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Small ambient isotof)ies of a 3-manifold which
transform one embedding of a poly}iedron into another

by
Robert Craggs* (Urbana Ill.)

1. Introduction. This is the second of three papers in which we in-
vestigate the global relation between two tame embeddings of a polyhedron
in a 3-manifold where both embeddings closely approximate a given
topological embedding of the polyhedron. In Section 8 we show that if
a polyhedron in the situation just mentioned has no local cut points
then there is a small ambient isotopy of the manifold which pushes the
first tame embedding into the second. Sanderson and Kister [15, 20]
have results like this for more special classes of polyhedra where the
given topological embedding of the polyhedron is tame. A local cut point
in a polyhedron is a point which has a closed polyhedral neighborhood
equivalent to a cone over a disconnected polyhedron. An example showing
why it is necessary to exclude polyhedra with local cut points in our
theorem is obtained by considering an unknotted polyhedral simple closed
curve in E°. Every point of a simple closed curve is a local cut point.
By breaking open the curve at a point, tying an overhand knot near -
one end, and then gluing the curve back together again one can obtain
an arbitrarily close polyhedral approximation to the curve which is
differently embedded in E?. The same construction can be used for any

- embedding of a polyhedron with a local cut point to show examples where
our theorems fails.

Section 9 and 10 contain some applications of the isotopy theorem
in Section 8. In Section 9 we show that two tame embeddings of a poly-
hedron with no local eut points in a 3 -manifold are ambient isotopic if they
are isotopic. In Section 10 we show that any closed embedding of a poly-
hedron without local cut points in a 3-manifold can be obtained by
applying a pseudo isotopy of the manifold to a tame embedding of the
polyhedron. Keldy¥ [13, 14] has a direct and more elegant proof of this
fact for the special case where the polyhedron is a 2-manifold.

* Some of the material here appeared in the author’s Ph. D. thesis at the University
of Wisconsin which was directed by Professor R. H. Bing. Research was supported
by NSF Grants GP-3857, GP-5804, and GP-7952X.
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226 R. Craggs

We assume that the reader is familiar with [5] and [6]. The intro
duction in [6] serves also as an introduction for this paper. Most of ow
notation and terminology is taken from [6]. We use “+” as a symbol
for join. Thus P+K denotes the join of polyhedra (or complexes) P and K.
Relative regular neighborhoods are used here. The theory of relative
regular neighborhoods is developed in [11], where existence and uniqueness
theorems are given. The uniqueness theorem in [11] iy false in general
(see [12, 21]) but is true for manifolds of dimension less than four.

We find it convenient to introduce the following definition for dealing
with embeddings of non-compact polyhedra in 3-manifolds. A quadruple
(X, 1y pa, n) has Property Rif X is a separable metric space, u; and u,
are continuous, non-negative, real functions on X, and n is a positive
integer such that for each sequence of points @y, .., %s of X where
01, Bors) < pol@e) (L <4< n)y pa(n) < poaety). '

Lemma 4.2 and Theorem 5.1 represent the heart of this paper and
present the most difficult reading here. There are two things which the
reader can do to make the reading task easier. The first is to be familiar
with the proof of Theorem 7.1 of [6]. This theorem is more simple and it
motivates many of the steps in the proofs of Lemma 4.2 and Theorem 5.1.
The second thing the reader can do is to first read the two proofs for the
case I = @. For such a reading many bothersome constructions can
be ignored.

2. Some piercing and separation lemmas. We omit most proofs in
this section. )

LemMA 2.1. Suppose D is a disk, Ay, ..., Am are arcs, p e Int(D) is
an endpoint of each Ay and (| J4:) ~D=P.

Suppose f is a homeomorphism of D w (|JA:) tnbo B such that
FlAD, ooy f(Am) all abut on the same side of f(D).

There is a 6 > 0 such that if f, and f, are homeomorphisms of D w (1 A}
into E* which agree on D and for which d(f,f) < (e=0,1) then
FlAL)y wevs FolAim)y Filds)y oy [i(Am) all abut on the same side of folD).

LeMMA 2.2, Suppose D is a disk, A is an arc such that p =4 ~D
= Tnt(4) ~ Int(D) is @ point, and f is a homeomorphism of D A into B°.

There is a & >0 such that if ' is a homeomorphism of D v A into B®
for which d(f,f') < 6, then f'(A) pierces f'(D) at f'(p) if and only if f(4)
pz‘erées f(Dy at f(p).

LEmMMA 2.3. Suppose K is a finite, connected polyhedron of dimension
at least one, L is a subpolyhedron of K, and v is a point joinable
i K.

Suppose f is a homeomorphism of v+ K into E® such that for each
arc t in v+ K which intersects v = L in a single point of Int(t) end each
disk D in v % L whose interior contains t ~ v x L, f(t) does not pierce f(D).
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There is a 6 > 0 such that if f' is & homeomorphism of v * K into B®
for which d(f,f') < 6, then for each arc t in v %+ K which intersects v « L in
a single point of Int(t) and each disk D in » = L whose interior contains
t v xL, f'(t) does not pierce f'(D).

Lemma 2.4. Suppose D, ..., Dy, ..., Dy{m < n) are polyhedral disks
such that each Dy~ Dy (i# ) is an are Ay in Bd(Dy) ~ Bd(Dy). Set
K =1 D: and inyn. Di. Suppose A is an arc in () Int(dy) and
t,1>m
each Ay C A where either i <m or j < m. Suppose that (N Ay is an arc
B in A.

Suppose f is a homeomorphism of K into B* such thai for each arc { in K
which intersects L in a single point of Int(t) and each disk D in L whose
interior contains t ~ L, f(t) does mot pierce f(D).

There is @ 6 > 0 such that if f, and f, are pwl homeomorphisms of K
into B® which agree on L and for which d( frfey <6 (e=0,1), then there
is a polyhedral cube C in B® containing f(L) so that

ol L~ OUE—L)) C Int(0) (fl) UK ~ € = F(T) .

Proof. We omit a proof for the case n = m+1. By applying Lem-
mas 2.1 and 2.2 and possibly reordering the disks Dy 1, ..., Dy Wwe find that 6
can be required to be sufficiently small so that if f, and f, are as in the
hypothesis of the lemma then each fy(D;) = f,(D;) and each fi(D:) (i < m)
abuts on one side of fo(Dpi1 v Dy) and each fy(D:) (m4-1 < i < n) abuts
on the other. By applying Lemma 2.4 of [5] for the disk fo(Dms1~ Dn)
and fattening up fy(L) at points of f,,(L#Ol(K —L)) we find a polyhedral
3-manifold M whose interior contains f,{L— CL(K—L)) and which inter-
sects fo(K) v fu(K) in exactly fo(L). For ¢ we take a regular neighborhood
in M of the collapsible polyhedron f,(L).

LeMMA 2.5. Suppose 8 is a polyhedral 2-sphere, K is a polyhedron
in 8, and L is a connected subpolyhedron of K with dimension at least one.

Suppose L does not separate K in S, and suppose for each arct in K
such that t ~ L is an interior point of t and each arc v of L whose interior
contains the point t ~ L, t does not pierce v in S.

There is a polyhedral disk D in S containing L such that

L—Cl(K~L)CInt(D) and DK =1.

3. Isotopies which modify embeddings of cones. We omit most. proofs
in this section.

and

Levma 3.1. Suppose K is a finite polyhedron, v is a point joinable
to K, B is a compact pwl 3-manifold, and f is a pwl homeomorphism of
v % K into B such that f(v * K) ~» Bd(B) = f(K) and B collapses to f(v « K).

There is a pwl homeomorphism ¢ of the pair (B, flo = K)) onto a pair
(7, b % P) where v is a 3-simplex with barycenter b and P is a polyhedron
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in Bd(7) so that the composition of is the join of the restrictions gflv: v—>b
and ¢f|[K: E—P.

TEmMA 3.2. Suppose K is o connected polyhedron, v is a point joinable
to K, B is ¢ pwl 3-cell, and f is o pwl homeomorphism of v * K into B such
that f(v * K) n Ba(B) = fK).

Then B collapses to f(v x K).

By applying Lemmas 3.1 and 3.2 we get the following lemma. The
corollary is obtained by making use of Lemma 2.5.

LA 3.3. Suppose K is a connected polyhedron, v is a point joinable
to K, B is a pwl 3-cell, f is a pwl homeomorphism of v K into B such
that f(v « K) ~ Bd(B) = f(K), and g is pwl homeomorphism of f(v* K)
into B such that g is the identity on f(XK) and gf(v * K) BA(B) = f(K).

Then, there is a pwl isotopy Hi(0 < ¥ <1) of B onto itself such that Hy is
the identity on Bd(B) and H,f= ¢f.

Furthermore if L is a subpolyhedron of K (possibly empty) and g is
the identity on f(v* L) then H; can be constructed so that it is the identity
on fw*xL)vw O where O is an open polyhedron in B containing
floxL—v* CL{E —L)}.

COBOLLARY 3.3. Suppose L in Lemma 3.3 is connected and of dimension
at least one, f(L) does not separate f(K) in Bd(B), and L—COl{(K—L) # .

Suppose for each arc t in K such that t ~ L is an imterior point of t and
each arc r in L whose interior contains the point t ~ L, f(t) does not pierce I
in Bd(B).

Then H; can be chosen so that CL(0) is a pwl 3-cell and CL(O) ~ Bd(B)
is a 2-cell.

Tmama 3.4, Suppose K is a connected polyhedron, v is o point joinable
to K, M is a pwl 3-manifold, f is a homeomorphism of v+ K into Int (M),
and ¢ > 0.

There is @ & > 0 such that if fy and f, are pwl homeomorphisms of v * K
into M where d(f, fo) < 8(e= 0,1) and f, agrees with f; on the complement
of the inberse under " of a &-neighborhood of f(v), then there is a pwl
isotopy Hy(0 <t < 1) of M onio itself so that H,f, = fr and Hy is the identity
on the complement of an e-neighborhood of f(v).

Furthermore if L is a subpolyhedron of K (possibly empty) such that f,
-agrees with f; on v % L then H; can be chosen so that it is also the identity
on fo(v * L) O where O is am open polyhedron in M which contains
Folp # Li—v * CL{E —L)).

Proof. There is a neighborhood of f(v * K) in M which can be pwl
embedded in F* under a uniformly continuous homeomorphism [16] s0
it is sufficient to consider the case M = E°.

Let ¢ be a pwl 3-cell of diameter less than ¢ such that f(v) e Int(0)
and f(X) C Bxt(C). Let a > 0 be so small that the image under f of each
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point ty+4(1—7)v(y ¢ K, 0 <i < ¢) is contained in Int(C). Let K(a) de-
note the polybedron in v * K whose points have the form ay+(1—a)v(y e K)
Set P(a) = v * K(a) and T(a):Cl('v *K——P(a)) .

Choose a positive number 6 so small that a 34-neighborhood of f(v)
misses f(T'(a)), a 6-neighborhood of f(P(a)) is contained in Int(¢), and
a d-neighborhood of f(X) is contained in Ext(0) ’

Let f, and f; be pwl homeomorphisms of »x K into BE® such that
d(f,fey < d(e=0,1) and f, agrees with f; on the complement of the
inverse under ™' of a &-neighborhood of f(v). If a subpolyhedron L is
defined so that f, agrees with f, on » * L and L is not empty set Ta(a)
= T(a) v v = L. If no L is given or if I is given to be the empty polyhedron
(in which case fy(v) = fi(v)) set Ta(a) = T(a).

From the choice of J, f, agrees with f; in a neighborhood of T (a),

 folE) C Ext(C), and fo( P(a)) C Int(C) (e = 0, 1); therefore there is a regular

neighborhood M, in E® of fo(P(a)) w fi{P(a)) modulo f,(T(a)) such that
M, CInt(C). Let B, be a regular neighborhood of filP(a) in M, such
that B, » Bd(J,) is a regular neighborhood of f;(K(a)) = fy(K(a)) in
Bd(M,). Choose a triangulation T of M; in which f(P(a)), fi(P(a),
and B, underlie subcomplexes. Let 7" denote the second barycentric
subdivision of 7. Set By = N(fy(P(a)), T"). Tt is a regular neighborhood
of f,(P(a)) in M,. Both B, and B, are pwl 3-cells [22, 23]. Because both
Bd(B,) and f.,(P(a)) underlie subcomplexes of T, B, ~ Bd(B,) is a regular
ueighborhood of fy(P(a)) ~ Bd(B,) in Bd(B,). Let H,C Int(B; ~ Bd(M,))
denote the disk-with-holes which is that component of By, ~ Bd(B,)
containing f,(K (a)). Since E,C Bd(M,), B, C Bd(B,).

The components of Bd(B,)—Int(#,) are disks. Shrink these slightly,
push them glightly into Int(B,), and fatten up the pushed disks into
mutuaﬂy exclusive polyhedral cubes in Int(B;) which miss fi(v % K).
Do this so that if R,, ..., Ri, .. are the boundaries of the polyhedral
cubes, then each R; is in general position with respect to Bd(B,), and if U,
denotes the component of Bd(B,)— | JR: containing F,, then U,—
— B, C Int(By).

TUse ([6], Lemma 2.9) to find a pwl isotopy Hi (0 <t <1) of B® s0
that each component of Hi(Bd(B,)—CL(T,)) is contained in some Tnt(R:)
and Hj is the identity on Cl(U,) v (B*—C) < O, where 0, is an open
polyhedron containing fy(Ta(a)). Now Hi(BA(B,))—E,C Int(B;) so
Hi(Bo) C B, and H}.(Bo) ~ BA(B,) = B.

We have f,{T(a)} ~ By = folE(e) and Hify(P(e)—K(a)) C Int(B,).
From Lemma 3.3 there is a pwl isotopy Hi (0 <t <1) of E° onto itself
50 that HIH.f, = f, and Hj is the identity on f(Tala)) v (B°—Bi) v 0,
where 0, is an open polyhedron in E® containing fo(fl’a(a) —Cl{v* E— Ta(a)))-
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If no L has been provided set H;= H30 <1/2) and
Hy= Hyy_ysHip(1/2 <t < 1). In this case H,f, = f, and Ht is the identity
on the complement of ¢ which is contained in the complement of an
£-neighborhood of f(v)

If a non-empty L has been provided define H: as in the previous
paragraph. The statement there holds, and in addition H; is the identity
on fy(v * L) v O where O is the open polyhedron 0, ~ 0, which contains
folo % L—v % CL(K—L)).

Finally if L is given to be the empty polyhedron so that fi(v) = fi(v)
use ([6], Lemma 2.3)'to find a pwl isotopy Hi(0 <t <1) of E* which is
the identity on f(») and the complement of C so that Hy = HiH:. Then
H.f,= f, and H; is the identity on fy(») and on the complement of an
e-neighborhood of f(v).

CoROLLARY 3.4. If the L in the hypothesis of Lemma 3.4 is provided
in advance and is both comnected and of dimension at least one, if L — C1(K —L)
# @, and if for each arc 1 in v+ K such that t ~ v x L is an interior point
of t and each disk D in v x L whose interior contains i ~ v = I, f(t) does not
pierce f(D), & can be chosen so that if f, agrees with f, on v x L then H; can
be constructed so that CL(0) is a pwl 3-cell containing f(L).

Proof. The piercing condition allows us to use Lemma 2.3 to place
an additional restriction on ¢ in the proof of Lemma 3.4. In turn, this
allows us to use the stronger Corollary 3.3 in place of Lemma 3.3 to obtain
an 0, such that C1(0,) ~ B, is apwl3-cell which intersects Bd (B,) in a disk.
Instead of taking O to be O, ~ 0, choose a regular neighborhood 27,
of fy(v * L) in the pwl 3-manifold 0, ~ ((B°—B,) v (01(0,) ~ By)) and take
Int(M,) for O. !

4. Modifying- a construction used in [6]. The proof of Theorem 5.1
of Section 5 requires a slight meodification of the construction in ([6],
Sec. 6) which we make here. This modification helps us to guarantee
that the -isotopies we bulld in Section 5 leave certain polyhedra point-
wise fixed.

First we define a property, called Property @', as follows. Suppose D is
a disk in F® L is & set in E® which is homeomorphic to a finite polyhedron,
D~ L is a finite collection of mutually exclusive ares in Bd(D), X is
a tame Sierpifiski curve normally situated in D, 7 is a positive number,
and T is a rectilinear triangulation of #* with mesh less than 4 and
i-skeleton T such that (D, X, T,, ) has Property Q. We say (D, L, X,
T., n) has Property Q' if BA(D ~ L) misses T, and if for each 2-simplex 4
of T and each arc component ¢ of D ~ A which intersects both Bd(4)
and L there is a null sequence Iy(#), I,(¢), ... of mutually exclusive line
segments in Int(4) which converge to the point ¢~ L go that each

] Ig{t) ~ (D v L) is a single point on ¢ wheére Ix(t) pierces D.
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Lemma 4.1. Suppose D is a polyhedral disk, L is a finite polyhedron
whose intersection with D is « finile collection of mutually ewclusive arcs
in BA(D), f is a homeomorphism of D v L into E*, and 7 18 @ positive number.
There is o tame Sierpisiski cirve X normally situated in f(D), there
is a rectilinear triangulation T of B® with mesh less than n and i- skeleton Ty,
and there is an n-homeomorphism h of B® such that
(Rf(D), hf (L), M(X), To, 7)) has Property Q'.

Proof. Use([5], Theorem 6.1) to find a tame Sierpinski curve X normally
situated in f(D), a rectilinear triangulation T of E® with mesh less than 7/3
and i-skeleton T, and an #/3-homeomorphism 2’ of E* such that
(W'f(D),h(X), Ty, n/3) has Property Q. We can assume that 'f(B(D ~ L))
misses T,. From the definition of Property @ there is an 7/3-homeo-
morphism ¢’ of A'f(D) onto a polyhedral disk E in general position with
respect to T, 80 that ¢’ is the identity on #'(X) and B~ T, = b'(X) n T,.

For each 2-simplex 4 of T and each component ¢ of A'f(D) 4
which intersects both Bd(4) and A'f(L) use ([4], Theorem 5.1) to find
a null sequence of mutually exclusive ares z(t), ..., 2x(t), ... in 4 which
converge to the point ¢t ~ 2’f(L) so that each 2x(t) ~ A’f(D v L) is a single
point on t where zx(t) pierces A'f(D)

Let B'" be an #/3-homeomorphism of E® which is the identity on
a neighborhood of 7'; and on the polyhedral disk I = ¢'h'f(D) and which
leaves each simplex of 7' invariant so that in each h(z(t)) there is a line
segment I(t) that pierces h''2'(D) at the point 24(f) ~i. The existence
of such a homeomorphism follows from the two dimensional Schoenflies
theorem. Let h denote the #- homeomorphism h''h' and ¢ the y-homeo-
morphism %”¢(R"”)"* of hf(D) onto E. Since k' is the identity on
h'(X), g is the identity on h(X) thus (kf(D), h(X), Ts, ) has Property @
and (hf(D), &f(L), h(X), T,, u) has Property Q"

Consider now a polyhedral disk D and a finite collection {L»} (possibly
empty) of mutually exclusive polyhedra such that each D ~ L, is an
arc in Bd(D) and either L, is an arc whose endpoints miss D or L, is the
sum UL,U over a finite collecmon of polyhedral disks {Lns} (j > 1) for

Whleh every Ln;n Lay (4 # §) is an are 4, in Bd(Lag) Bd(Ly;) whose
interior contains D ~ Ly. Set I = | L, and let L(1) denote the sum of
the L,'s which are arcs together with the saum of the Ap's.

Let f be 2 homeomorphism of D v L into B* and 5 > 0. Use Lemma 4.1
to find a tame Sierpiniski curve X normally situated in f(D), a triangu-
lation T of E® with mesh less than 7 and i-skeleton T, and an n-homeo-
morphism h of E° such that (if(D), hf(L), h(X), Ty, 7) has Property @'.
In the rest of the construction here we ‘rake advantage of the fact that
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(Rf(D), R(X), Ty, n) has Property @ by mimicking the steps in ([6], Sec. 6)
and so make the lemmas there applicable to the construction here.

" As in ([6], Sec. 6) define a finite graph Giv to be the sum of the
components of (X)~ T, which intersect T, and let Givo denote
the subgraph Cl{Grv ~ Af(Int(D))). Let 4y, ..., 4y, ... denote the 2-sim-
plexes of T,%,...,1%, .. the arc components of the Grvo » 44’8, and
Py ey Diy - the points of Af(D) ~ Ty. For each 4 which intersects Af(L)
seb g; = t; ~ kf(L). Choose subdivisions 7", 7", and T of T as in [6] so
that N (Grvo ~ If(L), T'} fails to intersect T and so that a neighborhood

of ¥N(Gwo, T"") ~ kf(L) in F° is contained in N (Givo ~ kf(L), I"). Note

that no N (px, T') intersects hf(L). Further, because of the fullness con-
dition on T’ in [6], N (t, T') ~ N(t;, T') # @ only if s nt; # @.

Call & collection {F(t;)} of polyhedral disks a special collection of disks
if for each 4; and each # in Aj,

(1) t: CF(t),

(2) F(t) C N (b, T") ~ 4y, '

(3) N (ty~Bd(4s), T") ~ 4; CF(ts), and

(4) Bd(F (t;)) ~ Int(4;) fails to contain a point of hf(D).

Lemma 4.2. Suppose &, > 0. :

There is a special collection of disks {F ()} and there is a 6 >0 such
that if f, and f, are pwl homeomorphisms of D w L into B® which agree on L
and for which &(f, fo) < 6 (e = 0, 1), then there is a pwl 37 -homeomorphism
by of B® and there are mutually exclusive polyhedral cubes By in E° containing
the two dimensional fo(Ln)’s so that

L. d(hf, hafe) <8, (e=0,1),

2. hife(D) (6= 0,1) and hi(\J Bn) are in gemeral position with
respect to T,

3. the cardinality of hify(D) ~ T, is the same as the cardinality of
k(D) ~ T,

4. hrfdD) (e =0,1) fails to interseat (|J BA(F (t:))— T},

5. hifolL(1)) ~ F(t:) is empty or a single point accordingly as t; ~ hf (L)
is empty or a single point,

6. for each two dimensional Ln, hyfy(In—D) C hi(Int(Ba)),

T. k(£ L) v (U Ba) ~ ¥ (Grvo, T") C N (G150 ~ W(L), T'), and

8. no component of any hi(Bn) N F(t;) lies in Int(F (ti)).

Proof. For each g; let O(g;) be an open 3 -cell of diameter less than 6,/4
which contains ¢; so that 0(gi) ~ T, is an open 2-cell and O (gy) C N (g1, T"").
For each 1 select a polyhedron L(f;) as follows. If #; misses Af(L) let L (t:)
denote the empty polyhedron. If I, is an arc and t; intersects hf(Ln)
let L(h)’ be an are in Int(D ~ Ly) such that g;e hf(Int(L(ti)}) and
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hf(L(ti)) C O(gs). If Ly is two dimensional and #; intersects f (L) let L (%)
be a polyhedron in L, such that D ~ L(i) is an arc in Int(D ~ Ly),
gi€ hf(Inti(D ~ L(tz))), each L(t;) ~ Ly is a disk in L,; whose intersection
with. Bd(Lns) is the are .D ~ L(#), and hf(L(ti)) C O(g4). For each t; let
I'(t;) denote the polyhedron 01(L—L(t,)). In each O(gy) let O'(gs) be an
open 3-cell containing g so that C1{0’(g:)) C O(g:) and C1{0'(gy)) fails to
intersect hf(L'(t:)).

For each g; let D(#:) be a disk normally situated in D such that

(1) gs € hf{Int (D () ~ Bd(D))), ,

(2) Wf(D(t) ~ % is & spanning arc wi of kf(Bd (D ())),

(3) hf(Gl(Bd(D(ti)) A Int(D))) CI(h(X), hf(D)), and

(4) B (D)) C O'(ga)-

Notice that D(#;) is not necessarily polyhedral. Condition 3 ean be
achieved because each #; C I (h(X), hf(D)). Set s (#;) = D{&;) ~ Bd(D) and
7(ts) = B (D (t:)) — Int (s (4:)). Conditions 3 and 4 on D (t;) show &f r(ts)) ~ T
is a single point where Af (r(ti)) pierces some 2-simplex of 7' and
$(t) C Int (D ~ L(t)). Use the definition of Property @' to find a line
segment I;in 0'(g:) ~ Ty such that I; ~ kf(D w L)is a single point in Tnt ()
where I; pierces hf(D). Use a construction like the one in the proof of
Theorem 4.1 of [4] to find a special collection of disks {F (f:)} so that for
each t; which intersects hf(L),

(1) ML) ~ B (k) Caf(s(ta),

(2) P(t) ~ Bf(L (1) = O,

(3) I; is contained in F(%) and spans Bd(F(t:)), and
(4) Rf(L) intersects only one component of F(f;)—I;.

If 1, intersects hf(L) let H(t;) denote the closure of the component
of F(t;)—I; which intersects if(L). '

Let 8, be a positive number such that

(1) a 58,-neighborhood of each hf(D(t:)) is contained in 0/(gs),

(2) a 56,-neighborhood of hf(L) intersects N (Grvo, T") in a subset
of N(Gryo m hf(L), T'),

(8) for each #; a 58,-neighborhood of hf(L/(f:)) misses F (%),

(4) if ¢; intersects hf(L) a 5d,-neighborhood of hf(L(ti)) is comntained
in 0(g:), & 56,-neighborhood of hf(L/(ts)) fails to intersect 0°(gs), & 5dy-
neighborhood of Af(L (1) — s (t:)) misses F(ts), & 56, - neighborhood of hf(s(1:))
misses CL{F(t;)— B (1)}, and a BJ,-neighborhood of 1f{r(ts)) misses T's—
—Im}(F(ti)——E(h)), .

(5) & 58,-neighborhood of Af(D) misses (U Ba(F(t)))—Ts, and
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(6) for each two dimensional Ly, 8, is subject to the restrictions on §
in Lemma 2.4 for the substitution

(1—»>m, D>Dy, Lpj~>Djys, bf—>f).

Lemmas 5.1 and 5.2 of [6] provide a positive number &, such that
if f is a pwl homeomorphism of D into E® for which d(hf, ') < 8, and
f(D) is in general position with respect to T, then there is a pwl
8,-homeomorphism %" of E® so that h”f"(D) is in general position with
respect to T, the cardinality of »"'f"'(D) ~ T, is the same ag the cardinality
of kf(D) ~ Ty, and each h"f"(D)~ I; is a single point where I; pierces
R"f"(D). Further, as in ([6], Lemma 6.1), there is a positive number § such
that if b’ is & homeomorphism of E® for which d(h, h') < 6,/2 and §' is
a homeomorphism of Dw L into E® for which d(f,f)<é then
A(Hf, W) < 6.

Let fy and f; be pwl homeomorphisms of D v L into E® which agree
on L and for which d(f,f)<d (e=0,1). Use [2, 17] to find a pwl
homeomorphism h, of E? such that d(k, hs) < 82 and hafy(D) is in
general position with respect to T,. We have d(hf, hafe) < 85 (¢ =0, 1).

From Condition 6 on 8, we ean find for each two dimensional L,
a polyhedral cube €, containing hgfy(Ls) such that hafy(Ln—D)C Int(Cy)
and Cn ~ halfy(D) v f(D)) = hafy(D ~ L,). We can assume that the Ca’s
are mutually exclusive. For each two dimensional I, and each L) in Ly
let C(t:) be a regular neighborhood of %afy(L(%:)) modulo hafo(Ol(Ln~L(t¢)))
in O such that () is contained in a dy-neighborhood of hafo(L(tz)) and
O(t) intersects Bd(Cn) in a disk. Then in each pwl 3-manifold
My = Cl{Cr— | C(1s)) choose a regular neighborhood (i, of hafolLn) ~ My
which is contained in a &,-neighborhood of hofoIn) ~ My so that
Cr v (C,. ~ (e (ti))) is a pwl 3-manifold and ¢, collapses to
(M hafl L)) w (G (U C()))- For each C(t) in Cn, Cp~ Oty is
connected. Bach B, = C;, v (On ~{Uce (ti))] is & regular neighborhood of
the collapsible polyhedron hafy(L,) modulo ha(fo(D) v f«(D)) and so is
a ball [11]. o

Because d(hf, hafy) < 8, there is a pwl dy-homemorphism hy of B®
such that kphefy(D) is in general position with respect to T, the cardinality
of hphafi(D) ~ T, is the same as the cardinality of if(D) ~ Ty, and each
hohofy(D) ~ I is a single point where I, pierces hphafy(D). We can assume
that ko hafo(D) and hs({_J By) are in general position with respect to T%,.
We have d(hf, hohafe) < 26,.

Consider an are t;. From Conditions 2 and 5 on 0y, if #; fails to
Intersect Rf(L), N(ti, T") fails to intersect hohafy(L) v hof UB,) and
hoha(fo( D) fu(D)} fails to intersect BAd(F (1)) —T,. From the conditions
on by, if # intersects hf(L), then (hohafy(L) v ho(|J Br) ~ (N (4, T'))
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C _N(QI, T’), hbt(}l (( U -Bllz.) - C(ti)) v hbha(L'(ti))) miss’es OI(Q¢) w .F(t(),
h,,hajo((L(l)—s(tt))) misses (&), hoha(fy(D) w fi(D)) misses Bd (F(is))— T1,
and hbhafl(D(ti)) C 0'(gi). Furthermore for each D(f;) the endpoints of
whafy(r(ts) lie in the interiors of different 3 -simplexes of T, hohafilr(E) ~
A Ty CInt(F () — B (%)), and hohafols(t:)) misses CL(F (ts)— B (L:)).

Consider next the components of a hy hafl(D (ti)) ~ T,. They are
subsets of arcs and simple closed curyes so they are arcs and simple closed
curves: Note that hohafy(D) ~ Ii is a single point, Bd(F(t;))— T, misses
hohafo(D), I: separates F(ti), and T, separates the two points of
hohafy(B{r (t)); thus there is exactly one component of hhafy(D (1) ~ T
which runs from hohafulr(t)) to hohafifs(ts)), and since hyhafi(D (%)) does
not intersect Bd(F(t;)) this component is contained in Int(F(t:)). See
Tigure 4.1. ‘

Use ([19], Cor. 1 to Theorem 1) to define a pwl homeomorphism k.
of B® which is the identity on hbh,,,fl(Ol(D—U D(t,;))) v (U BA(F ()
and on the complement of | 0'(g:) so that hehshafe(D) (¢ = 0,1) and
hohs(J Bx) are in general position with respect to Ty a,n('i 50 .tvhat he pushes
each hphafy(D(4)) back onto the subdisk as indicated in Figure 4.1. For
each t; that intersects hf(L), hchbhaf,,(L(l)_) A F(t;), is a single point.
Now he is a 8,/4-homeomorphism so d(kf, hehohafe) < 205+ 61/4 < 36,/4
(e=0,1).

Fig. 4.1

For @ #; and a two dimensional L, consider .th('% intersefstior} F(t;) »
~ heho(BL). Conditions 2 and 4 on d, show that jchls intersection is empty
if #; misses Ahf (Ly) and is contained in O(gs) if & m_tersects hf(Ln). FurtheF-y
more in the second case hchb(OI(( UBn)—0C (tz))) misses (¥ (). Suppose J is
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a component of F (&) ~ hehs(BA(By)) which is contained in Int(F(t)).
Suppose J contained a point of he bhufo( (1) ) The only sueh point
possible would be hehohafo(s(t:) ~ F(ts) so Tehohafy(s (1)) would cross
on the 2-sphere hch;,(Bd(G’ (t;))) But in that case J would separate on
hehu{BA(C(4))) the connected set heho(Cr ~ O(ts)). Thus J bounds a disk
on hehs(Bd (0(t:))) which misses both heho(Cp) and helwhafo(L(1)).

Just as in Step 3 of the proof of Theorem 7.1 of [6] we find a pwlhomeo-
morphism fa of B* which is the identity on hoho(lJ Cn) v (U BA(F (1)) v
w hehohafo(L(1)) and on the complement of | JO(g:) so that
ha ... ha(fo( D) © f(D)) and hahchs(1J Bn) are in general position with respect
to T, and no component of any hahchs(Bn) ~ F(1;) lies in Int(F (). The
homeomorphism kg is & d,/4-homeomorphism of B

Define ky by the rule hy = hahehsha, and for each B; set By = hq Y(BL).
Condition 6 is then satisfied in the conclusion of the lemma. The homeo-
morphism %y is an 7+ 8, 8; < 37-homeomorphism of E? and d(kf, Bxfe)
< 88,/4+8,/4 = 6, (¢ = 0, 1) so Condition 1 is satisfied. Because k. and hd
are the identity on the eomplement of {JO(qs), hr fl(D) A~ Ty == hphafy(D
g0 Condition 3 is satisfied. One can check the construction of the
individual homeomorphisms composing hx to verify that the other con-
ditions are satisfied in the conclusion of the lemma.

5. Smallisotopies of E° which transform one embedding of a disk into another.
Here we give a proof of Theorem 5.1, a restricted isotopy theorem,
which is closely related to the proof of Theorem 7.1 of [6]. We use this
restricted theorem to prove the general theorem in much the same way
as we use Theorem 7.1 of [6] to prove the general cartesian product
theorem there. ‘ ‘

Lemma 5.1, which follows, is used in the fifth step of the proof of
Theorem 5.1. To prove it one can employ ([6], Lemma 3.1) together with
two dimensional techniques analogous to the three dimensional ones
used in the first four steps of the proof of Theorem 5.1.

Levwma 5.1. Suppose D is a polyhedral disk and B C Bd(D) is either
the empty set or a l-manifold with boundary. Suppose W is a polyhedral
subdisk of D whose intersection with each component of R is an arc in the
interior of that component and the closure of whose complement in D is made
up of finilely many (possibly zero) disks mormally situated in D.

Suppose f is a homeomorphism of D into B® and & > 0.

There is a & > 0 such that if ' is a pwl homeomorphism of D into B*
for which a(f,f') <6, if h is a pwl §-homeomorphism of f'(W) into f(D)
which is the identity on f'(W ~ R) and sends f'(W—R) into f'(D—R), and
if L is a polyhedron in BE* whose intersection with f'(D) is contained in f'(R)

icm°®
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then there is a pwl s-isotopy Hy (0 <t < 1) of E® which is the identity on L
so that Hbf = f'|W.

THEOREM 5.1. Suppose D is a polyhedral disk and {L.} is o finite
collection (possibly empty) of mutually exclusive polyhedra such thati each
D ~ Ly is an arc in BA(D) and either Ly is an arc whose endpoints miss D
or Ly is the sum U Ly; over a finite collection of polyhedral disks {Ly;} where

every Lui o Lnj (z #9) is an arc Ay in Bd(Lai) ~ Bd(Lay) whose interior
contwins D~ Ly. Set L=\ Ly, and let L(1) denote the sum of the Ly’s
which are arcs together with the sum of the A,’s.

Suppose W is a polyhedral subdisk of D such that CL(D—W) consists
of finitely many (possibly zero) mutually exclusive disks normally situated
in D and for each Ln, W ~ Ly is an arc in Int(D ~ Ly).

Suppose f is a homeomorphism of D v L into B and & > 0.

There is & 6 > 0 such that if fy and f, are pwl homeomorphisms of
Dol into B® which agree on L and for which d(f,f.)<d (e=0,1),
then there is a pwl e-isotopy Hi0 <t < 1) of E® onio itself and there are
mutually emclusive polyhedml cubes By, containing the two dimensional fo(La)'s
s0 that

1. for each two dimensional Ly, fo(Ln—D)CInt(Bn) and Bn
f‘(foD)Uﬁ )‘—fo(DﬁLn)y

2. H; is the identity on fy(L) v
g-neighborhood of fo(D), and

3. Hifp=1f on Wu L. .

Proof. Note that if f is pwl and L = @ the theorem is a special case
of Theorem 2 of [20]. ‘

The proof is carried out in five steps. Just as in the proof of Theo-
rem 7.1 of [6] the choice of a particular epsilon, eta, or delta is often
provisgional on conditions to be introduced later in the proof.

(U Br) and on the complement of an

Step 1. A special graph on f(D). In each Int(D ~Ly) choose
an arc R, whose interior contains W nZL,. Set R = |JR,. Let ¢ be
a positive number less than one fifth the distance from (W ~.I) to
f(L(l) ) From Lemma 4.1 and ([6], Sec. 6) there is a positive number
7 < &2, a tame Sierpifski curve X normally situated in f(D), a recti-
linear triangulation T of E® with mesh less thfm 7 and 3-skeleton T4,
and an 5-homeomorphism h of F* so that (f(D), Kf(L), h(X), Te) %)
has Property §'. Furthermore if Gry denotes the graph which consists
of 1f(Bd(D)) together with the components of Bf(D)~ T, that inter-
sect T4, and if Gm denotes the graph 7 {(G), ﬂlen there is a finite
collection D7, .. _Dm, ... of g;-disks which are normally situated in f(D),
whose mtermrs are mutm]ly exclusive, and no two of which interseet in
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a disconnected set so that Gr= | Bd(Dil) is.a stable subgraph of Gmr. Set
G = h(G), Gavo = CL{Grv ~ hf (Tt (D)), and Grro = Cl{Gm ~ b (Int (D).

For each DL let DI denote the 2e-disk h(D,In). We assume e, is
sufficiently small so there are at least two points of Givo on hf(Bd(D)),
Let A, ..., 4;, ... denote the 2-simplexes of T,t, ..., t;, ... the arcs which
are the components of the (Grvo ~ 4y)’s, and Py, ..., Pk, ... the points
of kf (D) ~ T;.

Step 2. Converting pwl approximations to f into special
pwl approximations to hf. Let I¥, I, and T be subdivisions of T'
subject to the conditions indicated in ([6], Sec. 6) and Section 4 here.
Let &, be a positive number less than the diameter of each simplex of '
that intersects hf(D). Choose a positive number g s0 small that 4e, is
subject to the restrictions on ¢ in Lemma 5.3 of [6] for the system
(rf(D), h(X), T, n), the graphs Givo and Grv, and the number &,. Let &,
be a positive number subject to the conditions on 4 in Lemma 5.2 of [6]
for Af(D) and .

Find a special collection of disks {F'(1;)} and a positive number § from
Lemma 4.2 for the system (hf(D), (L), h(X), T, 7;), the graphs Gy
and Givo, the pis, the subdivisions 7', T, and T'’, and the positive
_ number 6. ’

Let f, and f; be pwl homeomorphisms of D v L into E® which agree
on L so that d(f,f.) <d(e=0,1).

From Lemma 4.2 there is a pwl 37-homeomorphism % of E® and
there are mutually exclusive polyhedral cubes B, containing the two
dimensional fo(Ls)’s so that the eight statements in the conclusion of
the lemma are valid. There is no loss in supposing that the points px are
exactly the points of hrfy(D) ~ T4,

Sinee 8, < ¢ Lemma 5.3 of [6] provides a homeomorphism s of Gry
onto the graph @iy = Givow hif,(Bd(D)) where Givo consists of the
components of hify(D) » T, which intersect T,. For each pr, m(pr) = Pk,
for each A; and each #; in 4y, w;(#) is an are component of Giyo M 4; that
lies in an &-neighborhood of ¢, and for each arc s which is'the closure
of a component of kf{Bd(D))— Grvo, mi(s) is the closure of a component
of h;fl{Bd(D))~G}vo and it lies in an ¢,-neighborhood of s.

Lemma 5.2. of [6] provides a pwl isotopy H; (0 <t < 1) of B® so
that Hihifo(D) is in general position with respect to T,, the cardinality
of Hihifo(D) ~ T, is the same as the cardinality of kf(D) ~ T, and Hj is
the identity on the complement of ane-neighborhood of | ps. Again
we can suppose that the points pz are exactly the points of Hihrfo(D) ~ T;.
Note that by Condition 7 in Lemma 4.2, by the choice of &, and by Con-
dition 3 in the definition of special collection of -disks, Hj is-a 2e4-1s0t0py
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which is the identity on hu(fy(L) v (1 Ba)) v ((U Ba(F (t,)))- 1*1)~ Further-
more d(kf, Hiktfo) < 814 265 < 3zg. i

A second application of Lemma 5.3 of [6] provides a homeomorphism
i of Grv onto the graph Givo v Hihifo(BA(D)) where Givo consists
of the components of Hikhrfo(D) ~ T, which intersect T;. For each pg,
aa(px) = Pr, for each 4; and each t; in Ay, mg(t;) is an arc component of

. Glyo n 4; that lies in an e,-neighborhood of t;, and for each arc s ‘which
is the closure of a component of hf(Bd(D))— Grvo, m(s) is a component
of Hihfo[BA(D))—Givo and it lies in an ¢-neighborhood of s.

Define 7’8, L(rm)'s, No(tm, T"')s, and Ny(rm, T"')’s as in ([6],
Sec. 6). Let & be a positive number. Lemma 6.6 of [6] shows that
we can require &y, &, and & to be sufficiently small so |G and m| G
can be extended to &,-homeomorphisms 7, and m, of kf(D) onto Hihsfo(D)
and hifi (D) such that each m(Df,f) (e=0,1) has diameter less than &,;
furthermore for each Df,f, No(rm, T""') U me(rsm) contains a neighborhood
of mrm) in m(Dm) (e=0,1). Let Gir and Gipo (¢ =0,1) denote the
regpective graphs me(G) and m(Gro). Let G5 denote the intersection
of @Yo with the sum of all m(Dm)’s that intersect Hikrfo(W).

We say that Dir is of Type 1, 2, 3, or 4 if (D) ~ Hihrfo(W) # @ and

(1) D ~ kf(BA(D)) = @,

(2) DX ~ hf(BA(D)) # @, but Dy ~ hf(R) = &,

(3) D& ~ hf(R) # O, but DX does not intersect a two dimensional
kf (L), or

(4) D intersects a two dimensional hf(La).

The conditions on & show that m(D,I,f) ~ hify(L) # 0 (e= 0,1)ifand
only if DY is of Type 3 or 4, and in this case 7 D5) ~ hef L) C hafo{Int(R)).

Step 3. An isotopy which takes G5 into G}Io;Wﬁpecial
regular neighborhoods of nl(Dg,f)'s. Consider an are t; in Gro- Fro.m
Condition 4 in Lemma 4.2, Conditions 3 and 4 in the definition of special

" collection of disks, and the construction of Hi, (Hihufo(D) v hefy(D)) ~
~ BA(F () = t: ~ BA(F () and F (i) ~ Ty contains a neighborhood of
ti~A T, in T, 50 mlt) CF(t) (e=10,1).

From Condition 7 in Lemma 4.2, hr{fy(L) v (U Bn)) ~ F(t;) # @ only
it 4~ Bf(R) =@ In this case F(k)n hifo(L(1)) is the single point
mfts ~ Bf(R)), and hx(lJ Ba) ~ F(4;) has no component which lies in
Int(F (t:)). See Figure 5.1. .

Trom the remarks in the preceding paragraph there is a pwly- gsotopy
B} (0 <1 < 1) of B° such tha for each t; in 6110, Himoth) = m(%), Hy leaves
each simplex of T invariant, and H: is the identity on simplexes of T
which do not interseet G753, on To— \ Int(F(t:)), and on hr{fo(L) v (U Bn)).
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Because H; leaves each simplex of T invariant Hfm,(hf (D)) is in general
position with respect to T.

Let T' be a subdivigion of 7' in which each hi(B,), each ano(.Df,f),
and each nl(l),l,f) underlies a full subcomplex and which has fine enough
mesh. so that each N (nl(D,I,f), T7) has diameter less than ¢,. Let T be
a first derived subdivision of 7. Consider the regular neighborhoods
N{m(Drm), T). They are pwl 3-cells. Notice that

N{m(Dph), T) A N (my(Dg"), T7) = N (m(rp ~1g), TV) (9 # q) .

Fig. 5.1

From our application of Lemma, 6.6 of [6] it follows that for each D.f,f,
7l D) N(mwelrn), T%) ~ Nylrm, T"') =@ (e = 0,1). Among the (Dm)’s
of Type 1~4 only for a Dy of Type 4 does m(DL) intersect hr(|J By), and
in this case m(Diw) A (| Ba) is an are, N (z(DL), T%) ~ k() Bd(By)
is a 2-cell, and N (m(Dy), T7) A Rr(lU BA(By)) ~ L(r) is & pair of ares.
Recall from Condition 2 in Lemma 4.2 that each hi(By) is in general po-
sition with respect to 7).

For each Dy of Type 14 let C,, denote the sum of all simplexes
of T7 in N (zy(D), T") which fail to intersect (¥ (1, T7) & Nolrm, T7")) w
v (| Int(By)). For a Dy of Type 1 or 4, Cp is obtained from the regular
neighborhood N (n;(Dm), T%) of m(DR) by removing a solid torus which
intersects Bd(N (nl(D,I,,I), T")) in an annulus hom_ot()pic to the center line
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of the torus; thus Cp is.a pwl 3-cell of diameter less than &, whose boundary
is spanned by nl(Df,.I). Similarly, for a DL of Type 2 or 3, Cp is 2 pwl 3-eeil
of diameter less than e, which contains y(Dj) so that my(DL) ~ Bd(Ch)
= my(rm). The Om’s have mutually exclusive interiors which fail to inter-
sect k(| Ba). It a Dy is of Type 1 or 4 then a neighborhood of H: 70(Bd (D)
= m(Bd(Dm)) in Himo(Di) is contained in Cr. Tf & DX is of Type 2 or 3
then a neighborhood of Hjmo(rm) = m(rm) in Hino(Dh) is contained in .

Step 4. Pushing HiHI ki f{ W) into hfy(D). For a Dh of Type 1
or 4 choose two polyhedral disks in Bd(C,) which do not intersect
7 (Bd(Dm)) and whose interiors contain (H3n(Diy) — (B (D)) ~ Bd(Cm)).
Push these disks slightly into Int(Cp) and fatten them up into disjoint
polyhedral cubes in Int(Cn) with boundaries S,; and Sp. which fail to
intersect h1fy(L) and which are in general position with respect to Hi no(Df,f)
so that if Um, denotes the component of ano(l)f,f)—(smu Sme) con-
taining m(Bd (D)) = Himo(Bd (D)) then Up—my(Bd (D) C Int(Cim).

Similarly for a Dp of Type 2 or 3 find a single polyhedral 2-gphere
8m in Int(C0m) which fails to intersect hif,(L) and is in general position
with respect to H%(m.(pﬁf)) 8o that if Um denotes the component of
Hing(Di)—Sma containing m(rm) then Um— my(rm) C Int(Com).

TUse Lemma 2.9 of [6] to find a pwl 13s,-isotopy H (0 <t < 1) of B
which is the identity on h(fy(L) v (UBs)) v (IUUm) and on the comple-
ment of a 3¢;-neighborhood of (JCn so that for each Di of Type 1-4,
HiHin(Dp)—O(Up) C | Int(Sms). For each Dy of Type 1 or 4,

7
HiH; 7Dy — Ba (D)) C Int(Cm), and for each Dh of Type 2 or 3,
Hi Himo( D —m) C Tnt(C).

Use ([6], Lemma 2.6) for Dn’s of Type 1 and 4 and Lemma 3.3 for
Dy’s of Type 2 and 3 to find a pwl &,-isotopy Hi (0 < ¢ < 1) of B* which
is the identity on. hrfy(L) and on the complement of | JInt(COm) so that
for each Dy of Type 1—4, Ht Hy Himo (D) = my(Dy). Now He ... Hihy fo( W)
CAD).

Step 5. The isotopy H:. Consider the pwl homeomorphism
RUHY . Hilifofit of fi(W). Tt is a 26+ 39+ 2e,+7-+13e,+ 5,437 or
25e,-homeomorphism of f;(W). Lemma 5.1 shows that s, can be required
to be sufficiently small 5o g, < £/100 and so that there is a pwl ¢/2-isotopy
H(0<t< 1) of E® which is the identity on fy(L) v ({JBx) and on the
complement of an ¢-neighborhood of £(D) such that Hikr H; ... Hikifofi fo
=f on Wu L.

Define the promised isotopy H: by the rule H,=1I, H;=hr o
° Hyu sy heHy-ays((§—1)/5 <t <j5, j<4) and H = HyusHys
(46 <t<1). Now H,f,=f, on WulL, and H; is the identity on
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foL)w (IBy). Furthermore H: is a (2e5+2(3m) + (1+2(3m) +
(136, +2039) + (ea+2(31)) -+ &/2 or 41£/100+ 50/100 < & — isotopy of E°.
Finally H; (0 <t<4/5) is the identity on the complement of the
pre-image under " of a 3e,-neighborhood of Af(D But such a set is
contained in a 3g-2(37) < e-neighborhood of hf 5 thus H; is the
identity on the complement of an e-neighborhood of f D)

This completes the proof of the theorem.

The polyhedron D v L is collapsible so for any embedding of it into
the interior of a pwl 3-manifold there is a polyhedral cube-with-handles
which contains a neighborhood of the embedding in the 3-manifold [16].
Since a polyhedral cube-with-handles can be pwl embedded in B under
a uniformly continuous homeomorphism we have the following corollary:

COROLLARY 5.1. Theorem - 5.1 remains true if B is replaced by an
arbitrary pwl 3-manifold M provided that f takes D w L into Int(M).

6. Piecing together isotopies.

LeyMMA 6.1. Suppose Ay, ..., Amy ooy dn (0 <m <) are 2-simpleves
whose pairwise intersections are all the same, a 1-simplex o whick is a face
of each A;. Set K = | 4;.

Suppose A is an arc in Int(c). For each Aq let H; be a polyhedral disk
in Int(d;) and F; a polyhedral disk in A; such that By ~ F; is an arc B
aml ;F; m Bd(di) = A.

Let I be a subpolyhedron of E which is o, or |J Ai, or the empty
polyhedron. i

Suppose M is a pwl 3-manifold, f is a homeomorphism of K inio
Int(M), and &> 0.

There is a 8 >0 such that if f, and f, are pwl homeomorphisms of K
into M which agree on L v (\_JE:) and for whick d(f, fo) < (e=0,1),
then there is a pwl e-isotopy Hy (0 <t <1) of M onto diself so that H,f,
agrees with fy on L v (|JEs) v ( U Fy) and Hy is the identity on the comple-

- i<m
ment of an e-neighborhood of f(_'y Fy) and on fO(L v (UE)) v 0 where
=m -

0 is an open polyhedron containing f, (L—CI(K —~L)).

~ Proof: The isotopy H: is constructed by piecing together isotopies
H; (0 <.t <1,1 <:z? s m) obtained from applications of Corollary 5.1.
Bach H; brings Hi™ ... Hif, into agreement with fion a nelghborhood
of Fyin A; and is the xdentlty on a neighborhood of fi( UI’, in fi( U As)
and on fo{L v ({JEy)) v C; where C; is a polyhedral cu'be whose mtenol
contains fo(L— o) and C; fails to intersect (H{ ... Hi f(Fi— o)) w f(Fi— o).
The open polyhedron O is given by [ Int(C;).

CoroLLARY 6.1. If L is two dimensional and if for each arc t in K such
that t ~ L is a single point in Int(f) and each disk D in L whose interior

©
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contains t ~ L, f(1) does not pierce f(D), then for sufficiently small volues
of 8, Hy can be chosen so that CL(0) is a polyhedral cube.

Proof. By applying the full strength of Lemma 2.4 where it is used
in the proof of Theorem 5.1 we find that 6 can be quuired to be sufficiently
small so that each Cy fails to intersect (Hi ... Hify(F;— o)) © fu(Fs— o)
(i <j <m). Thus each C; (1 <i<m) contains a regular neighborhood
of fo(L) = fulL) modulo fy(Fy).

Let T be a triangulation of #*® in which fﬂ(A) and each C; underlies’
a subcomplex, and let 7" Ve the second barycentric subdivision of 7.
The polyhedron € = N (f(L—4), T") is a vegular neighborhood of the
collapsible polyhedron fy(L) modulo f(Fu) [11] and so is a polyhedral

cube. We have 0 C () C;. In place of the O mentioned before take
Int(0). ’

7. The general isotopy theorem for embeddmgs of polyhedxa in interiors
of 3-manifolds.

THEOREM 7.1. Suppose K is a polyhedron with no local cut poinds,
L is a subpolyhedron of K, M is a pwl 3-manifold, f is a homeomorphism
of K onto a closed subset of Int(M), and u is a continuous, non-negative,
real function on M which is positive on f(Cl(K —L)).

There is a continuous, positive, real function v on K such that if f, and f,
are pwl homeomo'rphisms of K into M which agree on L so that for each
z e K, o(f(x), fol@)) < »(x) (e =0, 1), then there is a pwl isotopy Hy (0 <t < 1)
of M so that H,fy= fl, H; is the identity on fo(L) v O where O is an open
polyhedron containing - fo (L—CL(E—L)), and the track under H, of each
point @ of M has diameter no greater than u(z).

Proof. Let u; be a continuous, non-negative, real function on M
which is positive on f(CL(K—L)) so that (M, /4, u,, 4) has Property B
(see Introduction for a definition of Property R). Let T be a triangulation
of K in which I underlies a full subcomplex and which has sufficiently
fine mesh so that for each simplex s of T' which intersects Cl(K —L) the
diameter of f(s) is less than the minimum value of u, over f(s). Let K; de-
note the i-skeleton of Tk (considered as a polyhedron). Let i, ...; Ti,y -
denote the 3-simplexes, A,, ..., 4i, ... the 2-gimplexes, oy, ..., 07, .. the
1-simplexes, and v,, ..., ¥k, ... the vertices of 7. For each simplex s of T'
let b(s) denote the barycenter of s, and let 7" denote the first barycentric
subdivision of 7. Bach lk(vg, T') is connected.

Choose connected open sets O(s) in Int(M) for the snnplexea of
T—first for the 3-simplexes, next for the vertices, then for the 1-simplexes,
and finally for the 2-simplexes—so that

(1) for each 7; and each s Czq, O(s) C 0(11) for each v, f(vx) € O (vx),
and for each 1- or 2-simplex s, f(Int(s)) C O(s
16%
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(2) for each s that intersects Cl(K —L) the diameter of O(s) is less
than the greatest lower bound of ux,; over O(s),

(3) for each pair of simplexes s, s’ of T which have dimensions less
than three, O(s) ~ O(s") % @ only if s is a face of s’ or vice versa, and
01{0(s)) ~ CL(O(s")) % @ only if s ~ 5" # @,

(4) no CL(0(s)) intersects f(C1(K—N (s, T))), and

(5) the union of sets Cl (0(8)) over any collection of simplexes s of: T
is a closed subset of M.

We assume that no CL{0(s)} = M.

For each v consider the cone vy * lk(vg, T'). Let &(vg) be a positive
number less than half the distance from f(vx) to M —O(vx) so that for
each vy # v; and each simplex s of T” which contains vx but not vy, 2¢(vx)
< g(f(s), ClL(o ('vj))), and for each 74 which contains vk, 2¢(v) < o(f(vs), M—
~0(n)) If vy ¢ CL(K —L) set 6(vx) = &(ve); otherwise substitute (lk(mc,T’)
A Ey,»K, ve>v, MM, f~f, e(v) > ¢) in Lemma 3.4, to get an associated
positive number §(vg).

If f' is a homeomorphism of K into M such that for each v; and
each simplex s of T which contains vk, « ¢ s =0 (f(2), f'(#)) < 8(vx), then
for each vy, f’(Gl(K—N(vk, T’))) fails to intersect C1(0(vx)).

Let 7" be a derived subdivision of 7" such that for each vk, f (N (vg, 7))
C O(vx) and has diameter less than §(vz), and for each oy, f (N (b(aj), ‘T”))
CO(o;). Now K is the sum [J N(b(s), T”) over the simplexes s of T
(see [23], Ch. 3, (i) on p. 14). For each 4; set Ei= N (b(4s), T”), and
for each o; that is a face of 4; set Fy = 4; N(b(oj), T”).

For each 1- and 2-simplex s of 7' let 0'(s) be a connected open subset
of 0(s) such that f(N(b(s), T") C 0'(s) and CL(0'(s))) C O (s).

For each o; let ¢(o;) be a positive number such that

(1) 2¢(0y) < d(vg) for every v e N(oy, T),

(2) 2¢(oy) is less than the distance from f(N (b(sy), T")) to M— 0'(y),

(3) for every A which has oy as a face and every o which is not
a face of Ay, 2¢(oy) is less than the distance from f(4,) to C1(0’(o)), and

(4) for every 4; which has o; as a face 2&(o;) is less than the distance
from f(Bd(ds)—Int(ay) to C1{0(0y)).

I o; ¢ C{E—L) set 6(oy) = e(oy). I oy C CE—L) let Ay, .on,
Aiatiyy oo Aigipy (m=m(j) <n= n(j)) denote the 2-simplexes of T
which have o; as a face. Choose the indexes so Ayy CL if and only if

p>m. Substitute (A;p(,-)»A,,, Udy~E, m—>m, CUL ~ (Int(o) v
»

©
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u(pg)mIn‘ﬁ(Afpm))))%L: Foiyi>Fpy Biyy>Bp, MM, e(o)—e) in

Lemma 6.1 to find an associated positive number 4(oy).

If f is & homeomorphism of K into M such that for each ¢; and
each 4; which has o; as a face, # € 4s=¢(f(#), f'(#)} < 6(0y), then for any
simplex s of T, f'(s) » CL(0"(0y)) # @ only if o; is a face of .

For each 4; let e(4;) be a positive number such that

1) 2e(A4) is less than é(oy) for each oy which intersects A,

%)
2) 2e(dq) is less than the distance from f(¥;) to M— 0'(4y) and
from f(Bd 45)) 107 CL(0'(4,)), and
)

(8) 2e(dy) is less than the distance from f(4;) to Cl (O’(Aj)) for each
Ay #= Al

T A;CL set 8(d;) = e(4i); otherwise substitute (B;—D, @-L,
Ei—»W, f~f, M—M, e(4:)—¢) in Corollary 5.1 to find an associated
positive number &(4s).

If f* is a homeomorphism of K into M such that for each 4;, z ¢ 4;
= o (f(2), f'()) < 6(4s), then for each Ay, f(K;) ~ CL{0’(4s)) C f (Int(4y)).

Let » be a positive, continuous, real function on K such that for
each simplex s of 7' the maximum value of » on s is less than (s} for
each simplex s’ of T' which intersects s.

Let f, and f, be pwl homeomorphisms of K into M which agree on L
so that for each z e K, o(f(x), fe(z ) <w(z) (e=0,1).

Tor each 4i ¢ I, % edi=o(f(®),fol) )<6(A ) (¢6=0,1) so from.
Corollary 5.1 and from our remarks about the e(4:)’s and é(Ai) § there
is a pwl ¢(ds)-isotopy Hi (0 <t<1) of M such that H f0 fi on By
and H' is the identity on an opén polyhedron O;; in M which conbains
flL) v (M—0'(4)). Because the C1(0'(4))’s are mutually exclusive,
because their sum is closed in M, and from the conditions on the diameters
of the O(s ) s, We can define a 1ooally pwl isotopy Hi (0<t<1l)of M by
setting Hy = HY® on each 0'(4;) for which A; ¢ L and setting Hi=1I
elsewhere. By ([6], Prop. 2.1), Hj is a pwl isotopy. Further Hj is the
jdentity on the open polyhedron O; = [} Ox; which contains fi(ZL), and
the track under H} of each point @ of M has diameter no greater
than wu ().

From Condition 1 on the £(4:)’s we find that for each o; and each A¢
which has o as a face, @ € A= o(f(x), Hif)) < 8(0s) and o(f(#), fi(=))
< 8(0y); thus from Lemma 6.1 and our remarks about the &(ay) ’s and
6(0;)'s there is for each ¢; C CL{K—L) a pwl isotopy HY (0 <t <1)of M
such that HY Hif, = f, on ( L Fopiyi) and HY' is the identity on fo(L ~ Ky)

U Hify U Biyp) © Oz Where 0y is an open polyhedron containing
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(M- 0'(o7)) ufo((L ~ Ky)—Cl(E,— (L ~ Kg))). Because for any simplex s
of T, Hfy(s) ~ CL(0'(0)) # @ onmly if o is a face of s, and because the
(}1(0’(@)}’3 are mutually exclusive and have a closed sum in M, we can
define a pwl isotopy Hi* (0 <? <1) as before so that HY¥Hify=f, on
CL{Ey— U (vx, ), H® is the identity on fy(L ~ K,) w Oz Where Oy,
= () Oy is an open polyhedron containing fo((L ~K,)—CL{E,—(L K,))),
and the track under H;* of each point & of M has diameter no greater
than p(z). Now Hi” is the identity on each fy(Bd (7)) where =, C L so we
can change H}* just on-the images of these simplexes to get & pwl isotopy
H} (0 <t<1) of M such that HiHif,=f, on K,— | N (v, ")), Hf is
the identity on f(L)w O, where O, is the open polyhedron O, v
v (U{ fo(Int(r,))mCL]) which contains f,(L—CL(X—L)), and the track
under H} of each point # of M has diameter no greater than u,(z).

From Condition 1 on the £(oy)’s we find that for each vx and each 4;
which contains ve, @ e d;=p(f(x), HiHify(®)) < é(vs) and o(f(@), fu(@))
< 8(vx); thus from Lemma 3.4 and our remarks about the e(vg)'s and
8(vg)’s there is a pwl s(vz)-isotopy H* (0 <it<1) of M such that
HY*H2Hf, = f on Ky ~ N (v, T') and Hi" is the identity on fi(L ~ Ky) U
U Oy, where Oy is an open polyhedron - containing (M —O(wy)) v
uf,,((L A Ky)— CH{E,— (L KE))). From the conditions on the e(vx)’s we
find that no H?H}f‘,(Gl(K——N('uk, T’))) intersects CL(O(vg)). We define
as before a pwl isotopy Hi* (0 <t <1) of M so that HYHYHif, =1,
on K,, H:i" is the identity on fy(L ~ K,) v Og Where Ogo = [ O is an
open polyhedron containing f,((L ~ Kj)— Ol (K, — (L ~ K,))), and the track
of each point # of M under H{* has diameter no greater than u (). Then,
as before, we convert Hi® to a pwl isotopy H; which is the identity on
JoID) v Oy where O3 = O3y v (U { o (Int(zo) = C L}) is an open polyhedron
containing f,(L—Cl(E—L)) so that HiH{Hif, = f, on K,.

For each v; ¢ L, HiH Hify(:) C O(v:) and HIHIHIf, = f, on Bd(z);
thus Hi HiHfo(7) = fy(w:). We apply the Alexander deformation theorem
(stated as Le}nma, 2.3 in [6]) to find a pwl isotopy Hf (0 <t < 1) of M 50
that HiH:H:Hif,=f, and Hi is the identity on the complement of
U {fu(Int(z))irs ¢ L}. This shows that Hif is the identity on fy(L) v 0,
where O, is an open polyhedron containing f, (L—Cl(K —L)) and the
track of each point # of M under Hf has diameter no greater
than g (z). <b

Define Ht by the rule Ho =T and Ht = Hi(i—(i—l)M)H(i—l)/&((i—1)/‘4? \<,
<1<if4, 1<i<4). We have Hf,=f,, H;is the identity on fy(L) v O
where 0 = [} O: is an open polyhedron containing f,(L— Cl(X —L)), and
for each point £ of M -the track of # under H; has diameter no gr’ea,ter
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than () + i (H1(®)) + o (H Hy(@)) + oy (H1 Hi Hi(2)) < 4(1/4u(@)) by the
definition of Property K.

CoroLLARY 7.1. Suppose the L in Theorem 7.1 has no point components
and mo local cut points, and suppose L—Cl(K—L) + 0.

Suppose that for each @ e L and each neighborhood N (z) of f(z) in M
there is a commected subset N(x) of N(x)—f(L) which contains each com-
ponent of f(E—L)~ N (x) whose closure contains f(x).

Then v can be chosen and Hy constructed so that C1(0) is a polyhedral
3-manifold with boundary.

Proof. The condition on fin the hypothesis implies that for each arc ¢
in K such that ¢t ~ L is an interior point of ¢ and each disk D in I whose
interior contains t ~ I, f(#) does not pierce f(D).

By using Corollary 6.1 in place of Lemma 6.1 and Corollary 3.4 in
place of Lemma 3.4 in the proof of Theorem 7.1 we can choose » and
construct Hi (i =2, 3) so that Cl(Os) is a polyhedral 3-manifold with
boundary. Further, following the proofs of Corollaries 6.1 and 3.4, we find
that there is a regular neighborhood M, in M of f(L) = fi(L) modulo
£.(CL(E—L)). We can assume M, C 0,. Notice that H} and Hi are the
identity on M. Since for each v CL, fo(Bd(z)) CCLOw) (j=1,2), we
see that C1(0;) (j= 1,2) is a 3-manifold with boundary which contains
a regular neighborhood of fo(L) modulo f,(Cl(X —L)).

‘Just as in the proof of Corollary 6.1 we construct a regular neighbor-
hood M, of fo(L) modulo f.(CL{K —L)) which is contained in M; n C1(0,)
~ CL(O,). Then for the promised O we use Int(M,).

The next theorem is a two dimensional analogue of Theorem 7.1.
We omit a proof.

TEEOREM 7.2. Suppose M is a pwl 3-manifold, K is a polyhedron,
K, and L are subpolyhedra of K, f is a homeomorphism of K onto a closed
subset of M such that f(K) ~ Bd{M) = f(Ka), and.p is @ continuous, non-
negative, real fumction on M which is positive on FOUE—L)).

There is a positive, continuous, real function v on K such thai if for
and f, are pwl homeomorphisms of K into M which agree on L so that
Fo{E) ~ BA(M) = fo(Ka) (e=0,1) and for each point z of K, o(f(®), fe(x))
< wv(z) (e =0, 1), then there is a pwl isotopy H; (0 <1 < 1) of M onto itself
so that H.fy = f on K., Hy s the identity on foL) w O where O is an open
polyhedron containing fo(L— CL(E —L)), and the track of each point » of M
under Hy has diameter mo greater tham p(z).

Furthermore if for each arc t in Ka such that 1~ L is an interior point
of t and each arcr of L ~ K g whose interior contains i ~ L, (1) does not pierce f(r)
in Bd(M), if Ko (L—OI(K~L)) = @ and if CL(Ku—L) n L has no point
components, then H, can be constructed so that CL(0) and CL(0) ~ BA(M) are
polyhedral mamnifolds with boundary.
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8. The general isotopy theorem for manifolds with boundary.

THEOREM 8.1. Suppose M is a pwl 3-manifold, K is a polyhedron
with no local cut points, K, and L are subpolyhedra of K where K, has no
point components, and f is a homeomorphism of K onto a closed subset of M
such that f(K) ~ BAd(M) = f(K,). Let u be a continuous, non-negative, real
Junction on M which is positive on f(CL(E ~L)). »

There is a continuous, positive, real function v on K such thai if fo
and f; are pwl homeomorphisms of K into M which agree om L so that
JelE) ~ BA(M) = fo(Ka) (¢ =0, 1) and for each point x of K, g(f(m),fe(w))
<vw(®) (€= 0,1), then there is a pwl isotopy H; (0 <1t <1) of M onto
itself so that Hyfy = fi, the track under H; of each point x of M has diameter
no greater than u(x) and Hy is identity on f,(L) v O where O is an open
polyhedron in M containing f,(L— CL(K—L)).

Furthermore if f, agrees with f, on K, then Hy can be chosen so that it
is the identity on BA(M) and so that Bd(M)—fo(Ol(K—(L uKa)))CO_

Proof. Disregard for a moment the pwl structure of Bd(M) and
use [1, 2] to find a triangulation of the topological space Bd (M) which
makes the restriction of f to K, a pwl homeomorphism. Use this triangu-
lation to define a polyhedron @ which contains K, as a subpolyhedron
and which intersects K in exactly K, and to define a homeomorphism f
of Kv @ onto f(K)u Bd(M) so that f'=fon K.

Define & pwl 3-manifold M’ whose interior containg M by adding
the pwl product Bd (M) x[0,1) to M with the identification y ¢ Bd (M)
= y=(y,0). Give M’ a metric which extends the metric on M, and
extend x to a continuous, non-negative, real function u' on M'. .

Let 42 be a continuous, non-negative, real function on M’ which is
positive on f(CL(K—L)) so that (M, } ', p2, 2) has Property R. Substitute
(M'~M, K v @K, LvQ-IL, J'~f, ua—p) in Theorem 7.1 to find an
associated positive, continuous function # on K u Q. ‘

Extend the function »(f)™ to a continuous, non-negative, real
funetion uy, on M. Let # be a continuous, non-negative, real function
on M which is positive on f(OUEa—L)) so that (M, u,, 1, 2) has
Property R and so that for each point z of M, p() < ps(z). Substitute
(M~M, KK, Es>EK,, L—L, f~f, yy—u) in Theorem 7.2 to find an
associated positive, continuous function », on K.

Let uy be a continuous, non-negative, real function on M which is
positive on BA(M) so.that (M » ¥t oy 2) has Property R. Substitute
(MM, E->K, K,~K,, O->L, f->f, py—>p) in Theorem 7.2 to find an
associated positive, continuous function vy on K.

Let v be a positive, continuous function on K v @ such that for
each point » of K, V() < vy(z), »(x) and for each point = of @, +'(»)
< to(f'(®)). Let » denote the restriction of v to K.
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Now let fo and f; be pwl homeomorphisms of K into 3 which agree
on L such that fo(K) n BA(M) = f(K,) (¢=0,1) and for each point z
of K, o(f®), folx)) <»@) (6= 0,1). Use [1, 2] to find a pwl homeo-
morphism fi of K v @ into M such that f(Q) = Bd(M) and for each
point @ of K v @, o(f(®), fa(x)) < v'(@)- _

From the conditions on »' there is a pwl homeomorphism % of M
onto itself so that hfe = f; on K, and for each point z of M, o{z, h(z))
< pof®). EBxtend f; to a pwl homeomorphism fi of K v @ into M’ by
setting fi equal to Afi on Q. If z<Q, o(f'(2), fila) < v'(@)+ (i)
< w(f '(w))+,uo(fé($)) < pn(f' (@) = »(2) by the definition of Prolferty R
and the fact that o(f'(@), falx)) < uo(f'(@). I @ e K, o(f(z), fila)) < »(x)
< 1Jg(gz*.om the conditions on » there is a pwl isotopy Hy (0 <t <1) of M
onto Stself such that Hif, agrees with f, on K,, H; is the identity on
foL) v Oy where O, is an open polyhedron containing folL— CUE —L)),
and the track of each point # of M under Hi has diamle(:er1 no greater
than m(z). If f, agrees with f; on K, seb H; = 1. Extend H; ;fo to a pwl
homeomorphism f; of K v @ into M by setting f; equal }10 fi on Q. lFor
each point @ of K U @ we have g(f'(®), fi(x)) < v'(®)+ i (fi(#)} < pu ()
= vi(x) just as for fi. .

2(Si)ng,e Q(f’(w),fé(m)) < vx) (e=0,1; ze¢ K v Q) there is by Thego—,
rem 7.1 a pwl isotopy Hi (0 <t<1) of M’ onto it,self- such that Hifs
= fi, H is the identity on fy(L)w Bd (M) v 0, where O, is an open poly-
hedron containing fé((L Q) —CL{(Ev@)—(Lv Q))) = folL— CLE—L)} v
u (Bd(M)~ folOL{E—(L uK,,)))) , and the track of each point z of M

under H; has diameter no greater than yé(:v). Because H; is the identity
on BA(M), Hi takes M onto itself.

Deﬁné the promised isotopy H; by the rule Hy= HY (0 <t§ 1/2)
and Hy = HagamHip (1/2 <t<1). We bave Hfy=F and H; is the
identity on fy(L) w O where O = O; ~ 0, is an open polyhedron‘ eont.ammg
foL—CL(E—L)). If f, agrees with fi on K, then H; iy the identity on
flL) v BA(M) v 0, where O, contains Bd(M)—f(,(Ol(K—(li U .Ka)))/. The
track of any point ® of M is no greater than () u(Hi(z)) < pa(e)+
+ uw(Hi(@) < p(w) since o(z, Hi(z)) <pa(z) and (M',}u',p,2) has
Property R.

pHeZe is a topological analogue of Theorem 8..1._ Although a _stronger
version is valid which provides fixed point sets snmla.r to thoge in Thf}ol;
rem 8.1 it proof requires modifications of [1, 18] which we do not ws
to make here.

THRoREM 8.2. Suppose M is a 3-manifold with boundary, .K is
a polyhedron with no local cut points, Kq is a subpolyhedron of K with no
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point components, and f is a homeomorphism of K onto & closed subset of M
such that f(E)~ BAd(M)=f(Kq). Let u be a continuous, non-negative
real function on M which is positive on f(K). ’

There 1s a positive, continuous, real function v on K such that if f, and f,
are homeomorphisms of K onto tame sets in M where fo(K) Bd(M;
= fo(Kq4) (e = 0,1) and for each point x of K, g(f(m),fe(m)) <v(z)(6=0,1)
then there is an isotopy Hy (0 <t <1) of M onto ilself so that H,f, ; fi
and the track of each point x of M wnder H; has diameter no -g'reatefr;
than u(z).

Proof. Since M can be triangulated [1, 2, 18] we might as well as-
sume that it is a pwl manifold.

?:et; 4, be a continuous, non-negative, real function on M which is
Ppositive 0{:1 F(K) so that (M, u/3, u,, 3) has Property R.

Substitute (M M, K>K, K4—~Kq, 3L, f->f, y, > u) in Theorem 8.1
to get an associated positive, continuous function », on K. For the func-
tion » take »,/2.

Let f, and f; be homeomorphisms of K onto tame subsets of M such
that f(K) ~ Bd(M) = fo(Ka) (¢=0,1) and for each point # of K
(@), Fd@) < 3(a) (=0, 1). ‘ ’

By eom}aining [1,18] with [15] we find isotopies Hf (0 <t <1;e=0, 1)
'pf M onto itself such that Hif, is a locally pwl homeomorphism of K
into M, for each point » of K, o(H:fo(),f(®)) < »(#), and the track of
each, ms_M. under Hf has diameter no greater than u(s). Since f,(K)
(e=0,1) is tame, Hifo(K) is a closed subset of M and H:f, is a pwl
homeomorphism by ([6], Prop. 2.1).

Theorem 8.1 provides an isotopy Hi (0 <t <1) of M onto itsel
Sl}Ch that HiHif= Hif, and the track of each x ¢ M under H® has
diameter no greater than u,().

Deﬁme the promised isotopy H; by the rule Hy= Hg (0 <t < 1/3),
H;= E‘B(l«lla)H][Q(l/a < t1<_12/3;), and H; = H}_3(t_2/3)(H})_1H2/3(2/3 <t <1).
b XV‘/'e ha;ve H.fy= (H1)""HiHif, = f,. The track of each & « M under H,

as diameter no greater than uy(w)+ u(Hi(®)) -+ p (HY) " Heps(n)) < ul@
sinee (M, u/3, uy, 3) has Property'R. 1( ' o0l )) o)

9. Applications I-Improving isotopies of polyhedra.

aﬁn’;[‘tf;c;flt;nmd&l. S%g:posel Mlis a (pwl) 3-manifold with boundary, K is
init wearon with no local cut points, and K4 is b i C
which has mo point components. ’ 0 ¢ mbpolyotron of X
. fgp)pcz.;e ke (0 <t < 1)4s an isotopy of K into M such that hy (K)~Bd(M)
= n(Kq <t<1) and both hy and h, t
i B oy o 1 take K onto tame sets (both h,
Suppose &> 0.
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Then there is a (pwl) isotopy H; (0 <t <1) of M ondo itself such that
Hbhy=M and for each t (0 <t <1), d(h, Hilo) < &.

Proof. We prove only the topological version of the theorem.

For each t let 6(f) be a positive number such that the constant
function &(f) on K is subject to the restrictions on » in Theorem 8.2 for
the substitution (M—>M, K—K, K,—>Ka, l—f, g3—-u). Let N(t) be
2 neighborhood of ¢ in [0,1] such that if s« N (¢) then d(ks, hs) < 5(2)/3.

From the compactness of [0,1] there are numbers f, ..., tm such
that | N (t:) = [0,1]. Let d be a positive number less than each 8(1:)/3.
Let n be a positive integer such that if [t—s| < 1/n then d(h, hs) < 8.

Use [2] to find for each ¢ (1 <4< n) 2 homeomorphism f; of K onto
5 tame set in M such that fyK) ~ Bd(M) = fi(Ks) and d(fi, hin) < 6.
Set f, = ko and fa = hy. Note that for each i (0 < ¢ << n) there is a ?; such
that i/n € N (t7); thus d (i, hy) < 6(4)/3 and d(hesvms by) < d(him,y Rarom)+
Ay ) < 20013 80 d(fi, hey) < 8(ts) and d(fern, ) < 8(1y)-

 Use Theorem 8.2 to find for each ¢ (0 <i< ) an &3-isotopy
HI (0<t<1) of M onto itself so that Hifs= firs.

Define H; by the rule H, = I and H; = Heg—ymHiya(ijn <1< (i-4+1)/n,
0<i<n). We have H,hy=1h,. For each ¢ there is an 7 so that
telifn, (i-+1)m];  thus  d(Hiho, k) < d(Hiho, Hipmho) S d(Hynho, i)+
+ d(himy be) < g3+ a(fi, i) +0 < g3+0+0 < e

10. Applications II-On pseudo isotopies.
Limvma 10.1. Suppose M is a 3 -manifold with boundary, K is a polyhedron
with no local cut points, Ko is a subpolyhedron of K with no point components
and f is & homeomorphism of K into M such that f(K) ~Bd(M) = f(Ka).
Suppose f(K) is locally tame modulo f(HKa). .
Then f(K) is locally tame.
Proof. Let x be a point of K,. We show that f(X) is locally tame at 2.
. Choose a tame 3-cell ¢ in ¥ such that ¢ ~ Bd(M)= D a disk whose
interior contains f(x), and construct a homeomorphism h of C onto
a tame 3-cell B in F°. Set B = k(D). Let P be a finite subpolyhedron
of K and P, a subpolyhedron of P such that

(1) P contains a neighborhood of z in K,

(2) P has no local cut points,
(3) Py has no point components,
(4) f(P)C O, and

(B) f(P) ~» BA(0) = f(Py) C Int(D).

Now hf(P—P,) is locally tame, and f(P) contains a neighborhood
of f(2) in f(K).

As in the proof of Theorem 8.1 define a polyhedral disk @ which
contains P, as a subpolyhedron and which intersects P in exactly Pa,
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and extend hf to a homeomorphism f' of E= P v @ onto hf(P)u Z.
Let T be a triangulation of B in which ¢ underlies a full subcomplex,
and let Ty denote the subcomplex of 7' which ¢ underlies. Let R; denote
the i-skeleton of 7' and 7" the first barycentric subdivision of 7. It ig
apparent that f/(R) is locally tame modulo f'(Ps ~ Ry).

Let 4 be a 2-simplex of 7. We show that f'(4) is tame. If 4 faily
to intersect ¢ then f(4) is tame by the hypothesis of the lemma. If 4 C @
then f'(4) is tame by the two dimensional Schoenflies theorem. The
fullness condition on 7' shows that if Int(4) misses @ but 4 ~ @ is non-
empty then 4 ~ @ is either a 1-simplex o or a vertex v. Suppose 4 ~ @ = ¢.
" Then f'(4) is locally tame modulo the tame arc f'(s) so f'(4) is tame
[10, 1, 18]. Suppose 4 N @ = v. Find an arc 4 which underlies a sub-
complex of Ik (v, T) so that lk(v, T) ~ 4 CA and 4 ~ @ is a single poing
which is an endpoint of 4. But then f'(4) is contained in the disk f'(v » 4)
which is tame as in the previous case.

Each 1-simplex of 7T is the face of some 2-simplex so we have
established that f'(R,) is locally tame modulo f'(R, ~ P,). Now we show
that f'(R,) is locally tame at each of these isolated points. Let v be a vertex
of T in P,. Observe that lk(v, Tg) is a simple closed curve. Let G be
a subcomplex of the 1-skeleton of lk(v, T) so that lk(v, Tg) is a sub-
complex of @, each vertex of lk(v, T) is in &, and there are no simple
closed curves in ¢ other than Ik (v, T¢). The graph @ is obtained by adding
to Ik(v, Tg) the sum over a finite collection of mutually exclusive trees
in lk(v, T) each of which intersects lk(v, Tp) in a single vertex. Let &
denote the subcomplex lk{v, I') ~ (v * @) of lk(v, T").

Consider now a polyhedral disk ¥ = u » J where % is a point and J is
a simple closed curve. Define a pwl map ¢ of J onto G' so that there is
a finite collection of arcs {4;} which fill up J and have mutually exclusive
interiors where for each A, ¢ takes A; homeomorphically onto some
1-simplex of @', for no 1-simplex ¢ of Ik (v, T") in @ are two 4.’s mapped
onto ¢, for no 1-simplex o of @ does p '(s) contain more than two As,
and for each pair 4,5 (i # §) such that 4; u A4y is an are, f’(q:(A, v Ay)
pierces no disk in f'(» = §). Extend ¢ to take F onto v+ G by taking the
join of the maps of J onto @' and u onto v.

By making a series of cuts along tame arcs like the cuts illustrated
in Figure 10.1 we convert the map f'o: F—~B into an embedding g of F
into B 50 that g(u) = f'p(u), g(F) is locally tame modulo g(u), g~ (BA(B))
=(f'p) " (BA(B)), and g(F) contains (N, T) ~ R,). It is possible to
make these cuts because of the piercing condition mentioned in the
preceding paragraph. '

Let o be a 1-simplex of T’ in B, ~ @ which contains v. The disk g(F)
is locally- tame modulo the tame arc f'(0) s0 g(F) is tame by the argument
used earlier in this proof. Thus f/(R,) is locally tame at f'(v).
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£(6) £(v)
Fig. 10.1

From [1, 18], f(R,) is tame, and hence from [8], f(R) is tame. This
shows that f'(P) is tame in B and thus that f(X) is locally tame at the
point f(x). Since « is an arbitrary point of Ka, f(K) is locally tame.

Now we give the promised extension of the Keldy% theorem. See
[13; 14].

TesorEM 10.1. Suppose K is a polyhedron with no local cut poinis,
K, is a subpolyhedron of K with no point components, M is a 3 - manifold
with boundary, and f is a homeomorphism of K onio a c_losed subset of M
such that f(K) ~ BA(M) = f(Ka). o -

Let u be a continuous, non-negative, real function on M which is positive
on the set of wild points of f(K) ~ Int(M) and 2ero on Bd(M). ‘

There is a tame embedding g of K into M, there is a pseudo isotopy
H; (0 <t<1) of M onto itself, and there is @ 0-dimensional F,-subset ¥
of f(K —K,) which is contained in the set of wild points of f(E —XKg) such that

1. Hyg=f,

2. Hy takes M—H; YY) homeomorphically onto MY, and

3. the track of each point @ of M under Hy has diameter no greater
than w(x).

Proof. We assume u has been cut down if hecessary so that for
each ¢> 0, u([t, o)) is compact. Let T be a triangulation of K—Ka
with 2-skeleton T, and 2-simplexes 4y, ..., 4i, ... For each integer n let Wy
denote the set f( [ J 4i). Set W= J Wa.

=<n

Although the lemma is stated for embeddings of finite Polyhed?a.,
the proof of Lemma 5.3 of [5] applies equally well to embeddings of in-
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of W such that each X; ~ Wy is a tame universal curve in W, which js
normally situated with respect to the curvilinear triangulation induceq
on W, by T,, the diameter of each. component of f(d:)—X; is legg
than 1/2°%7, and if 1<k<j then for all integers n, Xy~ W,
CI(Xj;~ Wy, Wa). '

_(Ehoose open sets Ojz whose closures are contained in Int(M) A
~u (0, o)) so that for each j, the Oy’s have mutually exclusive closures
where each CL(Op) n W = Cl(Os ~ W) is the closure of some component
of W—X;, the diameter of every Oy is less than twice the diameter of
Cl{Osx) ~ W, every Cl(Os) (j>1) is contained in some Oj_j, every
CL(Ojx) contains some wild point of W, and every wild point o’f W is
contained in X;u (ij CL(O)).

For each j>_ 10 define a continuous, non-negative, real function i
on M so that u;((0, o)) = ij Ojx and so that if Oy C Oy, then the

maximum value of gy on Cl(Op) is less than 1/27 times the minimum
value of 1 on Cl(Oym). For each Ojx let ujx denote the restrietion of us to Oy

Define polyhedra Py = f"l(f(K) ~ Ogm). For each Oy .substitut(;,
(Oj;'c~>M, Pup—~K, @—+Kqs, f->Ff, pp~—p) in Theorem 8.2 to find an as-
sociated positive, continuous function »;; on Py. We agsume that the ViE'S
are cut down if necessary so that if Oy C O;1m then for each point
of .ij-, vix(2) < Vi—1m(2). ’.

Tse ‘[2] to find for each j > 0 a homeomorphism ¢; of X into M which
agrees with f on K — %J Py so that ¢;(K) is locally tame at each point

of gy‘(LkJP;k) and € Pre=o(f(@), gs(%)) < vu(z). Lemma 4.2 of [5] and

Lemma 10.1 here show that each g;(K) is locally tame. By the assumptions
on u and from the fact that f(K) is a closed subset of M, each g¢;(K) is
a closed subset of M and is therefore tame [1, 18].

F_or each j > 0, Theorem 8.2 provides an isotopy H] 0<t<1l)of M
onto 1tseljlf sueh.that Hig; = g;11 and the track of each point # of M
under H; has diameter no greater than ui(z).

. Set g= ¢, andj define the promised pseudo isotopy H; Dby the
;ng go = ﬁt = Hzl(.t—u—1/2!—1))H1~1/21-1 1-2""<1< 1-1/2j, 1<j< x),
1= lim H;. It is clear that H, approaches at least o map of M in

the limit. Si i = ;
it. Since }Eﬂ 95=1 and Hy_spw, = gs4; for each j >0, Hyg=Jf.

This shows that Condition 1 is satisfied in the conclusion of the theorem.

Eor each pos.itive integer 7 let’ ¥, denote the subset of W +which
consists of the points & whose pre-images Hy (x)

than or equal o Ln. Bach ¥ have diameters greater

Is closed. et ¥ = | ) ¥,. Since ¥ C ) (JOn)
%
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cN(W— X;), ¥ is a 0-dimensional F,-subset of the wild points of W.
But points @ and y are taken by H, onto the same point if and only if
for each integer j, Hi—ypes(x) and H, ypi(y) belong to the same Oj. Thus
Condition 2 is satisfied. )

Consider now a point # of M. If » does not belong to some Oy; then Hy
is the identity on z. Suppose @ e Oin. By the definition of the u;’s the
maximum value of each pu; over Cl(Oyy) is less than 1/2' times the minimum
value of x on C1(O1m); thus the track of # under H; has diameter no greater
than > 1/2%u (%) = u(x).
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Fiber homotopy type of associated loop spaces
, oy
F. H. Croom (Lexington, Ky.)

1. Introduction. Let E and B be topological spaces with base
points and =: F —B a continuous map. This paper gives necessary
and sufficient conditions that the fiber structures (QF,p, 2B) and
(2B xQF, q, 2B) be fiber homotopy equivalent where F is the basic
fiber of (B, =, B), QF is the space of based loops in E, p: QF 0B is
the natural map induced by = and ¢ is the projection on the first factor.
From this result it is observed that if (F, =, B) is a Hurewicz fibration
with cross section, (2, p, 2B) and (2B x QF, ¢, 2B) are fiber homotopy
equivalent. It follows that the higher loop space Q"E is H -isomorphic
to O"B xQ"F for n > 2. This naturally implies the known result ([3]
. 152):

. 7n(B) = 7y(B)+mn(F)  for w2,
2. Preliminaries.

DeFNirioN. A fiber structure (, =, B) is a weak Hurewicz fibration
if there is a weak lifting function

di A= {(e, a) e ExB": p(e) = a(0)} >E'
such that A is continuous,
wAle, a)(t) = a(t) (teI)
and the map (e, a) +1(¢, a)(0) is fiberwise homotopic to the projection
on the first factor.

- The following analogue of the Curtis-Hurewicz theorem (1], (41
is easily proved:

THEOREM 1. The fiber structure (B, nm, B) is a weak Hurewicz fibration
if and only if for each space X, continuous f: X B and homotopy ¢: X x I B
of f there ewists o homotopy @: X x I >E covering @ such that @, is fiber-
wise homotopic to f.

THEOREM 2. In order that (QF,p,QB) be fiber homotopy equivalent
to (2B xQF, g, 2B), it is necessary and sufficient that (OB, p, OB) be
o woak Hurewicz fibration with cross section.
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