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Fiber homotopy type of associated loop spaces
, oy
F. H. Croom (Lexington, Ky.)

1. Introduction. Let E and B be topological spaces with base
points and =: F —B a continuous map. This paper gives necessary
and sufficient conditions that the fiber structures (QF,p, 2B) and
(2B xQF, q, 2B) be fiber homotopy equivalent where F is the basic
fiber of (B, =, B), QF is the space of based loops in E, p: QF 0B is
the natural map induced by = and ¢ is the projection on the first factor.
From this result it is observed that if (F, =, B) is a Hurewicz fibration
with cross section, (2, p, 2B) and (2B x QF, ¢, 2B) are fiber homotopy
equivalent. It follows that the higher loop space Q"E is H -isomorphic
to O"B xQ"F for n > 2. This naturally implies the known result ([3]
. 152):

. 7n(B) = 7y(B)+mn(F)  for w2,
2. Preliminaries.

DeFNirioN. A fiber structure (, =, B) is a weak Hurewicz fibration
if there is a weak lifting function

di A= {(e, a) e ExB": p(e) = a(0)} >E'
such that A is continuous,
wAle, a)(t) = a(t) (teI)
and the map (e, a) +1(¢, a)(0) is fiberwise homotopic to the projection
on the first factor.

- The following analogue of the Curtis-Hurewicz theorem (1], (41
is easily proved:

THEOREM 1. The fiber structure (B, nm, B) is a weak Hurewicz fibration
if and only if for each space X, continuous f: X B and homotopy ¢: X x I B
of f there ewists o homotopy @: X x I >E covering @ such that @, is fiber-
wise homotopic to f.

THEOREM 2. In order that (QF,p,QB) be fiber homotopy equivalent
to (2B xQF, g, 2B), it is necessary and sufficient that (OB, p, OB) be
o woak Hurewicz fibration with cross section.
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The maps involved are understood to be base point preserving.
A wealk lifting function i: 4-E' preserves base points provided that
(e, Cp) = Cg Where & is the base point of F and Cg is the constant
path Cg(I)= 6.

3. Proof of Theorem 2.

Necessity. If f= (fi, fo): QE—->QB X QF and g: 2B X QF ~QF are
a fiber homotopy equivalence pair, a weak lifting function

2 {(a, ) e QE X QB": p(a) = f(0)} QB
and cross section y: @B—>QF are defined by
Ma, B = g(B1), fl@), 2(B)=g(B, Ox) .

Sufficiency. Let A be a weak lifting function and y a cross section
for (QE, p, 2B). Define a homotopy R: OB xI 0B by

pl—2s(1—1),

0<s<4,
R(B,1)(s) = ﬂ(].,—(l‘—t)(2_2s))’ i<s<1

$ » (B, 1) e 2B I,

and let S: QExI—-QF denote the corresponding homotopy for QF.
Define ¢: QF xI>0F by

pla, )= A(xp(a) * a, B(p(a), -))(}), (a,0) e QEXI,

where yp (a)'(s) = xp(a)(1—¢) and * denotes the usual path multiplication.
Observe that py(a,1) = R(p(a),1) = Cp so that

@(OF) C p=3(C5) = QOF .
Define f= (f;,f,): LE>QB x QF and g: QB x QF ~QF by
fla)=(p(a), m(@), g(B,0) = x(B) *0c.

Note that g is an H-homomorphism if QF is homotopy abelian and %' is
an H-homomorphism. For (8, o) e OB x QF,

f19(8, ) =p(x(B) * o) = B+ Oz

and

© £29(8,0) = pu(£(B) x o) = Ax(B* Op) + {x(B) % o}, R(B+Cz,)(1).

° © ‘
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Define homotopies u: QB X I-QB and 5: 2B X 2F x I +QF by

B(2s[141), 0<s<3(+1),

u(ﬁ,t)<s>={bm sy o s

a8, 1) (482 1),

8s— 42
"(’3)<(1+t)(2~t)>’

85 —(3+1)(2—1)
6(8——(3—777?2_:5)’

0<s<i(2-1),

1@-D<s< B2,

[
(B, 0, 8)(8) = ]{
1 HB+nE-n<s<1,

where b, denotes the base point of B. Then the homotopy R*: QB x
xIxI-+02B defined by -

R*(B,8,1) = p(R(u(B, 1), 5),1—)
has the following properties:
(1) B¥(B,s,0)= E(f * Oz, s),
(2) R*(B,s,1) = R(B,s) * Ox,
(3) B¥(B,1,1) = (s,
(4) pn(B, 0, t)= E*(B,0,t), peQB, 0 cQF and s,tel.
The lifting homotopy M: 2B X QF x I >QF defined by
M(B,y0,1) = }‘(77(/3’ o,t), R*(B, -, t))(l)
satisfies
M(B, 5, 0)=A(x(8+Cr) *{x(B) * o}, B(B*Cz, -)) (1) = f9(8, o)
and : .
M(B,0,1)= Z{{X(ﬁ)'*}((ﬁ)}* o, B(B, -)x CB}(l) .

Define a homotopy L: 2B X QF xI--QF by
L(B, 0,0) = A(S(x(B), 8) x o, R(B, 1+ -(1—1)) * C5) (1) .
Observe that L, = M, and
L(B, 6,1) = A(Cg * o, C%)(1)

where % is the constant loop C%(I)= Cp. It thus follows that L is
homotopic to the projection of 2B xQF on the second factor. Hence
fog: OB x QF >QF is homotopic to the projection on the second factor
and fg is homotopic to the identity map on 2B X QF.
For a e QE,
af(a) = yp(a) * gi(a) .

Since @, is homotopic to ¢, it follows that gf is homotopic to the identity
map on QF.
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The homotopy equivalence f: QF —+QB x OF is a fiber map but the
homotopy inverse g is not. Define ¥: 2B xI 0B and @: 2B X I >0QB by

N #{ﬁ(2m~ws), O<m<%,
N )@ =501 _sram, 1<o<i;
=+ Us, 0<s<4,
W= {ysroen), eset,
Define y: 2B x QF x I >Q2FE by
p(B,0,8) = ( (8, 0),Q(8, ))
Then v, ~yp,~¢g 8o that , is also a homotopy inverse for f. If (8, o)
e QB X QF,
(B, 0) =Q(8,1)= = q(B, o)
80 v, is a fiber map. Note also that
qfe(f, o) = Q(p‘l’l(ﬁy o), g1yl By 0')) = Q(ﬁa P18,y U)) =p,

80 that fip; is fiber homotopic to the identity map on 2B x QF. A straight-
forward computation shows that u,f is fiber homotopic to the identity
map on QH.

Now consider the fiber structures (Q"E, p", 2"B) and ("B xQ"F,
¢", 9"B) where p" is the natural map induced by = and ¢" is the projection
on the first factor.

ComroLLARY. If (B, =,B) is a weak Hurewicz fibration with cross
section, then (Q"E,p", 2"B) and (2"B xQ"F, ", Q"B) are f@ber homotopy
equivalent for n > 1 and H-isomorphic for n > 2.

Proof. Since (B, =, B) i§ a weak Hurewicz fibration, (Q"E, p", 3"B)
is also. Since the homotopy equivalence y, of the preceding theorem is
an H-homomorphism if QF is homotopy abelian, it follows that the
given fiber structures are H-isomorphic for n > 2.
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On nil semirings with ascending chain conditions

by
Erol Barbut (Moscow, Id.)

1. A set R, together with two operations + and - is said to be a semi-
ring if (R, +) and (R, -) are semigroups, (B, +) being a commutative
gemigroup with 0, with the distributive laws holding between addition
and multiplication. Furthermore, we require that z-0=0-z=0 for
each z in R. If R is a semiring and I C R, then I is a right ideal of R if I is
closed under addition, and for every aeR, bel we have ba e I. Left
and two-sided ideals are defined similarly, analogous to ring theory.
If R is a semiring and § is a non-empty subset of R, then

= {z e B| Sz= 0}. If I is a right ideal of R and I = §; for some 8 C R,
then I is called a right annihilator ideal. Similarly 8; = {z ¢ E| 2§ = 0}
and we define left annihilator ideals. Finally, a left (right) ideal of R is
called a left (right) %-ideal [1] if # -y eI and y €I implies that weI
for each z and ¥ in R.

In this paper after defining the Levitzki radical £(R) of a semiring R,
we show that every nil subsemiring of a semiring with the ascending

‘chain condition on left and right annihilator ideals is nilpotent, provided

that L(R) is a k-ideal.

2. If I is a two-sided ideal of a semiring R, then it is well known
that R/I also becomes a semiring if we define a congruence relation = as
follows: '

a=1b iff for 4, d,el.

a+i =b+1,

Lemma 1. If I is a k-ideal, then o = 0mod I if mel.

Proof. If = 0 mod I, then @-+y eI for some yel. Bub then
zel since I is a k-ideal. Conversely if w I, then clearly » = 0 mod I.

DErFINITION. A function ¢ from a semiring B to a semiring § is
a homomorphism it

po+1) = p@)+0), ply) =p@py) and p0)=0.

9 is a semi-isomorphism. if @ is onto and Kere = 0.
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