186 8. Armentrout

References

[1] 8. Armentrout, 4 decomposition of EB® into straight arcs and singletons, to appear,

[2] — Decompositions of E* with a compact 0-dimensional set of nondegenerate elements,
Trans. Amer. Math, Soe. 123 (1966), pp. 165-177.

{8] K. Borsuk, Theory of Retracis, Warszawa 1967.

UNIVERSITY OF IOWA !

Regu par la Rédaction le 24. 4. 1969

®
cm -

Lattice modules over semi-local Noether lattices
by .
E. W. Johnson (Iowa City, Is.) and J. A. Johnson (Houston, Tex.)

§ 1. Introduction. For Noetherian lattice modules, the concept of the
a-adic pseudometric has been introduced and studied in [2] and [3].
Recently the natural completion of a local Noether lattice was related
o the completeness of a local ring in its natural topology ([1]). The purpose
of this paper is to establish some properties of Noetherian lattice modules
over semi-local Noether lattices and their completions.

The basic concepts are introduced in § 2, and some preliminary
results are obtained. Let L be a multiplicative lattice and let M be
a Noetherian L-module. In § 3 an interesting property concerning certain
sequences in M is established (Theorem 3.2). If L is a Noether lattice
and m is the Jacobson radical of L, then it is shown (Corollary 3.4) that
the m-adic pseudometric on M is a metric ([2], § 3). § 4 contains some
results on dimengions. If L is semilocal, it is shown in § 5 that [md, A]
i finite dimensional, for all 4 in M (Theorem 5.1), L* is a Noether lattice,
and M* is a Noetherian L*-module (Theorem 5.9), where L* and M* are
the m-adic completions of L and M, respectively ([2], § 6). In § 6 it is
established that L* is a semi-local Noether lattice whose maximal elements
are extensions ([2], § 5) of the maximal elements of L.

§2. Preliminary remarks. By a multiplicative lattice we shall mean
a complete lattice on which there is defined a commutative, as-
sociative, join distributive multiplication such that the unit element of
the lattice is an identity for the multiplication. Let L be a multiplicative
lattice and let M be'a complete lattice. We shall denote elements of L
by a,b, ¢, ... with the exception that the null element and unit element
of I will be denoted by 0 and I, respectively. We shall denote elements
of M by A,B, 0, ..., with the exception that the null element and unib
element of M will be denoted by Oy and M, respectively. When no con-
fusion i possible, 0 will also be used in place of 0jr. Recall that M is an
L-module ([2], Definition 2.2) in case there is a multiplication between
elements of L and M, denoted by a4 for ain L and 4 in M, which satisfies:
(i) (ab)4d = a(b4), (ii) (V @a)( >/Bﬁ) = \{3 @,Bp; (i) I4d=4; and

(iv) 04 = 0; for all a, a4, b in L and for all 4, Bgin M.
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Let M Dbe an L-module. For a, b in I and for A, B in M, (i) a:b ge-
notes the largest ¢ in L such that ¢b < a; (ii) A:b denotes the largest ¢
in M such that 5C < 4; and, (iii) 4:B denotes the largest ¢ in L such
that ¢B < A. An element A in M is said to be meet principal in cage
(bA(B: A4))A=bAAB, for all b in L and for all Bin M; A is said to he
join principal in case bv(B:.4) = (bAVB): 4, for all b in L and for all B
in M;and, 4is said to be principal in case A4 is both meet and join principal.
If each element of M is the join (finite or infinite) of principal elements,
M is called principally generated. M is said to be Noetherian if M gatisfies
the ascending chain condition, is modular, and is principally generated.
If M is a Noetherian L-module, L is called a Noether lattice. For other
general properties and definitions concerning Noetherian lattice modules,
the reader is referred to [2]. . ‘

In the special case where M and L are both modular, we can prove

the following characterization of principal elements which will be useful
later.

Luvwa 2.1. Let M be an L-module and lot A be an element of M CIf M
and L are modular, then A is @ principal element of M if and only if

(2.1) ONA = (C:A)A
and
(2.2) bA: A = by(0: A)

Jor all b in L and for ol C in M.

Proof. Assume M and L are modular. Suppese that 4 is principal.
Then clearly A4 satisties (2.1) and (2.2). Conversely, assume that 4
satisties (2.1) and (2.2). Then, for b in L and ¢ in M, we have
bA(C: A)) A= ((bA(o:A))v(o;A))A o A)A(bv(0: 4))) 4

= ((C: 4)A(bA:4)) 4 = ((CABA):A) A= ONbANA= CONDA
by the modularity of L. Also,

(OVbA): A= ((OVBA)AA): A= ((ONA)VDA): 4 = ((0: 4)v)4): 4
= ((C: 4)vb)v(0: 4) = (0: A)vb

both meet and join principal,

and hence principal. q.e.d.

We will also need the following result.

Lmwnra 2.2 ‘Let M be an L-module. Let a be principal element of L
and let A be a principal element of M. Then a4 is a principal element of M.
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Proof. Let b be an element of L and let B be an element of M. Then,
gince ¢ and A are principal, it follows that

(oA (B: (ad)))(@d) = (bA((B: 4): o)) (ad) = ((b/\ ((B:_A):a))a)A
© = (ban(B: 4)) A =b(ad)AB
by ([2], (2.16)). And also, .
(b(“A)VB)= (ad) = ((b(“A)VB): A): a= (bav(B:4))a
=bv((B:4):a) = by (B: (ad))
by ([2], (2.15) and (2.16)). Hence a4 is meet and join prineipal, and thus
prineipal. - o

In later parts of this paper we will need to use a generalization of
quotient lattices. This construction is developed in Remark 2.3 below.
If A, B are elements of a lattice K with A < B, then the set {D EK}
A <D < B} i8 a sublattice of K which will be denoted .by [4, Bq. If K is
a complete lattice with unit element U, then for arbifrary 4 in K, we
will also write K/A in place of [4, UL

Remark 2.3. Let M be an L-module, let 4, B be elements of M
with 4 < B, and let ¢ be an element of L such that «0 < A, for all C'
in [4,B]. Then [a, I] is “naturally” a multiplicative lattice and [4, B]
is “naturally” an [a, I]-module. .

Proof. For b, ¢ in [a, I, define b « ¢ = beva. For € in [4, B] m}d b
in [a, I], define b o = bCv A. Bince M and L are both completfa la.ttxcets,
it follows immediately that [4, B] and [a, I] are cz‘on}ple?;e lattices. If is
easily verified that the above definitions of multiplication make [a, I]
into a multiplicative lattice and [4, B] into an [a, I]-module. The com-
putations will be omitted. ) ) g.e.d.

Remark 2.4. Let M be a Noetherian L-module, let 4, B be elements
of M With. A < B, and let a be an element of L such tpa!: aG" _< A,. for
all ¢ in [4, B]. Then, with respect to the “n_atural” multiplications given
in Remark 2.3, [4, B] becomes a Noetherian [a, IT-module. , ‘

Proof. This is & straight forward computation. The details will 1213
omitted. The reader is referred to ([2], Remarks 2.8 and 2.9). g.e.d.

LEyma 2.3, Let M be an L-module, let A be a principal dlement ojjé{ M,
lot a, b be dements of L such that & < b, lel L.be modular,»anitl@'t (0-1. tti;
Ab < a. Then the map @: [a, b]>[ad, bA] defined by p(o) = 24 15 a la
isomorphism of [a, b] onto [a4, bA].

lements of [a,b] and assume @(z)= oY)
Thef ;‘Z(:' yi?tHZJ;(Za wbz: ‘ji = yA: A. Consequently, since A is principal,

@ = wV(bA(O:A)) = b/\(wV(O:A)) = ba(zA: A)
=bA(yd: A) = bA(yv(0: 4)) =yv(pa(0:4)) =y
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by the modularity of L. It follows that ¢ is one-to-one. To see that ¢ ig
onto, let B be an element of [ad, bA] Since

a<ad:A<av(0:A) < B:A<bA:A=0bv(0:4),

we have that
a=anb <DA(B:A)=ba(bv(0: 4))=b.

Thus bA(B: 4) is an element of [a, b]. Applying ¢ we obtain
p(bA(B: A)) = (bA(B: 4) A =bANB=B,

since 4 is principal, and consequently ¢ is onto. Since ¢ is clearly"order
preserving, we have that ¢ is a lattice isomorphism of [a,b] onto
[ad,bA]. g.e.d.

§ 3. A preliminary theorem.

DerFmirion 3.1. Let L be a multiplicative lattice and let M be
a Noetherian L-module. For @ in L and 4 in M, let T(w, A) be the
collection of all sequences (B, 4= 1,2, ..., of elements of M satisfying

(3.1) @A > B; > By = aB;,

for all integers i > 1. For <C;> and {B;> in T(a, 4), define

(3.2) (Cpp<<By it ;ajnd only if C; << B;, for all integers i >1
(3.3) {C>V{(Bs) = {0iVBy>

(3.4) Oy A (Bsy = {CiAB;> .

It is easily seen that T'(a, A) forms a complete, modular lattice under
the relation < with the resulting join and meet being given by (3.3)
and (3.4). The resulting lattice will be denoted by R(a, 4).

THEOREM 3.2. Let L be a multiplicative lattice, let M be a Noetherian
L-module, let a be an element of L, let A be an element of M, and let (By),
i=1,2,..., be an clement of R(a, A). Then there ewisis a natural number
such that By,;= aiB,, for all integers m = n and for all integers i > 0.

Proof. Let F(a, 4) be the collection of all sequences <B;) in R(a, 4)
for whieh the theorem fails. Assume that F (a, 4) # ©@. We shall show
that F(a, 4) has maximal elements.

Let € be a chain in F(a, 4). For each ¢ in C, let C; be the ith co-
ordinate of (. For each natural number i, set 8y =\/ {0y] CeC}.

Suppose <3;) is not an element of F (a, A). Then there exists a natural
number # such that Sp,; = a8y, for all integers & > » and for all integers
42> 0. Since M satisfies the ascending chain condition, for each L,1<i<n,

there exists an element in C with ith coordinate ;. Select one and call
it B(s).
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Set (Byy = max{B(1), ..., B(n)}. Thus (B is in F(a, 4), and also
B;= 8, for 1 <4 < n. In particular B, = 8,. Consequently,

Shyi= 0’8y = a'B, < Byyi < Bpiiy

for all integers 4 > 0. It follows that Byy;= Su1s, for all integers ¢ > 0.
Thus, B; = Sy, for all integers i > 1, and consequently (8:) is in F(a, 4),
which is a contradiction to the assumption that {§;) is not an elenfxent
of F(a, 4). Thus C has an upper bound and hence F(a, A) has maximal
elements by Zorn’s Lemma, o

Let <(F;» be a maximal element of F(a, 4). By deﬁmtlon,‘ we know
P, < ad. Algo, if Fy = ad, then Fiy; = a'F,, for all integers < >0, ajnd
hence <F> would not be in F(a, A). Hence F, = ad. Thus, there exists
a principal element E of M such that F < ad and E < F,. It follows
that P, < F,vE < ad. . ‘

Now, define <Di) by Di= F;vai-iH, for all integers ¢ > 1. Observe
that F, < D, = F,vE < aA and that (D:) is an element of R(a,A.),
Hence <F> < <D, and <Dy is not in F(a, 4). ‘Oonsequently, there is
o natural # > 1 such that Dy.;= aiDy, for all infegers k> and for
all integers ¢ > 0. Hence -

FypiVab+imiB = Dyyi = ¢iDy = o{(Fyvab1B) = aifpvarti-iB,
for all integers % =>n and for all integers 4 > 0. Therefore, since M is
modular and F is principal, we obtain
(3.5) Frps = Fk_,.f/\_(aiFkva"'”"lE) = @iV (Fryih0Pti1H)
= @iV (Fess: B)AaF+i-2E)

for all integers % > n and for all integers i > 0. Next, for each integer ¢ > 1,
set H; = (Fypa: B)nab. It follows from (3.5) that

(36) Fk.).«; = aiFk \IH;‘.H-.*;‘E

for all integers k > » and for all integers ¢ > 0. Tt is easily verified that (H s>

is an element of R(a, I). o .
Agsume for a m,oment that M = L. Then, it is easily seen that

T < (Ho in R(a, I). Purthermore, it (Fiy = (Hi, then
(3.7) Hy= (Fyy: B)nai= Ty, -

y a
for all integers ¢>> 1. Thus, since B <al = a, we have by (3.6) an
(3.7) that :

(38)  Frpip = ait BV HypiB = 6TV EFpiB <l

for all integers & > n and for all inftegers 4 >0.
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Then, since @‘Fy, > Fiy, for all integers m > 1 and for all integers ¢ > 0,
it follows from (3.8) that il = Fy.,, for all integers % > n and for ail
integers i > 0, which contradicts the fact that (F:) is in F(a, I). Hence
(F < {Hypy, and consequently, there exists a natural number m >
such that

(39) Hk-H = aiH,.‘} ,

for all integers k& > m and all integers ¢ > 0, by the maximality of ¢F;).
Consequently, since I is principal, we have by (3.6) and (3.9) that

Frrin = PV Hpy il = otV Py Higrioyia = 6V aHyy
= @MV a((Frri: B)Aak+i=1) E)

= a"+1FkVa(ak+"—1E/\Fk+i) < 6Py y

for all integers & > m and for all integers ¢ > 0. As above, for (3.8), this
implies that Fr.; = a'Fy, for all integers &k > m and for all integers 4 > 0,
in contradiction to <F¢) being in F(a, I). Hence, when M = L, we have
Fla,I)=@. .

We return now to the general case. Since (H;) is in R(a, I), and
since F'(a, I) = @, there exists an integer s > n such that Hy,;= aHy,
for all integers k& >> s and for all integers ¢ > 0. Then by (3.6), we have that

Fryipn = a0 Hyy o B = 00V aiH, B < o'Fyyy ,

for all integers % > s and for all integers ¢ > 0. This again implies that
@i Fy4q = Fyi1eq, for all integers & > s and for all integers ¢ > 0. Thus (F
is not in F(a, 4), which is a contradiction. Hence F(a, 4) = @ in the
general case. q.e.d.

For a Noether lattice L, recall that an element a in L is maximal
if @ I and if b>> ¢ implies b = I. Also recall that the Jacobson radical
of L is the inf of all such maximal elements of L. .

CoROLLARY 3.3. Let L be a Noether lattice, lot M be a Noetherian
L-module, let m be the Jacobson radical of L, let B be an element of M, and
let a be an dement of L such that a < m. Then A anB = 0.

"

Proof. Let € be a principal element of M such that ¢ < A o"B.
Then, for all integers n >1, we have ¢ = OAanB. "

‘We shall show that ¢ = 0. Consider the sequence (OAa*BY,4=1,2, ...
Sinece

@B > CAa‘B > OAa#1B > a(CAaiB),

for all integers 1> 1, it follows from Theorem 3.2 that there exists
2 natural number % such that

CAG*iB = ai((pakB) ,
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for all integers ¢ > 0. Hence 0 = ai(, for all integers 4 > 0. In particular
¢ = aC. Thus, since C is principal, we have

I=0:0=0a0:0=av(0:0).
Since @ < m % I, it must be that 0:C = I. Consequently, (= IC
= (0:0)0=0.

Since M is a Noetherian L-module, every element is principally
generated. It follows that A a*B= 0. g.e.d.
n

CorOLLARY 3.4. Let L be a Noether lattice, let M be a Noetherian
L-module, let m be the Jacobson radical of L, and let a be an element of I
such that & < m. Then

(3.10) A= A (AvardR), for all A in M,
n
and
(3.11) the a-adic pseudometric on M is a metric .

Proof. Let A be an element of M. Then [4, M] is a Noetherian
L-module by Remark 2.4, and o << m. Thus

A=A (a7 M) = A\ (dvard)
n n
by Corollary 3.3. Hence (3.10) has been established. (3.11) follows ﬂom
(3.10) and ([2], Theorem 3.10). g.e.d.

§ 4. Some results on' dimensions. In this section some results are
established concerning dimensions of various lattices. These results will

" De needed later.

TawoREM 4.1. Let L be a Noether lattice and let o be an element of L. =
Then there ewist primes Py, ..., Pn i L such that pips ... Pn < G

Proof. Let F(L) be the collection of all elements in I for WhiCh. the
theorem fails. Suppose F(L) is not empty. Then F(L) has 2 maximal
element b. Clearly b is not prime. Since b is not prime, there exist elements
¢, d in L such that e¢d <b, ¢c<{d, and d<b. Consequently, evh > b and
dvb > b. Thus, since b is maximal in F(L), there exist primes ps, -..; Pas
iy ey P in L such that

PPy - Pn< VD and PID2 o P < AVD.
It follows that
(D13 +-- Pu) (PLDS e D) < (0V D) (AVD) = cdVebVbdybb < b,
which is a contradiction to the maximality of b. Hence F(L)is .empty. q..e.d.
Lmwa 4.9. Let T be a local Noether lattice with umigue mazimal

element p, and let M be a Nostherian T-module. Then, for each A in M,
the lattice [pA., A] is finite dimensional.
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Proof. Let 4 be an element of M. Since M is Noetherian,’ there
exists principal elements Ay, ..., d, in M such that A= 4,v..v4,.
Let S, =p4, and, for each 4, 0 <4< n—1, set 8ip3= 8;vVA4;,. Since
each Ay is prineipal, for each ¢, 0 <7< n—1, we obtain

(4.1) [8:; 8ip1] = [84y SivAipn] 22 [8iA Aia,y Aiyi]
=[(8i: dir1) Aigr, Aia] =2 [8it Aiga, I]

by the isomorphism theorems and Lemma 2.5. Since
PA K pAVAV..VA; = 8,

it follows that » < 8i: Ay, for 0 <<i<n—1. Hence, the dimengion
of [84: Aiy, I] 15 either one or zero. Hence [8;, ;4] is finite dimengional,
0<i<n—1, by (41). Since p4d =8,<8,<... < 8y = 4, we have
[pA, A] is also finite dimensional. q.e.d.

TurorEM 4.3, Let L be a Noether lattice. If 0 is o product of maximal
clements, then L is finite dimensional.

Proof. Assume 0 = 9, ... p, where each ¢ is maximal (and hence
prime). For each 4, 2 <4 < n, we know that [p¢, I is' a Noether lattice
and that [p,p, ... ps, pips... pi—a] i3 a Noetherian [pi; I]—module by
Remark 2.4. Thus, since each [py, I] is local, we have that each [p;
o (P1P2 - Pic1), P1Ds -+ Ps_q]is finite dimensional, 2 < 4 < #, by Lemma 4.2.
Simplifying this expression we obtain [P102 ... Piy D1 D5 ... Di—y] is finite
dimensional for each 4, 2 < i< n. Since I> PLZ PP = oo = P1Ds e Pu
= 0, it follows that L is finite dimensional. q.e.d.

COROLLARY 4.4. Let L be a Noether lattice. If every (proper) prime
element of L is mawimal, then L is finite dimensional. . :

Proof. Assume every (proper) prime element of L is maximal. By
Theorem 4.1 there exists prime elements P13 --3Pn in L such that
- Pn, Where each p; is prime, and hence
maximal by hypothesis. Thus, by Theorem 4.3, L is finite dimensional.

A Noether lafitice is said to be semi-local if it has only finitely many
maximal elements. If I is a semi-local Noether lattice with ‘maximal
elements p,, ..., p,, we will say that (L, p,, ..., ps) is a semi-local Noether
lattice.

COROLLARY 4.5. Let (L D1y eeey Pu)

be a semi-local Noether lattice, and
let m be the Jagobson radical

of L. Then [m, I is finite dimensional.
Proof. Bach (proper) prime element of [m, IT is maximal. q.e.d.

§5. m-adic completions. Throughout this section
a semi-local Noether lattice,

the Jacobson radical of I. Si

: (L Doy ooy 1) I8
M is a Noetherian L-module, and m is

nee L is gerni-local, clearly m = piA...ADE.
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By Corollary 3.4, the m-adic pseudometric ([2], § 3) on M and the
m-adic pseudometric on L are metrics. Consequently, the m-adic com-
pletions of M and L are defined ([2], § 6). Throughout this section,
M* shall denote the m-adic completion of M, and L* shall denote the
m-adic completion of L. It is known that M* is an L*-module ([2], § 7).
It will be established in this section (Theorem 5.9) that L* is in fact
a Noether lattice and that M* is a Noetherian L*-module under the.
assumptions stated above. We begin with the following result.

THEOREM 5.1. For each A in M, the quotient [mA, A] is finite di-
mensional.

Proof. Let A be an element of M. Since M iy principally generated,
there exists principal elements 4,, ..., 4y in M such that 4 = 4,V...vVA4y.
Set 8, = mA, and, for each 4, 0 <4< n—1, set 8;;1 = 8;vA;;. Then,
proceed as in the proof of Lemma 4.2 to obtain

[8:, So4a] =2 [Bitdipa, I1, 0<i<n—1.

Now, observe that m << 8i: 4;4 and that [m, I is finite dimensional
(Corollary 4.6). The proof is now finished as in Lemma 4.2. q.e.d.

COROLLARY B.2. For each A in M, [mrA, A] is finile dimensional,
for each natural mumber n.

Proof. Let A be an element of M. Since m"d < m*A <
<mA < A, and since each quotient [mid,m*1A], 1 <i <, is finite
dimensional by Theorem 5.1, the result follows. ’ q.e.d.

COROLLARY 5.3. For each natural number n, the quovient Ljm» s finite
dimensional.

- Proof. L is a Noetherian L-module. ] q.e.d..

In order to work with “infs” and “residuals” in M*, it will bfa necessary

to determine representatives of these elements'. The following lemm?,

will prove helpful in this respect. It is needed in the proof of Proposi~
tion 5.5 and 5.7.

TevmA 5.4. Let (A, 1=1,2,..., be a sequence of elements ofAM
satisfying A;p1 < A;vm I, for all integers i 2= 1. Then the sequence {4
is Cauchy. . .

Proof. Let » > 1. Since the sequence <A,:ansm>,_ i = 1,.2, vy 1z
decreasing in 4, and since m¥t < A¢vmefi, for each integer mi 131 a1113
follows from Corollary 5.2 that there exists a natural number g suc. .

Avmat = A;vmeI,

for all integers 4, > ¢. Consequently, dn(4s, 45) <277 for all mttigeegs
hizg '
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ProrosImioN 5.5. Let B, C be elements of M*. Let {B:) and <O v
the completely reqular representative of B and O, respectively. Then the
sequence (BihCyy is & ropresentative of BAC.

Proof. Since (B;> and (U are decreasing, the sequence (B;A(;)
js decreasing, and hence Cauchy (Lemma 5.4). Let .D be the equivalence
class determined by (B;ACy). Since BiAC: < Oy, for all integers 4> 1,
it follows that D < C ([2], Proposition 5.10). Similarly D < B. Thus
D <BAC.

Now, let 4 be an element of M* such that 4 < Band 4 < 0. Let (4,)
“be the completely regular representative of A. Then A; < B¢ and 4; < 0,
for all integers 4 > 1 ([2], Proposition 5.9). Hence A; << B;A0;, for all
integers ¢ > 1. It follows that A < D ([2], Proposition 5.10). Consequently
D= BAC. q.e.d.

Before proceeding to representatives of residuals in M™ (Proposition
B.7), we shall establish the following.

PROPOSITION 5.6. M* is modular.

Proof. Let 4, B, € be elements of M* with 4 > B. Let (4., (By,
and (0 be the completely regular representatives of 4, B and €, re-
spectively. Since A > B, we know 4; > B;, for all integers ¢>1 ([2],
Proposition 5.9). We also know that the sequence (B;V(;) is the com-
pletely regular representative of Bv(C ([2], Proposition 5.7). Hence
{4iA(Biv (i) is a representative of AA(BvC) by Proposition 5.5. Since
{4:n O is a representative of AAC, and since (B;> is a representative
-of B, we have that (B;V(4:A Cy)) is a representative of Bv(AAC) ([2], se
comments preceding Proposition 5.6). Consequently, since

AN By 0) = B«LV(Ai/\Gq;)
for all integers 4> 1, by the modularity of M, we obtain AA(BvC)
= BV(4AQ) q.e.d.

ProPOSITION 5.7. Let A, B be elements of M*. Let (A;> and (B> be
the completely regular representatives of A amd B, respectively. Then the
sequence (A Biy is o representative of A:B.

Proof. For each integer 4> 1, we have
.A('.‘ B;= (A.;+1Vm”‘ﬂR): (Biﬂvm"ﬁﬁ)

= ((Ass1vmiM): B i+1) ((A_Hlvm“‘im):miﬁﬁ)
= (AiaVmiM): By > 444 B

i+1
since <4:» and (B;) are completely regular. Hence, the sequence {4;: B
is decreasing, and thus is Cauchy by Lemma 5.4.

Now, let @ in I* denote the equivalence class determined by <{4i: Bi).
Since (4 Bi)B; < Ay, for all integers %1, it follows that aB <4

©
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(21, Proposition 5.10 and comments following Definition 5. 13). Hence
@ < A:B. Suppose b is an element of I* such that bB < A..Let (by) be
the completely regular representative of b. Sinee the sequence <bsB;vmi P>
is the completely regular representative of bB ([2], Corollary 5.15), we
have biBivm I < Aq, for all integers ¢ > 1. Consequently,

by B = (binVmimt)/\st{ L Ainbi B < A;,

for all integers ¢ >> 1. So by < A¢: By, for all integers 4> 1. Thus b <

and hence A:B < a. Therefore a = 4:B. g.e. d
“In order to establish that M* is principally generated, we will need

to establish a connection between prinecipal elements of M and prineipal

~ elements of M*. This relation is provided by the following result.

TaEOREM b.8. Let (A:> be a Cauchy sequence of principal elements
of M. Then the equivalence class determined by (A is a principal element
in M* (considered as am L*-module).

Proof. Without loss of generality, we may clearly assume that (4>
is a regular Cauchy sequence. Let B in M* denote the equivalence class
determined by (4., and let (B> be the completely regular representative
of B. Since M* and L* are modular, we will use Lemma 2.1 to show that B
is principal.

Let ¢ be an element of M*, and let <Ci> be the completely regular
representative of C. For each integer ¢ > 1, we have

OinBs = Cin(AvmiI) = m MV (Cin4y) = miV((Cai Ai) 44

== miw’tV( Ci'Ag (A¢\/'m,"9]t))

= miMV ((Cs: A A(Co: méTR)) (Aevm? D)
miMy((Ce: Aivwﬂlt))(A,- Vi)

= miIMV ((Cs: Bs) Bi))
by ([2], Corollary 4.13 and Theorem 4. 14). It follows that CAB = (C: B)B
Dy Propositions 5.5, 5.7, and ([2], Corollary 4.6). Hence {2.1) of Lemma 2.1
is satisfied. ‘ .
To see that B satisties (2.2) of Lemma 2.1, let @ be an element of L

and let <a;> be the completely regular representative of a. Then, for all
integers 4> 1, we have

(a1 BivmiM): B

I

= (ai(Asvmim) Vi D): (Aevmi )
= (@ A vmig): (AivmiIR)
(a;A.zVWEUt) Al ((@s AcvmiaR): mé IR
= (@A vmiM): A= aV (mE: Aq)

= agV {(mi Mz i) A (e Dz )

= aiv(miimz (AiV’m;iﬂﬁ}) = ag\/(miim:Bi)

13
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because A; is principal. Since <((agBivm*IM): By is a representa,tix}e of
aB: B by Proposition 5.7 and ([2], Corollary 5.15), and since <a;Vv (miIN: By

is a representative of av(0:B), it follows that aB:B =av():B)..

Thus B is a principal element of M*. q.e.d.
We are now in a position to establish the main result of this section.
THEOREM 5.9. L* is a Noether lattice and M* is a Noetherian L*-module,
Proof. We only need to establish that M* is principally generated.

If, for each pair B, C of elements of M* such that B < C, we can construct

a principal element 4 in M* satisfying A < ¢ and 4 < B, it will follow

from the ascending chain condition in M* ([2], Theorem 6.3) that M* is

principally generated. .

Let B, C be elements of M* such that B < (. Let (By and <0y
be the completely regular representatives of B and 0, respectively. Since
B < 0, we have B; < (4, for all integers ¢ >> 1. Also, since B = 0, there
exists an integer » such that B; < Oy, for all integers ¢ > n. Then, in
particular, B, < On.Since M is principally generated, there exist a principal
element A, in M such that 4;, < Oy and 4}, < B,. .

We shall now inductively construct a sequence of element Ay,
As4sy ey of M such that, for all integers j > 1,

(5.1) Ansg < (Appga VIt A Opygs
(62) A < Buj

and

(5.3) Ay.; is principal .

We proceed as follows. Suppose that
(5.4) (Anvmr YA Opiy < By .
Then, sinee (C;> is a completely regular sequence, we obtain

A < (ARVmm MY A O, = (Ap Vs MY A (Cpyr Vnn DY)
= ((.A;;V’m/"mt)/\ 0n+1) vm I < Bn

by (5.4) and the modularity of M., This is a contradiction to A’,L < By
above. Hence
(6.5) (Anvm* MY A Cpyy < By .
Since M i? principally g.enerated, and by (5.5), there exists a prinecipal
elementlA,hL1 s‘uc.h that (1) Anyy < (AZVvmnIR)A Opyy, and (i) Afy < By
Thus 4,., satisfies (5.1), (5.2), and (5.3).

{Now, assume ths.m. A,'H.%, wey Ay have been chosen so that, for each j,
1<ji<k, the.eqnditlons in (5.1), (5.2), and (5.3) have been satistied.
In a manner similar to the case for j=1, it may be shown that

(Ans vt H Y A O p < By,

iom°
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Hence, a8 above, there exists a principal element Aj.;.; such that

(5.6) Anrort < (ApruVIPTEFIYA Oy
and ’
(8.7) " Angraa < Bn.

Consequently, (5.6), (5.7) imply that A,z satisfies (5.1), (5.2), (5.3).

Next, set A= Ay, for1 < i< n. Since the sequence <A,1=1,2,...,
satisfies condition (5.1), it follows that (4> is a Cauchy sequence by
Lemma 5.4, Since each A7 is principal by (5.3), we have that the equivalence
clags 4 in M* determined by <4;) is a principal element of M* (considered
ag an L*-module). Since A} < 0, for all integers 4 > 1, we obtain 4 < C.
We now only need to show that A < B in order to complete our proof.
So, assume A < B. Select a regular subsequence {Aj"y from the sequence
(A% ([2], Lemmsa 4.11). Then Ay < A{vmii < B; < By, for all }n—
tegers i = n, by ([2], Corollary 4.13). Hence A;< By, for large i, which
is a contradiction to (5.2). Thus A < B. q.e.d.

§ 6. Contractions. In order to establish our main theorem we will
need the following preliminary result.

THEOREM 6.1. Let (L, Pry ey Pn) D6 a semi-local Noether latiice, let M
be @ Noetherian L-module, let m be the Jacobson radical of L, let M* be
the m-adic completion of M, and let A be an element of M. Then

(6.1) (0~ M)M*=C,

for all C in M* such that (mAd)M* <0< AM*.

Proof. Tet € be an element of M* such that (mA)M* < C < AM™.
Tet (> be the completely regular representative of G..Sinee the se-
quence <C;) is decreasing, the sequence {CinA) is decreasing, and hence
’ Gavltfihyshgl‘frxr:ﬁ :hé(l:))w that the equivalence class determined by the
sequence (CiAA) is C. Since

(04/\A>~((0¢/\A)Vm"ﬂﬁ> B
and since .
(Oen A)vmi M = Oin(Avmid),

for all integers i3> 1, it is sufficient to ghow that <0¢/\(Avm'~91t)€. is
a representative of C. Since (Ci) is the completely regular represer;ti ;;S
of ¢ and since <A vmi9M is the completely regular representiamve o -
([2], Remark 5.2), it follows that the sequence (G;i\ (Avm im)é ;s ZM*
presentative of O A.A M* (Proposition 5.5). Bub ONAN -—~AG since 9\ o :

Since we know that (D~ M)M* <D, for all D in M* ([2], thpt
osition 7.5), in order to prove the theorem, it is sufficient to show lz*
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< AM*, we have that

(6.2) mA <mAVM' M < 0; < Avmid,

for all integers ¢ 3> 1. Hence, from (6.2), we obtain

(6.3) mA =mANA < ONA < (AVmiT)rd =4

for all integers ¢ > 1. Since [md , A] is finite dimensional (Theorem 5.1)
it follows from (6.3) that there exists a natural number % such that .

(6.4) Oind = Cxn 4,

for all integers ¢ > k. Since (C;A4d) is a representative of 0, we obtain
from (6.4) that

(6.5) (CxnAYM* = (O,
Since

l

0;i = Cind = Orn 4,
for all 4> &, we have that -
(6.6) A Oz A\ (CinAd) = Crrd .
k] 1
Consequently,

(6 ~ M)M* = (ACOM* = (A(Ouh A)) M* = (Oup 4) M* = @

by (6.5), (6.6), and ([2], Corollary 5.11). ‘ q.e.d.
We are now in a position to determine some structural properties of L*,

THEOREM 6.2..Let (L, p, s -y Pu) be a semi-local Noether lattice, let m
be the J acobson radical of L, let I* be the m- adic completion of L, and let m*
be the Jacobson radical of L*. Then, '

(6.7)  I* is a semi-local Noether lattice with magimal elements

IL* ..., p, L*;
(6.8) ‘ m—m AT DLy ey Pu s
and )
(6.9) (D2 Apn)I* = mI* = m* = DiLN e Apa L.

Proof. First, we show that each PeLl* 1 < % < m, is maximal in ¥,
Gho:)se k fuch that 1 < k< n. Since the extension map is one-to-one,
Pl ;é* IL*. Tet b be an element of I* such that Pel* <b < IL* and
Ié f \;171;‘) L_et ;b;; be t.he completely regular representative of . Since

= i
Wek have’ s 4y «ey 18 the completely regular representative of ppL¥,

Pe<prvmi<by<T,

icm®

(Cn M)M* > 0. This shall now be established. Since (md)M*< ¢ "
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for all integers 4 > 1. Since bz IL*, there exists a natural number ¥
guch that by < I, for all integers ¢ > N. It follows that px = b;, for all
integers ¢ 3> N. Hence prL* = b, and p;L* is maximal.

Next, suppose b i3 an element of L* such that b= IL* and b is
maximal. Let <b;> be the completely regular representative of b. Since
b = IL*, there exists a natural number ¥ such that b; < I, for all integers
i> N. Gonsequently, there exists a natural number %, 1<% < u, such
that b < px, for infinitely many integers ¢ > N. It follows that b < peL*.
Henee b = prL*, since ppL* iy maximal. Thus (6.7) has been established.

Now, since m = p;A...ADs < Pi, for each integer k, 1 <k < n, we
have that mI* < ppL*, for each integer %, 1 <% < n. Thus

mL* < pLL*A . ADaL* = m* < pi L,
for each iﬁteger &, 1 < k< n. Consequently,
' m=mL* nL<m* ~L<pL* n L= ps,
for each integer k, 1 <k <, ([2], Propositions 7.2 and 7.6). Thus

.mgm*mLs}b\piznm. Hence m* ~L=m. Thus (6.8) has been

g==1
established. i 6 i A i
Since PL*A...APnL* = m* by (6.7), and since piA..ADn =M,
order to establish (6.9), we need only show that m*= mL*. From (6.8)
we obtain mI* = (m* ~ L)L* = m* by Theorem 6.1. q.e.d
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