basis then there is
a pseudometric d having property B and satisfying W(d) = W. If in addition
W is separated, then d is a metric.

With P = R(X) this includes the standard pseudometrization
theorem of compact spaces; however, because of the smoothness require-
ment it does not generalize the general psendometrization theorem for
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uniform spaces. In fact it includes the left invariant metrization theorem
for first countable topological groups only if the group has a basis of the
identity neighborhoods each of which is invariant under inner auto-
morphisms. This covers the abelian case. However, virtually all known
results referring to compact spaces are included, e.g. the two sided in-
variant pseundometrization theorem for compact semigroups (Hofmann
and Mostert [11] p. 49) and groups (van Dantzig [6]), the invariant
metrization theorem of Bilenberg for compact semigroups S operating
continuously on a compact metrizable space X [8] (Eilenberg’s space
need not be compact, however!) and therefore also the invariant metri-
zation theorems of Hudson [12] and Kristensen [14].

Tor the sake of completeness we formulate a version of Eilenberg’s
theorem: ’

10. CoROLLARY. Let 8 be a compact semigroup operating continuously
on a compact space X. Then there is a family D of pseudometrics defining
the topology of X such that

d(s-z, s y) <d(w,y) for al se8, @, yeX, deD.

If8 is effective (i.e. if s @ = t-a for all @ « X implies s = 1) then the following
two conditions are equivalent:

(i) 8 is a group whose identity acls as identity on X.

(il) All 8-operations are D-isometries (i.e. d(s-x, s-y)= d(w,y) for
all deD).

Proof. We apply the Main Theorem with the property defined in 7. .
If (i) is satisfied, then )

Ao, y) <d(s™ @, s7) <d(s(s7'0),s-(s7y) = dlw,y) forall deD.

Hence (ii). Suppose that (ii) is satistied. We may identify S with a compact
subsemigroup of the semigroup of all continuous self maps of X with the
topology of uniform convergence. If ¢ is a 9-isometry then s is injectiv.e
since @ defines the topology. But ¢(X) is a closed subspace since X. is
compact; again s cannot be a 9 -isometry if @(X) # X. Thus ¢ is bijectn{e
and hence a homeomorphism. The group of all D -igometries is equi-
continuous and closed in the pointwise topology. By the theorem of
Ascoli it is compact. Thus 8 is a compact gubgemigroup of a compact
group and is, therefore, a group ([11], p. 77)-

Tt tollows, that under the conditions of Corollary 10 thfa group of
units in § ig exactly the set of 9D -igometries, if 8 acts effectively.

Tf the smoothness condition could be eliminated, then Theorem 9
would uriquestionably be the most general in the area.

However, Theorem 9 has consequences which do not follow from
any of the known metrization theorems.
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11. CororLARY. Let 8 be a compact Hausdorff topological semigroup.
If the (unique) uniform structure U of 8 has a basis of subsemigroups in
8 % 8, then the topology of 8 is defined by a set D of ultra-pseudometrics,
If the space of 8 is metrizable, then S has an ultrametric. )

Proof. Let P be the set of all closed subsemigroups of §x 8 con-
taining the diagonal. Then (8, U) has the smooth and complete property P.
The result follows from Theorem 9.

12. CorOLLARY. Hvery ultra-uniform compact Hausdorff semigroup is
the projective limit of ultrametric compact semigroups.

The proof follows routinely from Corollary 10 (see [11], p. 48 ff)
Some remarks as to the significance of Corollary 12 will be given in
Section 4. ’

There are, however, purely topological applications of the Main
Theorem. The following is an example.

13. COROLLARY. Let X be a compact conmected, locally connected [resp.
locally arcwise connected) space. Then there is a set of pseudometrics D
defining the topology of X such that all balls {x: d(z,y) <7} and
{w: d(z,y) <71}, 0<r,yeX,deD are connected [resp. arcwise con-
nected).

In particular, if X is metrizable we may find a metric d defining the
“topology and having this property. )

Proof. Let P be the set of all closed A C X' x.X, Ax C A such that
A(z) and A" (z) is connected [resp. arcwise connected], where A (z)
={aeX: (z,a)cA}. Let U be the uniform structure of X and U el
By the compactness and local connectivity of X, the space is covered
by 2 finite union of open connected sets V;, =1, ..., n, with V*x V¥ C U.
Then W= | (VixV3i) el and WC U. Hence U ~ P iy a basis for .
Moreover, suppose that 4, B . Then for any # ¢« X we have (4 o B)(x)
= U {B¥): yeA(x)}; since A(x) and B(y) are always connected, 50
is (4 o B)(). Similarly, (4 oB)"™ (2) = (B"™ o A"V)(3) is connected.
[These arguments maintain in the case of arcwise connectivity.] Thus P is
& subsemigroup of R(X). It is clear that 4 P implies that A g in P.
Moreover, the intersection of a C -totally ordered subset of is again in P.
Hence' P is a smooth and complete property of (X , U). By Theorem 9
there is a family of pseudometrics with property § defining the topology.
It deD and U(d;7) = {{=,9): d(z,y) <r} for 0 <7, then U(d;)(y)
= {o: d(z,y) <7} for all y ¢ ¥; since U(d;7) is contained in P, then
all closed d-balls are connected [resp. arcwise connected]. Sinc’e ‘any
d-"ball {e: d(@, y) < r} is the union of the closed d-balls {w: d(z,y) < s}
with 0 < s <7, all open d-balls are connected [resp. arcwise conh‘ected].

For related and in some sense much stronger results see [2], [15].
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2. Involative partially ordered semigroups

1. A semigroup 8 is said to be pam'aiby ordered relative to <, if < is
an antisymmetric transitive relation on 8 satisfying

(1) @ < b implies ac < bc and ca < cb for all a,b,ce 8,

(2) a <ab and a <ba for all a,bef.

2. A semigroup S is said to be involutive, if there is a function a |- a*:
S8 such that

(1) a** =@ for all aed,

(2) (ab)* = b*ax.

An element a €8 is called hermitean (or symmetric) if a* = a. An
involutive partially ordered semigroup is a partially ordered semigroup
with involution * satisfying .

(3) & <D implies a* < b* for all a,be 8.

Remark. It is readily seen that in an involutive semigroup any
elemént of the form a*s is symmetric and that the identity and zero

(if they exist) are symmetric. If o and b are symmetric, then aba is
symmetric. .
BEXAMPLES. Any -group is an involutive semigroup with involution

o* = ¢, The multiplicative semigroup of any involutive algebra (such
as a C*-algebra) is an involutive semigroup. For any set X, the semi-

-group R(X) is an involutive partially ordered semigroup relative to

composition of relations and A-+4"Y as involution and C as partial
order (Section 1).

3. A unisemigroup is an involutive partially ordered semigroup U
satisfying the following conditions: ’

(1) welU and ve U imply the existence of a weU with w<w
and w < v. '

(2) wel, ve U and u < v imply +* <u*

(8) w e U implies the existence of a ve U with v < u.

We will call the unisemigroup smooth, if in addition it satisties the
following condition:

(4) @,b,ue U imply the existence of a » e U with avb < Uabw.

Examprn. If (X, ) is a uniform space, then W is'a unisemigroup.
More generally, if (X, 1) has a property P [resp. a smooth property P
congisting of closed sets (Section 1)] then U ~ 9P is a unigemigroup [resp.
a smooth unisemigroup]. :

Fundamenta Mathematicae LXVIIT 19
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The following properties are direct consequences. of the definitions;
we give the proofs to indicate the general working of the concepts:

3 (a). Let U be a unisemigroup. Then the following statements hold:

(5) u e U implies the existence of a v e U with v*v < .

(6) u e U implies the existence of a symmetric w with w < u.

Proof. By 3 (3) there is a p ¢ U with p* < u. By 3 (2) we have p* ¢ U,
and by 3 (1) there is a w ¢ U with w < p and w < p*. From 1 (1) and 2 (2)
we deduce w*w < p** p = p* < w. Thus we have (4), and (5) is an im-
mediate congequence thereof. )

In the next step we introduce a partial order which generally
refines < properly. ‘

4. DeFiNITION. Let U be a unigemigroup. We define a<b if and
only if there is 2 u ¢ U such that wau < b. :

Remark. The definition is clearly equivalent to the stipulation that
there be elements u,v e U with wav < b.

The following assertions are straightforward in the spirit of the
proofs given above.

5. (1) On a unisemigroup U the relation < is transitive and refines <,
ie. a<b implies a < b.

(2) If p<a<b<g, then p<yq.

(3) If a<b then there is an m with a<m <b.

(4) If a, b are symmetric and a <b, then there is a symmetrie m such
that a <m <b. =

The following lemmas are used in the main induction step in the
proof of the principal theorem.

6. Let I be a finite set. Suppose that @, a1, by are gymmetric elements
of a smooth unisemigroup U satisfying

. Pa, me<Lb;, iel.

Then there is a symmetric y such ythat
(1) =<y,
(Il) Yag, a¢y<bi, iel.
(This is the only place where smoothness is used in the entire discussion.)

Proof. By 3 (1), (6), and by (1) it suffices to produce y if I ig singleton.
Therefore suppose that we have symmetric elements z, a,b, ¢ with
wa, ax <b. This means that there is a w ¢ U with wxaw, warw <. b. Then
we pick a % e U with 4® < w. Since U ig smooth, we find a gymmetric
vel with » <u and ave < uron, ave < uaxu. Let y = vaw. Then y is
symmetric and ye = vrva < vuven < wwau® < wraw < b. Similarly ay < b.
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7. Let @, a be symmetric elements of a smooth unisemigroup. If
2* < a, then there is a symmetric y with 2 <y such that y* <a.

Proof. There is a w e U with waz*w < a. We find % ¢ U with %* < w.
Qince U is smooth, there is a » ¢ U such that sve < us’u. Finally we find
a symmetric 2 € U such that #* < v and 2z < u. Now l_et y == 222. Then 2 <y
and o = awdtae < povae < purt < afet’ <ww < a.

Tor the formulation of the following main result we introduce the
following convention: If I is any interval of real numbers, then Iq de-
notes the set of all dyadic rational numbers m/2" which are contained in I.

8. THEOREM. Let U be a smooth wnisemigroup and g > Uy ... & n0%-
increasing sequence in U. Then there is a function f: 10, 1Ja—T satisfying
the following conditions:

(1) flr)* =f(r), €10, 1]a.

(2) fO)f(s) < flr+s), #,8,7+8€10, 1a.

(3) f(r) <f(s) whenever r < s; 7,5€]0, 1]a.

(@) FO2") < ny FREHDR™) < unf(gf2")un for g=1, .., 2"—1,
and n=0,1, ..

Proof. We define f(p/2™), p=1,2,..., n= 10,1, .., by induction
proceeding as follows:

(a) We let f(1) << %,.

(b) Tt f(p/2") is defined then, of course, we have

27%
f(szn) = f(:fﬂ) ! m= 0’ 1’ 2’

{c) Tf f(p/2") is defined forn =1, ..., 2% n=0, 1&4.1., N, we pr_o(%t_lga
induetively f{r(k)), k=1,2,..,2", with r(k)=(2""—2k-+1)2 .
This will finish the induction. .

Now suppose, that indeed f(r) is defined for r e Jy = {p/2 P = 1, ..,
2" n=0,1,.., N} such that the following properties are satisfied:

(1) f(r)* = flr) for 7 edy,

(2n) f(Nf(s) <f(r-ks) for 7,8, 7+s eJw,

(3x) f(r)<f(s) for r < 8,7, 8 ey

(4x) F(1/2") <y for m=0,1,..., N,

2 T E —
f(i;ﬂti}‘) 5 ’Lbnf(-g;ﬁ> g for g=1,.,2"—1, n=1,..,N-1.
. ; N

Note that f(2p/2V ) is already defined by Remark (b)forp =1, ..., 27.

The arguments » (k) are exactly the ones missing in Iy By b (4) we find
a symmetric f(r(1)) such that f(1—1/2") <f(r(1)) <f(1). Now we suppose
10%
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that f(r(k)) is defined for k=1,.., K < 2%, so that conditions (1)-(4)
are satistied for all 7, s, r-+s, (2¢--1)/2" edy v {r(k): k=1, ..., K}. Call
this last set Jy,x.

Let s = (2¥ "' — 2K —2)/2"""; then

e
r) = AT e,

For convenience we let f(0) be an identity associated to U. By induction
hypothesis we have
FOFE), f&)f(0) <fls+1)  for t<1~s, tedyx.
But f(s+1) <f(s+1-+1/2" ), whenever t < 1—s, teJy,x. Then
FOF(8), F)f@) <f(E+r(E+1)  for tednx, t+r(E+1) <1.

Now we apply Lemma 6, Lemma 5 (4) and Definition 3 (1) to obtain
a symmetric element f(r(E+1)) ¢ U such that

fo) < K+1)<f( K)
and that
FOFlr(E+1), f (f(EAV)f) <SFle+r(K+1)  for

t4r(K41) <1,tedyx.
We also observe that

f(8)* < f(2s) <f<2s+~2—ﬁ,) =f(2r(E+1)) for 2s<1.°

By Lemma 7 and 3 (1) we may then also assume that we have selected
7(E+1) in such a fashion that f(r(K-+1))* <f(2r (K-+1)). Finally, we
find a symmetric v e U with v* € 4x.,. Then

of(s)o < 8)0® < Uysaf(8)un+1, Whence F(8) € unqaf(8)Untr .

So there is a symmetric w e U with f(s) €w < Unqaf(8) Urys . By 3 (1)
“and 3 (5) we may assume that in fact fr(K-+1)) <w. Thus f(r(k)) is
defined for k=1, ..., K41 < 2%, so that conditions (1)~(4) are satisfied
for all r,s,r+s,( 2q+1 2" e Ty g
This finishes part (¢) of the induction and thereby fmls]les the proof.
9. COROLLARY. Let U be a smooth unisemigrowp in which every < -totally
ordered set with a lower bound has a greatest lower bound. Let Uy 22 Uy 22 o
be & non-increasing sequence in U. Let f be defined as in Theorem 10 and
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define functions F'y G: 10, 1[~U by F (r) = inff([r, 1]a), = inff(]r, 11a).
Then the following conditions are satisfied:

! )‘-I‘( 7 =TF(r), G(r)* = G(r) for all v <10,1[.

(2) F(r)F(s) <TF(r+s), G(r)G(s) < G(r+s) for r,5,r+5€]0,1[.

(3) ( ) < G(r) <F(s) < G(s) whenever 0 <r < s<1.

(4) G(r)=infG(]r,1[) = infl’(]r 1[) for 0 <r<1; f(r)= F(r)
< G(r) for r€10,1[q and F(r) ) for €10, 1L[\]0, 1[a.

(B) F(12") <ty m=0,1,2, ..., and G(1/2") <up-1,n=0,1,2,..

Proof. The relation F(r) < G(r) is trivial.

(1) If 8 C U satisfies 8* = 8, and if s = inf §, then s* = int§* by 2 (3),
hence §* = inf§* = inf§ = s.

(2) Let r, 5,78 €]0,1[. Then there are dyadic rationals 7,8 wibh
r<r, s< 8, r'4+s < 1. Then we have F(r)F(s) < G(r f )f(s’
< f(r'-+8') by 1 (1) and 8 (2).

But inf{f(r'4-¢'): " e[r,1a, 8’ e[s,1]a, ¥'+8' <1}=F(r+s) and

inf {f(r'+8'): #’ €]r, Lla, 8" €18, 1]a, ¥+ < 1} = G(r+s).

Hence (2) is satisfied.

38) Let 0 <r <s <1. Tind dyadic rationals #’, 8’ with r < 7' < 8’ < s.
Then F(r) < G(r) < f(#') <f(s') < F(s) < G{s).

(4) Let 0 <r < 1. We hzwe

inf@(]r,1]) = inf {intf(1s, 11a): 7 < 8 < 1} = inff(]r, 11a) = G(r),
but also :

infF(]r, 1]) = inf {inff([s, 1]a): 7 < s < 1} = inff(]r, 1]a) = G(r) .

If r is dyadic rational, then clearly flr) = F(r), if r is otherwise,
then [r,1]g= 17, 1]a, whence F(r) =

(8) By (4) above, F(1/2") 11/2 , and by 8 (4), f(1/2") < un for

all n=0,1,.. Further, by (3) above, we have G(12") < F(1j2"7Y) for
n=1,2,..; hence (b).

3. The proof of the Main Theorem

Let (X, 1) De & uniform space and P a smooth and complete property
of (X,U). Then Us=1U P is a smooth uhisemigroup in which
every C-totally ordered subset with a lower bound has a greatest lower
bound, If U,D U, D ... is a sequence of entourages, then we may in fact
assume that all of the U, are in U by the definition of a property.
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- Now Corollary 9 of Section 2 applies-and giveys a function G: 10, 1[»7
with the properties indicated there. ‘ ’
We define & function d: X x X >R by

d(a,y)=int{{re]0,L[: (z, y) e G(r)} v {1}) .

Thus d(z, y) = 0 it and only if (@,9) e N {G(r): r €10, 1[} and d(z, y) = 1
;f :;n:ll( Onlf if (z,y) ¢ (J{G(r): v «]0,1[}. In all other cases we have in
act d(z,y) = min{r ¢]0, 1[: (z,y) € G(r)} (8 (4) of Section 2 i
in particular that ’ ’ ( l 2. 1 fllows
(a) G(W‘).= {(w, y) e X xX: d(m,y) <r} for 7 €10, 1[, since trivially
ga:, y) € G(r) implies d(z,y) <7 and d(w, y) <7 means min {s: (v,y) e G(sl)}i
<'r and therefore implies (z, y) € G(r). l
(Note. that-this conclusion would fail in general if we had used the
function ¥ in place of @.) Since all G{r) are symmetric, we have
(b) d(z,y) =d(y,a) for all @,y ¢ X. '
We claim that i
(e) d(x,2) <d(x,y)+d(y,2) for all »
_ y,zeX. If d(» dly, 2
>1, then there is nothing tO’ prove. . &t il
Now suppose that d(x,y)-+d(y,: £ r ]
Y,2)<1l. If r,8,74+5€]0,1[ are
?,hoslcim- so that (z,y)e @G(r) and (y,2) e G(s) then 8’(2) of Séction 2
;mp es that (z,2) € G(r) o G(s) C G(r+s), whence d(x,z) <r-+s. Pasgging
0 the greatest lower bounds of the sets of admissible » and s we obtain (e)
By 9 (5) we observe that .
(d) d{@,y) <1/2" implies (z,y) ¢ Up-y tor n=1, 2,
Conditions (a), (b) and (¢) show that d i
) i8 a pseudometric with
fro;?e.rty PB. There isa set § of families {Un: #'=.0,1, ...} such that all
amilies are decreasing and that U® is a basis for U. Fence there is

a set D of pseudometrics with
: property such that U = .
remainder of Theorem 9 of Section 1 is ciﬁa.r. . e

4. Applications of ultrametrization

o Csjuli;ag;le;:ﬁln otfh ultraymetri-zation naturally plays an important role
not partientie (11)6 ' le:gry and in numbgr theory; but these aspects do
o ey & 1:1 " on‘our ultram.etrlz.ation theorem. However, there
ooposits to the dapc' ' semxgroups .Whmh In some sense is diametrically
ey the caté;zrc; -g;“;)u};s) 1311)1121? the cﬂat&gory of compact semigroups,
_cat .t semilattices (i.e. semigroups wi

{a; n(i:;)m.m;tatlve 1de.1;np0.tent. multiplication). We ha(d mentiolgzgll’f)]:zntvvélzz

nterval semilattice is an ultra-uniform semilattice. All totally

e ©
Im A general snvariant melrization theorem for compact spaces 293

(51

disconnected compact semilattices are ultrd-uniform. One observes without
oo much difficulty:

1. The category of ultra-umiform compact semigroups is complete and
closed under the forming of quotients. : . :

In particular it follows that all subsemilattices of a semilattice I*
where I is the unit interval semilattice and X is any set are ultrauniform.
Tt is less obvious and may be proved with results of Lawson’s and our
ultrametrization theorem that: ‘ .

2. For a compact semilattice S the following statéments are
equivalent: .

(a) 8 is isomorphic to a subsemigroup of some I (i.e. the morphisms
81 separate the points of 8). :

(b) 8 is ullrauniform.

(¢) 8 is a projective limit of ultrametric compact semilattices.

(4) Bvery point in S has o neighborhood basis consisting of compact
subsemilattices. ‘ .

(e) Buvery point in 8 has a neighborhood basis consisting of open sub-
semilattices.

(&) 8 4s a quotient of a totally disconnected semigroup.

Tt is noteworthy that (e) does not follow straight-forwardly from (d),
put does via the ultrauniformity. Also there are semilattices which do
not satisfy the conditions of 2. Thus ultrametrization yields an important
contribution to the classification of compact semilattices.
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Finitely generated semigroups
of continuous functions on [0,1]

by
Sam W. Young (Salt Lake City, Ut.)

1. Introduction.

DrriNiTIoN 1.1. Let ¢ denote the topological semigroup of continuous
function of [0,1] into [0,1] employing the composition product and
imiform topology. We will use the norm notation for the uniform metric
lf—gl= sup 1f(@)—g(@)].

DEFINITION 1.2. Let C, denote the subsemigroup of ¢ consisting
of those elements of ¢ which map [0,1] onto [0,1]. )

Tn [2], the anthors ghow that there exist two elements of C which
together generate a dermse subsemigroup of €. One of the functions is
g(z) = ¥+ 4> and the other containg “copies” of elements of a countable
dense subset of 0. The main result of this paper is Theorem -3.6 which
asserts that there are two fairly elementary elements of U, which together
generate a dense subsemigroup of C,. The techniques of proof in this
paper are entively different from those in [2].

The motivation for this work comes from the theory of inverse limit
spaces. One would like to choose the minimum number of functions and
the simplest possible functions as bonding maps in an inverse limit system.
In this regard, the corollaries following Theorem 3.6 may be useful. [1]
and [B] are applications of [2] to inverse limit spaces.

Without gpecific reference, all of the functions in this paper are
agsumed to be in .

2. The prime fumctions.

DEFINTIION 2.1. A function fe O is called prime if f is not a homeo-
morphism and f = f,f, for fi, fo € Uy implies that either f; or f, is a homeo-
morphism.

Derrvmrion 2.2. Let PM denote the subsemigroup of C, consisting
of those functions which are made up of a finite number of gtrietly mono-
tone pieces. That is, f e PM if there exists a partition 0= do <t < -
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