Lattice modules over semi-local Noether lattices

by

E. W. Johnson (Iowa City, Ia.) and J. A. Johnson (Houston, Tex.)

§ 1. Introduction. For Noetherian lattice modules, the concept of the \(a \)-adic pseudometric has been introduced and studied in [2] and [3]. Recently the natural completion of a local Noether lattice was related to the completeness of a local ring in its natural topology ([1]). The purpose of this paper is to establish some properties of Noetherian lattice modules over semi-local Noether lattices and their completions.

The basic concepts are introduced in § 2, and some preliminary results are obtained. Let \(L \) be a multiplicative lattice and let \(M \) be a Noetherian \(L \)-module. In § 3 an interesting property concerning certain sequences in \(M \) is established (Theorem 3.2). If \(L \) is a Noether lattice and \(m \) is the Jacobson radical of \(L \), then it is shown (Corollary 3.4) that the \(m \)-adic pseudometric on \(M \) is a metric ([2], § 3). § 4 contains some results on dimensions. If \(L \) is semilocally, it is shown in § 5 that \([m, A] \) is finite dimensional, for all \(A \) in \(M \) (Theorem 5.1), \(L^* \) is a Noether lattice, and \(M^* \) is a Noetherian \(L^* \)-module (Theorem 5.9), where \(L^* \) and \(M^* \) are the \(m \)-adic completions of \(L \) and \(M \), respectively ([3], § 6). In § 6 it is established that \(L^* \) is a semi-local Noether lattice whose maximal elements are extensions ([2], § 5) of the maximal elements of \(L \).

§ 2. Preliminary remarks. By a multiplicative lattice we shall mean a complete lattice on which there is defined a commutative, associative, join distributive multiplication such that the null element of the lattice is an identity for the multiplication. Let \(L \) be a multiplicative lattice and let \(M \) be a complete lattice. We shall denote elements of \(L \) by \(a, b, c, \ldots \), with the exception that the null element and unit element of \(L \) will be denoted by \(0 \) and \(I \), respectively. We shall denote elements of \(M \) by \(A, B, C, \ldots \), with the exception that the null element and unit element of \(M \) will be denoted by \(0_M \) and \(M \), respectively. When no confusion is possible, \(0 \) will also be used in place of \(0_L \). Recall that \(M \) is an \(L \)-module ([2], Definition 2.3) in case there is a multiplication between elements of \(L \) and \(M \), denoted by \(a \cdot a \) for \(a \) in \(L \) and \(A \) in \(M \), which satisfies:

(i) \((ab) \cdot A = a(b \cdot A) \),
(ii) \(A_0 B_0 \) = \(\bigvee \alpha_0 \bigvee B_0 \),
(iii) \(IA = A \) and
(iv) \(\alpha A = 0 \) for all \(A, B, \alpha \) in \(L \) and for all \(A, B_0 \) in \(M \).
Let \(M \) be an \(L \)-module. For \(a, b \in L \) and for \(A, B \in M \), (i) \(a \triangleleft b \) denotes the largest \(c \in L \) such that \(cb \leq a \); (ii) \(A : B \) denotes the largest \(c \in L \) such that \(cB \leq A \). An element \(A \in M \) is said to be meet principal in case \((b \land (B : A))A = bA \triangleleft B \) for all \(b \in L \) and for all \(B \in M \); \(A \) is said to be join principal in case \(b \lor (B : A)A = (b \lor (B : A))A \) for all \(b \in L \) and for all \(B \in M \); and, \(A \) is said to be principal in case \(A \) is both meet and join principal.

If each element of \(M \) is the join (finite or infinite) of principal elements, \(M \) is called principally generated. \(M \) is said to be Noetherian if \(M \) satisfies the ascending chain condition, is modular, and is principally generated.

If \(M \) is a Noetherian \(L \)-module, \(L \) is called a Noetherian lattice. For other general properties and definitions concerning Noetherian lattice modules, the reader is referred to [3].

In the special case where \(M \) and \(L \) are both modular, we can prove the following characterization of principal elements which will be useful.

Lemma 2.1. Let \(M \) be an \(L \)-module and let \(A \) be an element of \(M \). If \(M \) and \(L \) are modular, then \(A \) is a principal element of \(M \) if and only if

\begin{equation}
C \land A = (C : A)A
\end{equation}

and

\begin{equation}
b \land A = b \lor (0 : A)
\end{equation}

for all \(b \in L \) and for all \(C \in M \).

Proof. Assume \(M \) and \(L \) are modular. Suppose that \(A \) is principal. Then clearly \(A \) satisfies (2.1) and (2.2). Conversely, assume that \(A \) satisfies (2.1) and (2.2). Then, for \(b \in L \) and \(C \in M \), we have

\[
b \land (C : A)A = \left\{ b \land (C : A) \lor (0 : A) \right\}A = \left\{ (C : A) \land (b \lor (0 : A)) \right\}A = \left\{ (C : A) \land bA \right\}A = C \land bA
\]

by the modularity of \(L \). Also,

\[
(C \lor bA)A = \left\{ (C \lor bA) \lor (0 : A) \right\}A = \left\{ (C \lor A) \lor bA \right\}A = \left\{ (C \lor A) \lor b \right\}A = (C \lor A) \lor b
\]

by the modularity of \(M \). It follows that \(A \) is both meet and join principal, and hence principal.

We will also need the following result.

Lemma 2.2. Let \(M \) be an \(L \)-module. Let \(a \) be a principal element of \(L \) and let \(A \) be a principal element of \(M \). Then \(aA \) is a principal element of \(M \).

Proof. Let \(b \in L \) and let \(B \in M \). Then \(b \land A = b \lor (0 : A) \) and \(b \lor A = b \lor (0 : A) \). Therefore, \(aA \) is a principal element of \(M \).

In later parts of this paper we will need to use a generalization of quotient lattices. This construction is developed in Remark 2.3 below. If \(A, B \) are elements of a lattice \(K \) with \(A \leq B \), then the set \(\{ D \in K \mid A \leq D \leq B \} \) is a sublattice of \(K \) which will be denoted by \([A, B] \). If \(K \) is a complete lattice with unit element \(1 \), then for arbitrary \(A \in K \), we will also write \(1 \lor A \) in place of \([A, 1] \).

Remark 2.3. Let \(M \) be an \(L \)-module, let \(A, B \) elements of \(M \) with \(A \leq B \), and let \(a \) be an element of \(L \) such that \(aA \leq A \), for all \(C \) in \([A, B] \). Then \(aA \) is "naturally" a multiplicative lattice and \([A, B] \) is "naturally" an \([a, 1]\)-module.

Proof. For \(b, c \in [a, 1] \), define \(b \times c = b \lor c \lor a \). For \(C \in [A, B] \) and \(b \in [a, 1] \), define \(b \times C = b \lor C \lor a \). Since \(M \) and \(L \) are both complete lattices, it follows immediately that \([A, B] \) and \([a, 1] \) are complete lattices. It is easily verified that the above definition of multiplication makes \([a, 1]\) into a multiplicative lattice and \([A, B] \) into an \([a, 1]\)-module. The computations will be omitted.

Remark 2.4. Let \(M \) be a Noetherian \(L \)-module, let \(A, B \in M \), and let \(a \) be an element of \(L \) such that \(aC \leq A \), for all \(C \in [A, B] \). Then, with respect to the "natural" multiplications given in Remark 2.3, \([A, B] \) becomes a Noetherian \([a, 1]\)-module.

Proof. This is a straightforward computation. The details will be omitted. The reader is referred to ([2], Remark 2.8).

Remark 2.5. Let \(M \) be an \(L \)-module, let \(A \) be a principal element of \(M \), let \(a, b \) be elements of \(L \) such that \(a \leq b \), let \(L \) be modular, and let \(0 \times (0 : A) \leq a \). Then the map \(\psi : [a, b] \rightarrow [a, bA] \) defined by \(\psi(x) = aA \) is a lattice isomorphism of \([a, b] \) onto \([a, bA] \).

Proof. Let \(x, y \in [a, b] \) and assume \(\psi(x) = \psi(y) \). Then \(aA = yA \). Hence \(aA = yA \). Consequently, since \(A \) is principal, \(aA = yA \).

Proof. Let \(x, y \in [a, b] \) and assume \(\psi(x) = \psi(y) \). Then \(aA = yA \). Hence \(aA = yA \). Consequently, since \(A \) is principal, \(aA = yA \).

Proof. Let \(x, y \in [a, b] \) and assume \(\psi(x) = \psi(y) \). Then \(aA = yA \). Hence \(aA = yA \). Consequently, since \(A \) is principal, \(aA = yA \).
by the modularity of L. It follows that φ is one-to-one. To see that φ is onto, let B be an element of $\{aA, bA\}$. Since

$$a \in aA; A \subseteq a\varphi(0; A) \subseteq B; A \subseteq bA; A = b\varphi(0; A),$$

we have that

$$a = aB \subseteq bB = b\varphi(B; A) = b\varphi(b\varphi(0; A)) = b.$$

Thus $b\varphi(B; A)$ is an element of $[a, b]$. Applying φ we obtain

$$\varphi(b\varphi(B; A)) = \varphi(b\varphi(B; A))A = bA \cup B = B,$$

since A is principal, and consequently φ is onto. Since φ is clearly order preserving, we have that φ is a lattice isomorphism of $[a, b]$ onto $[aA, bA]$. q.e.d.

§ 3. A preliminary theorem.

Definition 3.1. Let L be a multiplicative lattice and let M be a Noetherian L-module. For a in L and A in M, let $T(a, A)$ be the collection of all sequences (B_i), $i = 1, 2, \ldots$, of elements of M satisfying

$$aA \supseteq B_1 \supseteq B_{i+1} \supseteq aB_i,$$

for all integers $i \geq 1$. For (C_i) and (B_i) in $T(a, A)$, define

$$\langle C_i \rangle \leq \langle B_i \rangle$$

if and only if $C_i \subseteq B_i$, for all integers $i \geq 1$. (3.3)

$$\langle C_i \rangle \cap \langle B_i \rangle = \langle C_i \cap B_i \rangle$$

(3.4)

$$\langle C_i \rangle = \langle B_i \rangle = \langle C_i \cup B_i \rangle.$$

It is easily seen that $T(a, A)$ forms a complete, modular lattice under the relation \leq with the resulting join and meet being given by (3.3) and (3.4). The resulting lattice will be denoted by $K(a, A)$.

Theorem 3.2. Let L be a multiplicative lattice, and let M be a Noetherian L-module, let aB be an element of L, let A be an element of M, and let (B_i), $i = 1, 2, \ldots$, be an element of $E(a, A)$. Then there exists a natural number n such that $B_n = aB_n$, for all integers $m \geq n$ and for all integers $i \geq 0$.

Proof. Let $E(a, A)$ be the collection of all sequences (B_i) in $K(a, A)$ for which the theorem fails. Assume that $F(a, A) \neq \emptyset$. We shall show that $F(a, A)$ has maximal elements.

Let C be a chain in $E(a, A)$. For each C in C, let C_i be the ith coordinate of C. For each natural number i, set $S_i = \bigvee \{C_i; C \in C\}$.

Suppose (S_i) is not an element of $E(a, A)$. Then there exists a natural number m such that $S_{m+1} = a'S_{m+1}$ for all integers $k \geq n$ and for all integers $i \geq 0$. Since M satisfies the ascending chain condition, for each i, $1 \leq i \leq n$, there exists an element in C with ith coordinate S_i. Select one and call it B_i.

Set $(B_i) = \max(B(1), \ldots, B(n))$. Thus (B_i) is in $E(a, A)$, and also $B_i = S_i$, for $1 \leq i \leq n$. In particular $B_n = S_n$. Consequently,

$$S_{n+i} = a'S_{n+i} = a'B_n \subseteq S_{n+i},$$

for all integers $i \geq 0$. It follows that $B_{n+i} = S_{n+i}$, for all integers $i \geq 0$. Thus $B_i = S_i$, for all integers $i \geq 1$, and consequently (S_i) is in $E(a, A)$, which is a contradiction to the assumption that (S_i) is not an element of $E(a, A)$. Thus C has an upper bound and hence $E(a, A)$ has maximal elements by Zorn's Lemma.

Let (C_i) be a maximal element of $E(a, A)$. By definition, we know $F_i \leq aA$. Also, if $F_i = aA$, then $F_{i+1} = aF_i$, for all integers $i \geq 0$, and hence (C_i) would not be in $E(a, A)$. Hence $F_i \not= aA$. Thus, there exists a principal element E of M such that $E \leq aA$ and $E \not= F_i$. It follows that $F_i \leq E \leq a$. (3.5)

Now, define (D_i) by $D_i = F_i \cup a'E$, for all integers $i \geq 1$. Observe that $F_i \leq D_i = F_i \cup E \leq aA$ and that (D_i) is an element of $E(a, A)$. Hence $(F_i) \leq (D_i)$, and (D_i) is not in $E(a, A)$. Consequently, there is a natural number n such that $D_{n+i} = a'D_n$, for all integers $k \geq n$ and for all integers $i \geq 0$. Hence

$$F_{n+i} \cup a'E = D_{n+i} = a'D_n = aF_n \cup a'E = aF_n \cup a'E = E,$$

for all integers $k \geq n$ and for all integers $i \geq 0$. Therefore, since M is modular and E is principal, we obtain

$$F_{n+i} = aF_n \cup a'E = aF_n \cup (aE \cup a'E) = aF_n \cup (aE \cup a'E),$$

(3.6)

$$F_{n+i} = aF_n \cup (aE \cup a'E),$$

for all integers $k \geq n$ and for all integers $i \geq 0$. Next, for each integer $i \geq 1$, set $H_i = (F_{i+1} \setminus aA)$. It follows from (3.5) that

$$F_{n+i} = aF_n \cup (aE \cup a'E),$$

for all integers $k \geq n$ and for all integers $i \geq 0$. It is easily verified that (H_i) is an element of $E(a, A)$.

Assume for a moment that $M = L$. Then, it is easily seen that (E_i) is in $E(a, A)$. Furthermore, if $(E_i) = (B_i)$, then

$$H_i = (E_{i+1} \setminus aA) = F_i,$$

for all integers $i \geq 1$. Thus, since $E \leq aA$, we have by (3.6) and (3.7) that

$$F_{n+i} = aF_n \cup (aE \cup a'E) = aF_n \cup (aE \cup a'E),$$

(3.8)

$$F_{n+i} = aF_n \cup (aE \cup a'E),$$

for all integers $k \geq n$ and for all integers $i \geq 0$.

Then, since \(aP_m \geq P_{m+1} \), for all integers \(m \geq 1 \) and for all integers \(i \geq 0 \), it follows from (3.8) that \(aP_k = P_{k+1} \), for all integers \(k \geq n \) and for all integers \(i \geq 0 \), which contradicts the fact that \((P_i) \) is in \(P(a, I) \). Hence \((P_i) \in (H_i) \), and consequently, there exists a natural number \(m \geq n \) such that

\[
H_{k+1} = aH_k,
\]

for all integers \(k \geq m \) and all integers \(i \geq 0 \), by the maximality of \((P_i) \).

Consequently, since \(E \) is principal, we have by (3.8) and (3.9) that

\[
F_{k+i+1} = a^{i+1}F_k \vee H_{k+i} = a^{i+1}F_k \vee H_{k+i-1} = a^{i+1}F_k \vee aH_{k+i-1}
\]

\[
= a^{i+1}F_k \vee a[(F_{k+i-1} \cap aH_{k+i-1})]
\]

\[
= a^{i+1}F_k \vee a(a^{i+1-1}E \vee F_{k+i}) \leq aE_{k+i},
\]

for all integers \(k \geq m \) and all integers \(i \geq 0 \). As above, for (3.8), this implies that \(F_{k+i} = aF_k \), for all integers \(k \geq m \) and all integers \(i \geq 0 \), in contradiction to \((P_i) \) being in \(P(a, I) \). Hence, when \(M = L \), we have \(P(a, I) = \emptyset \).

We return now to the general case. Since \((H_i) \) is in \(P(a, I) \), and since \(P(a, I) = \emptyset \), there exists a natural number \(n \) such that \(H_{k+i} = aH_k \), for all integers \(k \geq n \) and for all integers \(i \geq 0 \). Then by (3.8), we have that

\[
F_{k+i+1} = a^{i+1}F_k \vee H_{k+i} = a^{i+1}F_k \vee aH_{k+i} \leq aE_{k+i},
\]

for all integers \(k \geq n \) and all integers \(i \geq 0 \). This again implies that \(aE_{k+i} = a^iE_k \), for all integers \(k \geq n \) and for all integers \(i \geq 0 \). Thus \((P_i) \) is not in \(P(a, A) \), which is a contradiction. Hence \(P(a, A) = \emptyset \) in the general case.

For a Noether lattice \(L \), recall that an element \(a \) in \(L \) is maximal if \(a \neq I \) and if \(b \geq a \) implies \(b = I \). Also recall that the Jacobson radical of \(L \) is the inf of all such maximal elements of \(L \).

Corollary 3.3. Let \(L \) be a Noether lattice, \(M \) be a Noetherian \(L \)-module, \(m \) be the Jacobson radical of \(L \), \(B \) be a element of \(M \), and \(a \) be an element of \(L \) such that \(a \leq m \). Then \(aB = 0 \).

Proof. Let \(C \) be a principal element of \(M \) such that \(C \leq aB \).

Then, for all integers \(n \geq 1 \), we have \(C = C \cup aB \).

We shall show that \(C = 0 \). Consider the sequence \((C \cup aB, i = 1, 2, \ldots) \). Since

\[
aB \geq C \cup aB \geq C \cup a^{i+1}B \geq a(C \cup aB),
\]

for all integers \(i \geq 1 \), it follows from Theorem 3.2 that there exists a natural number \(k \) such that

\[
C \cup a^{k+1}B = a(C \cup a^kB),
\]

for all integers \(i \geq 0 \). Hence \(C = aC \), for all integers \(i \geq 0 \). In particular \(C = 0 \). Thus, since \(C \) is principal, we have

\[
I = C = aC = 0 \vee (0; C).
\]

Since \(a \leq m \), it must be that \(0 = I \). Consequently, \(I = 0 \).

Since \(M \) is a Noetherian \(L \)-module, every element is principally generated. It follows that \(\bigwedge_a aB = 0 \).

Corollary 3.4. Let \(L \) be a Noether lattice, \(M \) be a Noetherian \(L \)-module, \(m \) be the Jacobson radical of \(L \), and let \(a \) be an element of \(L \) such that \(a \leq m \). Then

\[
A = \bigwedge_a (A \cup aB), \quad \text{for all } A \in M,
\]

and

\[
\text{the } a \text{-adic pseudometric on } M \text{ is a metric}.
\]

Proof. Let \(A \) be an element of \(M \). Then \((A \cup aB) \) is a Noetherian \(L \)-module by Remark 2.4, and \(a \leq m \). Thus

\[
A = \bigwedge_a (A \cup aB) = (A \cup aB)
\]

by Corollary 3.3. Hence (3.10) has been established. (3.11) follows from (3.10) and ([2], Theorem 3.10).

§ 4. Some results on dimensions. In this section some results are established concerning dimensions of various lattices. These results will be needed later.

Theorem 4.1. Let \(L \) be a Noether lattice and let \(a \) be an element of \(L \). Then there exist primes \(p_1, \ldots, p_n \) in \(L \) such that \(p_1p_2 \cdots p_n \leq a \).

Proof. Let \(F(L) \) be the collection of all elements in \(L \) for which the theorem fails. Suppose \(F(L) \) is not empty. Then \(F(L) \) has a maximal element \(b \). Clearly \(b \) is not prime. Since \(b \) is not prime, there exist elements \(a, \beta \) in \(L \) such that \(ab \leq b, \beta b \leq b, \text{ and } \beta \leq b \). Consequently, \(ab \beta > b \) and \(a \beta b > b \). Thus, since \(b \) is maximal in \(F(L) \) there exist primes \(p_1, \ldots, p_n, \beta_1, \ldots, \beta_m \) in \(L \) such that

\[
p_1p_2 \cdots p_n \leq ab \beta \text{ and } p_1p_2 \cdots p_n \leq a \beta b.
\]

It follows that

\[
(p_1p_2 \cdots p_n)(p_1p_2 \cdots p_n) \leq (ab \beta)(ab \beta) = ab \beta b \beta b \leq b,
\]

which is a contradiction to the maximality of \(b \). Hence \(F(L) \) is empty. q.e.d.

Lemma 4.2. Let \(L \) be a local Noether lattice with unique maximal element \(p \), and let \(M \) be a Noetherian \(L \)-module. Then, for each \(A \in M \), the lattice \([p, A] \) is finite dimensional.
Proof. Let A be an element of M. Since M is Noetherian, there exists principal elements A_1, \ldots, A_n in M such that $A = A_1 \vee \ldots \vee A_n$. Let $S_i = pA_i$ and, for each i, $0 \leq i \leq n-1$, set $S_{i+1} = S_i / A_{i+1}$. Since each A_i is principal, for each i, $0 \leq i \leq n-1$, we obtain

\[(S_i, S_{i+1}) = (S_i, S_i / A_{i+1}) \cong (S_i / A_{i+1}, A_{i+1})\]

\[= ([S_i : A_{i+1}]A_{i+1}, A_{i+1}) \cong ([S_i : A_{i+1}], A_i)\]

by the isomorphism theorems and Lemma 2.5. Since

$\exists [S_i : A_{i+1}]$, it follows that $p \leq S_i / A_{i+1}$, for $0 \leq i \leq n-1$. Hence, the dimension of $[S_i : A_{i+1}, I]$ is either one or zero. Hence $[S_i : A_{i+1}, I]$ is finite dimensional, $0 \leq i \leq n-1$, by (4.1). Since $pA_i = S_i \leq S_i \leq \ldots \leq S_n = A$, we have $[pA_i, A]$ is also finite dimensional.

THEOREM 4.3. Let L be a Noether lattice. If 0 is a product of maximal elements, then L is finite dimensional.

Proof. Assume $0 = p_1p_2 \ldots p_n$ where p_i is prime and (hence prime). For each i, $2 \leq i \leq n$, we know that $[p_1, I]$ is a Noether lattice and that $[p_1, p_2 \ldots p_n, p_{i+1}]$ is a Noetherian $[p_1, I]$-modul by Remark 2.4. Thus, since each $[p_1, I]$ is local, we have that $[p_1, p_2 \ldots p_n, p_{i+1}]$ is finite dimensional, $0 \leq i \leq n$, by Lemma 4.2. Simplifying this expression we obtain $[p_1, p_2 \ldots p_n, p_{i+1}]$ is finite dimensional, $2 \leq i \leq n$. Since $L > p_1p_2 \ldots p_n$, it follows that L is finite dimensional.

COROLLARY 4.4. Let L be a Noether lattice. If every (proper) prime element of L is maximal, then L is finite dimensional.

Proof. Assume every (proper) prime element of L is maximal. By Theorem 4.1 there exists principal elements p_1, \ldots, p_n in M such that $p_1p_2 \ldots p_n < 0$. Hence $0 = p_1p_2 \ldots p_n$, where each p_i is prime, and hence maximal by hypothesis. Thus, by Theorem 4.3, L is finite dimensional.

A Noether lattice is said to be semi-local if it has only finitely many maximal elements. If L is a semi-local Noether lattice with maximal elements p_1, \ldots, p_n, we will say that (L, p_1, \ldots, p_n) is a semi-local Noether lattice.

COROLLARY 4.5. Let (L, p_1, \ldots, p_n) be a semi-local Noether lattice, and let m be the Jacobson radical of L. Then $[m, I]$ is finite dimensional.

Proof. Each (proper) prime element of $[m, I]$ is maximal.

§ 5. m-adic completions. Throughout this section (L, p_1, \ldots, p_n) is a semi-local Noether lattice, M is a Noetherian L-module, and m is the Jacobson radical of L. Since L is semi-local, clearly $m = p_1 \wedge \ldots \wedge p_n$.

By Corollary 3.4, the m-adic pseudometric $(2.2, \xi)$ on M and the m-adic pseudometric on L are metrics. Consequently, the m-adic completions of M and L are defined $(2.2, \xi)$. Throughout this section, M^\ast shall denote the m-adic completion of M, and L^\ast shall denote the m-adic completion of L. It is known that M^\ast is an L^\ast-module under the assumptions stated above. We begin with the following result.

THEOREM 5.1. For each A in M, the quotient $[mA, A]$ is finite dimensional.

Proof. Let A be an element of M. Since M is principally generated, there exists principal elements A_1, \ldots, A_n in M such that $A = A_1 \vee \ldots \vee A_n$. Set $S_i = mA_i$ and, for each i, $0 \leq i \leq n-1$, set $S_{i+1} = S_i / A_{i+1}$. Then, proceed as in the proof of Lemma 4.2 to obtain $[S_i, S_{i+1}] \cong [S_i : A_{i+1}, I]$, $0 \leq i \leq n-1$.

Now observe that $m \leq S_i / A_{i+1}$ and that $[m, I]$ is finite dimensional.

COROLLARY 5.2. For each A in M, $[mA, A]$ is finite dimensional, for each natural number m.

Proof. Let A be an element of M. Since $mA \leq m^{a-1}A \leq \ldots \leq mA \leq A$, and since each quotient $[mA, m^{a-1}A]$, $A \leq n$, is finite dimensional by Theorem 5.1, the result follows.

COROLLARY 5.3. For each natural number n, the quotient L/m^n is finite dimensional.

Proof. L is a Noetherian L-module.

In order to work with "inf" and "residuals" in M, it will be necessary to determine representatives of these elements. The following lemma will prove helpful in this respect. It is needed in the proof of Proposition 5.3 and 5.7.

LEMMA 5.4. Let A_i, $i = 1, 2, \ldots, n$, be a sequence of elements of M satisfying $A_i \leq A_i \vee m^nA_i$ for all integers $i > 0$. Then the sequence $\langle A_i \rangle$ is Cauchy.

Proof. Set $n > 1$. Since the sequence $\langle A_i \vee m^nA_i \rangle$, $i = 1, 2, \ldots$, is decreasing in i and, since $mA_i \leq A_i \vee m^nA_i$, for each integer $i > 1$, it follows from Corollary 5.2 that there exists a natural number g such that $A_i \vee m^nA_i \leq A_i \vee m^nA_i$ for all integers $i, j > g$. Consequently, $d_m(A_i, A_j) < 2^{-n}$, for all integers $i, j > g$.

q.e.d.
PROPOSITION 5.5. Let \(B, C \) be elements of \(M^* \). Let \((B_i)\) and \((C_i)\) be the completely regular representatives of \(B \) and \(C \), respectively. Then the sequence \((B_i \cap C_i)\) is a representative of \(B \cap C \).

Proof. Since \((B_i)\) and \((C_i)\) are decreasing, the sequence \((B_i \cap C_i)\) is decreasing, and hence Cauchy (Lemma 5.4). Let \(D \) be the equivalence class determined by \((B_i \cap C_i)\). Since \(B_i \cap C_i \leq C_i \) for all integers \(i \geq 1 \), it follows that \(D \leq C \) (2), Proposition 5.10). Similarly \(D \leq B \). Thus \(D \leq B \cap C \).

Now, let \(A \) be an element of \(M^* \) such that \(A \leq B \) and \(A \leq C \). Let \((A_i)\) be the completely regular representative of \(A \). Then \(A_i \leq B_i \) and \(A_i \leq C_i \), for all integers \(i \geq 1 \) (2), Proposition 5.9). Hence \(A_i \leq B_i \cap C_i \), for all integers \(i \geq 1 \). It follows that \(A \leq D \) (2), Proposition 5.10). Consequently \(D = B \cap C \).

Before proceeding to representatives of residuals in \(M^* \) (Proposition 5.7), we shall establish the following.

PROPOSITION 5.6. \(M^* \) is modular.

Proof. Let \(A, B, C \) be elements of \(M^* \) with \(A \geq B \). Let \((A_i), (B_i)\), and \((C_i)\) be the completely regular representatives of \(A, B \), and \(C \), respectively. Since \(A_i \geq B_i \), we know \(A_i \geq B_i \), for all integers \(i \geq 1 \) (2), Proposition 5.9). We also know that the sequence \((B_i \cup C_i)\) is the completely regular representative of \(B \cup C \) (2), Proposition 5.7). Hence \((A_i \cap (B_i \cup C_i))\) is a representative of \(A \cap (B \cup C) \) by Proposition 5.5. Since \((A_i \cap C_i)\) is a representative of \(A \cap C \), and since \((B_i)\) is a representative of \(B \), we have that \((B_i \cup (A_i \cap C_i))\) is a representative of \(B \cup (A \cap C) \) (2), as comments preceding Proposition 5.6). Consequently, since

\[
A_i \cap (B_i \cup C_i) = B_i \cup (A_i \cap C_i),
\]

for all integers \(i \geq 1 \), by the modularity of \(M \), we obtain \(A \leq B \cup C \).

PROPOSITION 5.7. Let \(A, B \) be elements of \(M^* \). Let \((A_i)\) and \((B_i)\) be the completely regular representatives of \(A \) and \(B \), respectively. Then the sequence \((A_i \cap B_i)\) is a representative of \(A \cap B \).

Proof. For each integer \(i \geq 1 \), we have

\[
A_i \cap B_i = (A_i \cap B_i) \cap (B_i \cap C_i) = (A_i \cap B_i) \cap (B_i \cap C_i) = A_i \cap B_i \geq A_i \cap B_i = A_i \cap B_i,
\]

since \((A_i)\) and \((B_i)\) are completely regular. Hence, the sequence \((A_i \cap B_i)\) is decreasing, and thus is Cauchy by Lemma 5.4.

Now, let \(a \) in \(I^* \) denote the equivalence class determined by \((A_i \cap B_i)\).

Since \((A_i \cap B_i) \leq A_i \), for all integers \(i \geq 1 \), it follows that \(aB \leq A \) (2), Proposition 5.10 and comments following Definition 5.13). Hence \(a \leq A : B \). Suppose \(b \) is an element of \(I^* \) such that \(bB \leq a \). Let \((B_i)\) be the completely regular representative of \(b \). Since the sequence \((B_i \cup C_i)\) is the completely regular representative of \(bB \) (2), Corollary 5.15), we have \(b_i B_i \leq A_i \), for all integers \(i \geq 1 \). Consequently,

\[
b_i B_i = (b_i B_i \cup C_{i+1}) \leq A_i \land B_i \leq A_i \land B_i \leq A_i,
\]

for all integers \(i \geq 1 \). So \(b \leq A : B_i \), for all integers \(i \geq 1 \). Thus \(b \leq a \), and hence \(A : B = a \). Therefore \(a = A : B \).

q.e.d.

In order to establish that \(M^* \) is principally generated, we will need to establish a connection between principal elements of \(M \) and principal elements of \(M^* \). This relation is provided by the following result.

THEOREM 5.8. Let \((A_i)\) be a Cauchy sequence of principal elements of \(M \). Then the equivalence class determined by \((A_i)\) is a principal element in \(M^* \) (considered as an \(I^* \)-module).

Proof. Without loss of generality, we may clearly assume that \((A_i)\) is a regular Cauchy sequence. Let \(B \) in \(M^* \) denote the equivalence class determined by \((A_i)\), and let \((B_i)\) be the completely regular representative of \(B \). Since \(M^* \) and \(I^* \) are modular, we will use Lemma 2.1 to show that \(B \) is principal.

Let \(C \) be an element of \(M^* \), and let \((C_i)\) be the completely regular representative of \(C \). For each integer \(i \geq 1 \), we have

\[
C_i \cap B_i = C_i \cap ((A_i \cup m^i B) \cap (A_i \cup m^i C)) = m^i B \cap (m^i C \cap (A_i \cup m^i C))
\]

\[
= m^i B \cap (m^i C \cap (A_i \cup m^i C)) = m^i B \cap (m^i C \cap (A_i \cup m^i C))
\]

by (2), Corollary 4.13 and Theorem 4.14). It follows that \(C : B = (C : B) : B \) by Propositions 5.5, 5.7, and (2), Corollary 4.6). Hence (2.1) of Lemma 2.3 is satisfied.

To see that \(B \) satisfies (2.2) of Lemma 2.1, let \(a \) be an element of \(I^* \) and let \((A_i)\) be the completely regular representative of \(a \). Then, for all integers \(i \geq 1 \), we have

\[
a_i B_i \leq m^i B = (a_i \land (A_i \cup m^i C)) \land (A_i \cup m^i C) = (a_i \land (A_i \cup m^i C)) \land (A_i \cup m^i C)
\]

\[
= a_i \land (A_i \cup m^i C) = a_i \land (A_i \cup m^i C)
\]

\[
= a_i \land (A_i \cup m^i C) = a_i \land (A_i \cup m^i C)
\]

by (2), Corollary 4.13 and Theorem 4.14). It follows that \(C_i : B_i = (C_i : B_i) : B_i \) by Propositions 5.5, 5.7, and (2), Corollary 4.6). Hence (2.1) of Lemma 2.3 is satisfied.

Fundamenta Mathematicae, T. LVIII
because A_t is principal. Since $\langle (a \lor B_0 \lor \vert m^2 \Bbb R \rangle : B_0 \rangle$ is a representative of $a : B$ by Proposition 5.7 and (2), Corollary 5.15, and since $\langle a \lor (0 : B) \rangle$ is a representative of $a \lor (0 : B_1)$, it follows that $a : B = a \lor (0 : B_1)$. Thus B is a principal element of M^*. q.e.d.

We are now in a position to establish the main result of this section.

Theorem 5.9. L is a Noether lattice and M^* is a Noetherian L^*-module.

Proof. We only need to establish that M^* is generically principal. If, for each pair B, C of elements of M^* such that $B < C$, we can construct a principal element A in M^* satisfying $A \leq C$ and $a < B$, it will follow from the ascending chain condition in M^* (2), Theorem 6.5) that M^* is principally generated.

Let B, C be elements of M^* such that $B < C$. Let $\langle B_0 \rangle$ and $\langle C_0 \rangle$ be the completely regular representatives of B and C, respectively. Since $B < C$, we have $B_t \leq C_t$, for all integers $t \geq 0$. Also, since $B \not< C$, there exists an integer n such that $B_t \leq C_t$, for all integers $t \geq n$. Then, in particular, $B_n \leq C_n$. Since M is generically principal, there exist a principal element A_t in M such that $A_n \leq C_n$ and $A_t \leq B_t$.

We shall now inductively construct a sequence of element A_{t+1}, A_{t+2}, ..., of M such that, for each integer $t \geq 1$,

\begin{equation}
A_t \leq (A_{t+1} \lor (0 : \vert m^2 \Bbb R \rangle) \lor C_{t+1}) \tag{5.1}
\end{equation}

\begin{equation}
A_{t+1} \leq B_{t+1} \tag{5.2}
\end{equation}

and

\begin{equation}
A_{t+1} \text{ is principal.} \tag{5.3}
\end{equation}

We proceed as follows. Suppose that

\begin{equation}
\langle A_t \lor \vert m^2 \Bbb R \rangle \rangle : C_{t+1} \leq B_n \tag{5.4}
\end{equation}

Then, since $\langle C_0 \rangle$ is a completely regular sequence, we obtain

\begin{align*}
A_t \leq (A_t \lor \vert m^2 \Bbb R \rangle \lor C_{t+1} & = (A_t \lor \vert m^2 \Bbb R \rangle \lor C_{t+1} \lor \vert m^2 \Bbb R \rangle \\
& = (A_t \lor \vert m^2 \Bbb R \rangle \lor C_{t+1} \lor \vert m^2 \Bbb R \rangle \leq B_{t+1}
\end{align*}

by (5.4) and the modularity of M. This is a contradiction to $A_t \leq B_n$ above. Hence

\begin{equation}
\langle A_t \lor \vert m^2 \Bbb R \rangle \lor C_{t+1} \leq B_{t+1} \tag{5.5}
\end{equation}

Since M is generically principal, and by (5.5), there exists a principal element A_{t+1} such that (i) $A_{t+1} \leq (A_t \lor \vert m^2 \Bbb R \rangle \lor C_{t+1}$, and (ii) $A_{t+1} \leq B_{t+1}$. Thus A_{t+1} satisfies (5.1), (5.2), and (5.3).

Now, assume that A_{t+1}, \ldots, A_{t+n} have been chosen so that, for each j, $1 \leq j \leq k$, the conditions in (5.1), (5.2), and (5.3) have been satisfied. In a manner similar to the case for $j = 1$, it may be shown that

\begin{equation}
\langle A_{t+n} \lor \vert m^2 \Bbb R \rangle \lor C_{t+n} \leq B_{t+n} \tag{5.6}
\end{equation}

Hence, as above, there exists a principal element A_{t+n+1} such that

\begin{equation}
A_{t+n+1} \leq (A_{t+n} \lor \vert m^2 \Bbb R \rangle \lor C_{t+n+1} \tag{5.7}
\end{equation}

and

\begin{equation}
A_{t+n+1} \text{ is principal.} \tag{5.8}
\end{equation}

Consequently, (5.6), (5.7) imply that A_{t+n+1} satisfies (5.1), (5.2), (5.3).

Next, set $A_t = A_t$, for $1 \leq t \leq n$. Since the sequence $\langle A_i \rangle, i = 1, 2, \ldots$, satisfies condition (5.1), it follows that $\langle A_t \rangle$ is a Cauchy sequence by Lemma 5.4. Since each A_t is principal by (5.3), we have that the equivalence class A in M^* determined by $\langle A_t \rangle$ is a principal element of M^* (considered as an L^*-module). Since $A_t \leq C_t$, for all integers $t \geq 1$, we obtain $A < C$.

We now only need to show that $A \leq B$ in order to complete our proof. So, assume $A < B$. Select a regular subsequence $\langle A'_t \rangle$ from the sequence $\langle A_t \rangle$ (4), Lemma 4.11). Then $A_t \leq A'_t \lor \vert m^2 \Bbb R \rangle \lor B_t \leq B_{t+1}$, for all integers $t \geq n$, by (2), Corollary 4.13). Hence $A_t \leq B_{t+1}$, for large t, which is a contradiction to (5.2). Thus $A \leq B$.

q.e.d.

§ 6. Contractions. In order to establish our main theorem we will need the following preliminary result.

Theorem 6.1. Let (L_a, p_1, \ldots, p_n) be a semi-local Noether lattice, let M be a Noetherian L-module, let b be the Jacobson radical of L, let M^* be the m-adic completion of M, and let A be an element of M. Then

\begin{equation}
\langle (C \setminus M) \Bbb R \rangle = 0, \tag{6.1}
\end{equation}

for all C in M^* such that $(mA)M^* \leq C \leq AM^*$.

Proof. Let C be an element of M^* such that $(mA)M^* \leq C \leq AM^*$. Let $\langle C \rangle$ be the completely regular representative of C. Since the sequence $\langle C \rangle$ is decreasing, the sequence $\langle C_t \rangle$ is decreasing, and hence is Cauchy (Lemma 5.4).

We shall now show that the equivalence class determined by the sequence $\langle C_t \rangle$ is C. Since $\langle C_t \rangle \sim G_t(A \lor \vert m^2 \Bbb R \rangle)$, and since

\begin{equation}
\langle C_t \rangle \lor \vert m^2 \Bbb R \rangle = G_t(A \lor \vert m^2 \Bbb R \rangle), \tag{6.2}
\end{equation}

for all integers $t \geq 1$, it is sufficient to show that $\langle C_t \rangle \lor \vert m^2 \Bbb R \rangle$ is a representative of C. Since $\langle C \rangle$ is the completely regular representative of C and since $\langle A \lor \vert m^2 \Bbb R \rangle$ is the completely regular representative of AM^* (2), Remark 5.2), it follows that the sequence $\langle C_t \rangle \lor \vert m^2 \Bbb R \rangle$ is a representative of $C \lor AM^*$ (Proposition 5.5). But $C \lor AM^* = C$ since $C \leq AM^*$.

Since we know that $(D \setminus M)M^* \leq D$, for all D in M^* (2), Proposition 7.5), in order to prove the theorem, it is sufficient to show that $D \setminus M$ is a m-adic completion of M.
(C \wedge M)^* \geq C$. This shall now be established. Since $(mA)^* \leq C \leq \lambda M^*$, we have that

(6.2) \quad mA \leq mA \vee m^* \leq A \vee m^* \Rightarrow \lambda A \leq A \wedge m\lambda \theta,

for all integers $\lambda \geq 1$. Hence, from (6.2), we obtain

(6.3) \quad mA = mA \wedge A \leq \lambda A \wedge m\lambda \theta \wedge A = A,

for all integers $\lambda \geq 1$. Since $[mA, A]$ is finite dimensional (Theorem 5.1), it follows from (6.3) that there exists a natural number k such that

(6.4) \quad C \wedge A = C \wedge A,

for all integers $\lambda \geq k$. Since $C \wedge A$ is a representative of C, we obtain from (6.4) that

(6.5) \quad (C \wedge A)^* = C.

Since $C \geq C \wedge A = C \wedge A,$

(6.6) \quad \bigwedge_{\lambda \geq k} C \geq \bigwedge_{\lambda \geq k} (C \wedge A) = C \wedge A.

Consequently,

(6.7) \quad (C \wedge M)^* = (\bigwedge_{\lambda \geq k} C)^* \geq \bigwedge_{\lambda \geq k} (C \wedge A)^* = (C \wedge A)^* = C

by (6.5), (6.6), and (23), Corollary 5.11. \quad \text{q.e.d.}

We are now in a position to determine some structural properties of L^*.

Theorem 6.2. Let $(L_1, p_1, ..., p_n)$ be a semi-local Noether lattice, let m be the Jacobson radical of L_1, let L^* be the m-adic completion of L_1, and let m^* be the Jacobson radical of L^*. Then,

(6.8) \quad L^* is a semi-local Noether lattice with maximal elements

\[\{p_1L^*, ..., p_nL^* \} \]

and

(6.9) \quad \{p_1 \wedge ... \wedge p_n \} L^* = mL^* = p_1L^* \wedge ... \wedge p_nL^*.

Proof. First, we show that each $p_i L^*$, $1 \leq i \leq n$, is maximal in L^*. Choose k such that $1 \leq k \leq n$. Since the extension map is one-to-one, $p_kL^* \neq I^*$. Let b be an element of L^* such that $p_kL^* \leq b \leq I^*$. Let (b) be the completely regular representative of b. Since $b \leq I$, b_i is the completely regular representative of b_i; we have $p_k \leq p_k \vee m^* \leq b_i \leq I$.

for all integers $i \geq 1$. Since $b \neq I^*$, there exists a natural number N such that $b_i \leq I$, for all integers $i \geq N$. It follows that $p_k \neq b_i$, for all integers $i \geq N$. Hence $p_kL^* = b$, and p_kL^* is maximal.

Next, suppose b is an element of L^* such that $b \neq I^*$ and b is maximal. Let (b) be the completely regular representative of b. Since $b \neq I^*$, there exists a natural number N such that $b_i \leq I$, for all integers $i \geq N$. Consequently, there exists a natural number k, $1 \leq k \leq n$, such that $b_i \leq p_i$; for infinitely many integers $i \geq N$. It follows that $b \neq p_kL^*$. Hence $b = p_kL^*$, since p_kL^* is maximal. Thus (6.7) has been established.

Now, since $m = p_1 \wedge ... \wedge p_n \leq p_k$, for each integer k, $1 \leq k \leq n$, we have that $mL^* \leq p_kL^*$, for each integer k, $1 \leq k \leq n$. Thus

\[mL^* = p_kL^* \wedge ... \wedge p_nL^* = m^* \leq p_kL^*, \]

for each integer k, $1 \leq k \leq n$. Consequently,

\[m = mL^* \wedge L \leq m^* \wedge L \leq p_kL^* \wedge L = p_i \]

for each integer k, $1 \leq k \leq n$, (23), Propositions 7.2 and 7.6. Thus

\[m \leq m^* \wedge L \leq \bigwedge_{i=1}^n p_i = m. \]

Hence $m^* \wedge L = m$. Thus (6.8) has been established.

Since $p_kL^* \wedge ... \wedge p_nL^* = m^*$ by (6.7), and since $p_1 \wedge ... \wedge p_n = m$, in order to establish (6.9), we need only show that $m^* = mL^*$. From (6.8) we obtain $mL^* = (m^* \wedge L)L^* = m^*$ by Theorem 6.1. \quad \text{q.e.d.}

References

University of Houston

Houston, Texas

University of Iowa

Iowa City, Iowa

Reçu par la Rédaction le 24 A. 1969