Fiber homotopy type of associated loop spaces

by

F. H. Croom (Lexington, Ky.)

1. Introduction. Let E and B be topological spaces with base points and $\pi : E \to B$ a continuous map. This paper gives necessary and sufficient conditions that the fiber structures $(\Omega E, p, \Omega B)$ and $(\Omega B \times \Omega F, q, \Omega B)$ be fiber homotopy equivalent where F is the basic fiber of (E, π, B), ΩE is the space of based loops in E, $p : \Omega E \to \Omega B$ is the natural map induced by π and q is the projection on the first factor. From this result it is observed that if (E, π, B) is a Hurewicz fibration with cross section, $(\Omega E, p, \Omega B)$ and $(\Omega B \times \Omega F, q, \Omega B)$ are fiber homotopy equivalent. It follows that the higher loop space $\Omega^2 E$ is H-isomorphic to $\Omega^2 B \times \Omega^2 F$ for $n \geq 2$. This naturally implies the known result ([3] p. 152):

$$\pi_n(B) \cong \pi_n(B) + \pi_n(F) \quad \text{for} \quad n \geq 2.$$

2. Preliminaries.

DEFINITION. A fiber structure (E, π, B) is a weak Hurewicz fibration if there is a weak lifting function

$$\lambda : A = \{(s, a) : E \times B^I ; p(s) = a(0) \} \rightarrow E^I$$

such that λ is continuous,

$$\pi \lambda(s, a)(t) = a(t) \quad (t \in I)$$

and the map $(s, a) \rightarrow \lambda(s, a)(0)$ is fiberwise homotopic to the projection on the first factor.

The following analogue of the Curtis–Hurewicz theorem ([1], [4]) is easily proved.

Theorem 1. The fiber structure (E, π, B) is a weak Hurewicz fibration if and only if for each space X, continuous $f : X \rightarrow E$ and homotopy $\varphi : X \times I \rightarrow B$ of f there exists a homotopy $\Phi : X \times I \rightarrow E$ covering φ such that Φ_s is fiberwise homotopic to f.

Theorem 2. In order that $(\Omega E, p, \Omega B)$ be fiber homotopy equivalent to $(\Omega B \times \Omega F, q, \Omega B)$, it is necessary and sufficient that $(\Omega E, p, \Omega B)$ be a weak Hurewicz fibration with cross section.
The maps involved are understood to be base point preserving. A weak lifting function \(\lambda : \beta \to E \) preserves base points provided that \(\lambda(a_0, C_\beta) = C_\beta \) where \(a_0 \) is the base point of \(E \) and \(C_\beta \) is the constant path \(C_\beta(t) = a_0 \).

3. Proof of Theorem 2.

Necessity. If \(f = (f_1, f_2) : \Omega E \to \Omega B \times \Omega E \) and \(g : \Omega B \times \Omega E \to \Omega E \) are fiber homotopy equivalence pairs, a weak lifting function

\[\lambda : (\alpha, \beta) \in \Omega E \times \Omega F : p(\alpha) = \tilde{p}(0) \to \Omega F \]

and cross section \(\chi : \Omega B \to \Omega E \) are defined by

\[\lambda(\alpha, \beta)(t) = g(\tilde{\beta}(t), f_2(\alpha)_t), \quad \chi(\beta) = g(\beta, C_\beta). \]

Sufficiency. Let \(\lambda \) be a weak lifting function and \(\chi \) a cross section for \((\Omega E, p, \Omega B)\). Define a homotopy \(R : \Omega B \times I \to \Omega E \) by

\[R(\beta, t)(s) = \begin{cases} \beta(2s(1-t)), & 0 \leq s \leq \frac{1}{2}, \\ \beta(1-t), & \frac{1}{2} \leq s \leq 1, \end{cases} \quad (\beta, t) \in \Omega B \times I, \]

and let \(S : \Omega E \times I \to \Omega E \) denote the corresponding homotopy for \(\Omega E \). Define a homotopy \(\varphi : \Omega B \times I \to \Omega E \) by

\[\varphi(\alpha, t) = \lambda(\chi(\beta)(\alpha)_t), \quad (\alpha, t) \in \Omega E \times I, \]

where \(\chi(\beta)(\alpha)_t = \chi(\beta)(1-t) \) and \(\lambda \) denotes the usual path multiplication.

Observe that \(\varphi(\alpha, 1) = R(p(\alpha), 1) = C_\beta \) so that

\[\varphi(\alpha) \subset p^{-1}(C_\beta) = \Omega E. \]

Define \(f = (f_1, f_2) : \Omega E \to \Omega B \times \Omega E \) and \(g : \Omega B \times \Omega E \to \Omega E \) by

\[f_1(\alpha) = \varphi(\alpha), \quad g(\beta, \sigma) = \chi(\beta) \cdot \sigma. \]

Note that \(g \) is an \(H \)-homomorphism if \(\Omega E \) is homotopy abelian and \(\varphi \) is an \(H \)-homomorphism. For \((\beta, \sigma) \in \Omega B \times \Omega E \),

\[f_2 g(\beta, \sigma) = p(\chi(\beta) \cdot \sigma) = \beta \cdot C_\beta \]

and

\[f_2 g(\beta, \sigma) = \varphi(\chi(\beta) \cdot \sigma) = \lambda(\chi(\beta \cdot C_\beta) \cdot (\chi(\beta) \cdot \sigma), R(\beta \cdot C_\beta, \cdot))(1). \]

Define homotopies \(\mu : \Omega B \times I \to \Omega B \) and \(\eta : \Omega B \times \Omega F \times I \to \Omega F \) by

\[\mu(\beta, t)(s) = \begin{cases} \beta(2s(1-t)), & 0 \leq s \leq \frac{1}{2}(1-t), \\ \beta(1-t), & \frac{1}{2}(1-t) \leq s \leq 1, \end{cases} \]

\[\eta(\beta, \sigma, t)(s) = \begin{cases} \chi(\beta)(\eta(\beta, \sigma, t)(s)), & 0 \leq s \leq \frac{1}{2}(2-t), \\ \beta \cdot \sigma, & \frac{1}{2}(2-t) \leq s \leq 1. \end{cases} \]

where \(\eta \) denotes the base point of \(B \). Then the homotopy \(R^* : \Omega B \times \Omega F \times I \to \Omega F \) defined by

\[R^*(\beta, \sigma, t) = \mu[R(\beta(\sigma, t), 0), 0] \]

has the following properties:

1. \(R^*(\beta, \sigma, 0) = \mu[R(\beta \cdot C_\beta), 0] \)
2. \(R^*(\beta, 1, s) = \beta \cdot C_\beta \)
3. \(R^*(\beta, 1, s) = C_\beta \)
4. \(\varphi(\alpha, 1) = R(p(\alpha), 1) = C_\beta \)

The lifting homotopy \(M : \Omega B \times \Omega F \times I \to \Omega F \) defined by

\[M(\beta, \sigma, t) = \lambda(\chi(\beta)(\sigma), \chi(\beta)(\sigma), R(\beta \cdot C_\beta, \cdot))(1) \]

satisfies

\[M(\beta, \sigma, 0) = \lambda(\chi(\beta)(\sigma), \chi(\beta)(\sigma), R(\beta \cdot C_\beta, \cdot))(1) = f_2 g(\beta, \sigma) \]

and

\[M(\beta, \sigma, 1) = \lambda(\chi(\beta)(\sigma), \chi(\beta)(\sigma), R(\beta \cdot C_\beta, \cdot))(1). \]

Define a homotopy \(L : \Omega B \times \Omega F \times I \to \Omega F \) by

\[L(\beta, \sigma, t) = \lambda(\chi(\beta)(\sigma), \chi(\beta)(\sigma), R(\beta \cdot C_\beta, \cdot))(1) \]

Observe that \(L_0 = M_0 \) and

\[L(\beta, \sigma, 1) = \lambda(\chi(\beta)(\sigma), \chi(\beta)(\sigma), R(\beta \cdot C_\beta, \cdot))(1). \]

where \(C_\beta \) is the constant path \(C_\beta(1) = C_\beta \). It thus follows that \(L_1 \) is homotopic to the projection of \(\Omega B \times \Omega F \) on the second factor. Hence \(f_2 g : \Omega B \times \Omega F \to \Omega F \) is homotopic to the projection on the second factor and \(f_2 g \) is homotopic to the identity map on \(\Omega B \times \Omega F \).

For \(\sigma \in \Omega F \),

\[g(\sigma) = \chi(\beta)(\sigma) \cdot \varphi(\alpha). \]

Since \(\varphi_1 \) is homotopic to \(\varphi_1 \), it follows that \(g \) is homotopic to the identity map on \(\Omega E \).

Since \(\varphi_1 \) is homotopic to \(\varphi_1 \), it follows that \(g \) is homotopic to the identity map on \(\Omega E \).
The homotopy equivalence \(f: \Omega E \to \Omega B \times \Omega F \) is a fiber map but the homotopy inverse \(g \) is not. Define \(N: \Omega B \times I \to \Omega B \) and \(Q: \Omega B \times I \to \Omega B \) by

\[
N(\beta, s)(e) = \begin{cases}
(\beta(2s - 2e), & 0 < s < \frac{1}{2}, \\
(\beta(1 - s + 2e), & \frac{1}{2} < s < 1;
\end{cases} \\
Q(\beta, s) = \begin{cases}
\beta \times Q_B, & 0 < s < \frac{1}{2}, \\
N(\beta, 2s - 1), & \frac{1}{2} < s < 1.
\end{cases}
\]

Define \(\psi: \Omega B \times \Omega F \times I \to \Omega B \) by

\[
\psi(\beta, \sigma, t) = \lambda(g(\beta, \sigma), Q(\beta, \cdot))(t).
\]

Then \(\psi \circ \varphi \sim g \) so that \(\psi \) is also a homotopy inverse for \(f \). If \((\beta, \sigma) \in \Omega B \times \Omega F \),

\[
p\psi(\beta, \sigma) = Q(\beta, 1) = \beta = g(\beta, \sigma)
\]

so \(\psi \) is a fiber map. Note also that

\[
g \circ p \circ (\beta, \sigma) = g(q \circ p(\beta, \sigma), \varphi(q \circ p(\beta, \sigma))) = g(\beta, \varphi(q \circ p(\beta, \sigma))) = \beta,
\]

so that \(f \circ p \) is fiber homotopic to the identity map on \(\Omega B \times \Omega F \). A straightforward computation shows that \(\psi \circ f \) is fiber homotopic to the identity map on \(\Omega B \).

Now consider the fiber structures \((\Omega^m E, p^m, \Omega^m B) \) and \((\Omega^m B \times \Omega^m F, q^m, \Omega^m B) \) where \(p^m \) is the natural map induced by \(\pi \) and \(q^m \) is the projection on the first factor.

Corollary. If \((E, \pi, B) \) is a weak Hurewicz fiberation with cross section, then \((\Omega^m E, p^m, \Omega^m B) \) and \((\Omega^m B \times \Omega^m F, q^m, \Omega^m B) \) are fiber homotopy equivalent for \(m > 0 \) and \(H \)-isomorphic for \(m > 2 \).

Proof. Since \((E, \pi, B) \) is a weak Hurewicz fiberation, \((\Omega^m E, p^m, \Omega^m B) \) is also. Since the homotopy equivalence \(\varphi \) of the preceding theorem is an \(H \)-homomorphism if \(\Omega E \) is homotopy abelian, it follows that the given fiber structures are \(H \)-isomorphic for \(m > 2 \).

References

On nil semirings with ascending chain conditions

by Erol Barbat (Moscow, Ld.)

1. A set \(E \), together with two operations \(+ \) and \(\cdot \) is said to be a semiring if \((E, +) \) and \((E, \cdot) \) are semigroups, \((E, +) \) being a commutative semigroup with 0, with the distributive laws holding between addition and multiplication. Furthermore, we require that \(x \cdot 0 = 0 = x \cdot 0 \) for each \(x \in E \). If \(E \) is a semiring and \(I \subseteq E \), then \(I \) is a right ideal of \(E \) if \(I \) is closed under addition, and for every \(x \in E \), \(x \cdot I \) we have \(x \cdot I \). Right and two-sided ideals are defined similarly, analogous to ring theory. If \(E \) is a semiring and \(S \) is a non-empty subset of \(E \), then \(S_0 = \{ x \in E : xS = 0 \} \) and \(I \) is called a right annihilator ideal. Similarly \(S_0 = \{ x \in E : xS = 0 \} \) and we define left annihilator ideals. Finally, a left (right) ideal of \(E \) is called a left (right) \(k \)-ideal if \(x \cdot y \in I \) and \(y \in I \) implies that \(x \cdot I \) for each \(x \) and \(y \) in \(E \).

In this paper after defining the Levitzki radical \(L(E) \) of a semiring \(R \), we show that every nil subsemiring of a semiring with the ascending chain condition on left and right annihilator ideals is nilpotent, provided that \(L(E) \) is a \(k \)-ideal.

2. If \(I \) is a two-sided ideal of a semiring \(E \), then it is well known that \(E/I \) also becomes a semiring if we define a congruence relation \(= \) as follows:

\[
a = b \iff a + i_1 = b + i_2 \text{ for } i_1, i_2 \in I.
\]

Lemma 1. If \(E \) is a \(k \)-ideal, then \(x = 0 \mod I \) if \(x \in I \).

Proof. If \(x \equiv 0 \mod I \), then \(x + y \in I \) for some \(y \in I \). But then \(x \cdot I \) since \(I \) is a \(k \)-ideal. Conversely if \(x \in I \), then clearly \(x = 0 \mod I \).

Definition. A function \(\varphi \) from a semiring \(E \) to a semiring \(S \) is a \(\varphi \)-homomorphism if

\[
\varphi(x + y) = \varphi(x) + \varphi(y), \quad \varphi(xy) = \varphi(x)\varphi(y) \quad \text{and} \quad \varphi(0) = 0.
\]

\(\varphi \) is a semi-isomorphism if \(\varphi \) is onto and \(\ker \varphi = 0 \).