Thus the topology of the metric d^* on G/H and the quotient topology of G/H coincide. This completes the proof of Theorem 2.

The proof of Theorem 3 below illustrates the use of Theorem 1. Theorem 3 can be proved alternatively by introducing a non-archimedean metric in the set of Cauchy sequences in G (cf. [3], p. 480).

Theorem 3. If G is a two sided invariant non-archimedean metric group, then there exists a non-archimedean complete metric group \hat{G} such that G is a dense subgroup of \hat{G}.

Proof. G being a two sided invariant non-archimedean metric group (consequently a metric group, in the usual sense), it can be imbedded as a dense subgroup of a complete metric group \hat{G} ([6], p. 485, (1.4)). Since the non-archimedean metric on G is two sided invariant, there exists a countable base of neighbourhoods of normal subgroups at the identity e of G (see Remark following Theorem 1). The closures in \hat{G} of these subgroups, which are also normal in \hat{G} ([3], p. 46, 5.37 (c)), constitute a base of neighbourhoods of e in \hat{G}. Hence, by Theorem 1, \hat{G} is also non-archimedean metrizable. Further \hat{G} is complete with respect to this non-archimedean metric (see [5], p. 212, Exercise 5(d)).

The proof of Theorem 3 is now complete.

(1) It is sufficient to take a base at e for \hat{G}, instead of all neighbourhoods at e, for the validity of the proposition referred to.

References

A three-dimensional spheroidal space which is not a sphere

by

Steve Armentrout (Iowa City, Ia.)

1. Introduction. In [1], we described an upper semicontinuous decomposition of E^3 into straight arcs and singletons such that the associated decomposition space E^3/G is topologically distinct from E^3. In this note, we study local properties of the decomposition space.

We shall show that E^3/G is locally peripherally spherical, i.e., each point of E^3/G has arbitrarily small neighborhoods bounded by 2-spheres. In fact, each point of E^3/G has arbitrarily small closed neighborhoods which are compact absolute retracts and have 2-spheres as their topological boundaries. In particular, each point of the space has arbitrarily small compact simply connected neighborhoods.

We shall also use the decomposition of [1] to settle a question of Borsuk's concerning spheroidal spaces. A metric space X is a spheroidal space if and only if for each point p of X and each neighborhood U of p, there is a neighborhood V of p such that $V \cup U$ and $X - V$ is a compact absolute retract. It is known that each spheroidal space of dimensions 0, 1, and 2 is a sphere [3]. In [3], Borsuk describes an example (due to Ganea) of a spheroidal space of dimension 4 not a sphere. Borsuk [3] raises the following question: Does there exist a 3-dimensional spheroidal space which is not a sphere? We give an affirmative answer to this question. Regard S^3 as the one-point compactification $E^3 + \{\infty\}$ of E^3. Let G denote the upper semicontinuous decomposition of S^3 consisting of all the elements of G, together with $\{\infty\}$. Then associated decomposition space, S^3/G, is a 3-dimensional spheroidal space which is not a sphere. In fact, S^3/G has the following property: Each point of S^3 has arbitrarily small open neighborhoods V such that the closure of V is a compact absolute retract, the complement of V is a compact absolute retract, and the boundary of V is a 2-sphere.

Throughout this note, we retain the notation of [1], G denotes the decomposition of E^3 described in [1], E^3/G denotes the associated decomposition space.

Reçu par la Réduction le 9. 8. 1969
A three-dimensional spherical space which is not a sphere

If \(g \) is a singleton, then since \(H_0 \) is closed, \(g \) has a neighborhood \(V \) in \(E^3 \) such that \(C \cup V \) is a 3-cell missing \(H_0 \) and lying in \(P^* [W] \). It follows that \(P^*[C \cup V] \) is a compact absolute retract which is a closed neighborhood of \(g \) in \(E^3 \) lying in \(W \) and bounded by a 2-sphere. This establishes Theorem 1.

Corollary 1. \(E^3 \) is locally peripherally spherical.

Corollary 2. Each point of \(E^3 \) has arbitrarily small compact, connected, locally connected, and simply connected neighborhoods.

A space \(X \) is strongly locally simply connected if and only if each point of \(X \) has arbitrarily small simply connected open neighborhoods. We conjecture that \(E^3 \) is not strongly locally simply connected.

It is not difficult to show that the following holds: Suppose \(g \in G \) and \(W \) is an open set in \(E^3 \) containing \(g \). Then there is a 3-cell \(U \) such that \(g \in \text{Int } U, U \subseteq W \), and \(U \) is an union of elements of \(G \).

3. **Spheral spaces.** Let \(E^3 \cup \{ \infty \} \) be the one-point compactification of \(E^3 \); \(E^3 \cup \{ \infty \} \) is homeomorphic to the 3-sphere \(S^3 \), and we shall identify the two spaces \(G \) consisting of all the elements of \(G \) together with \(\{ \infty \} \). Then \(G^* \) is an upper semicontinuous decomposition of \(S^3 \) into arcs and singletons. Let \(S^3[G^*] \) denote the associated decomposition space, and let \(P^* \) denote the projection map from \(S^3 \) onto \(S^3[G^*] \).

Theorem 2. \(S^3[G^*] \) is a 3-dimensional spheroidal space which is not a sphere.

Proof. By a simple modification of the argument given in the proof of Theorem 1, we may establish the following: If \(g \in G \) and \(U \) is a neighborhood of \(g \), there is a 2-sphere \(S^2 \) in \(U \) missing \(g \) and such that if \(V \) is the component of \(S^2 \cup C \) containing \(g \), then \(\{ 1 \} V \subseteq U \), \(P^*[S^2 \cup V] \) is a compact absolute retract, and that \(P^*[C \cup V] \) is the topological boundary, in \(S^3[G^*] \), of both \(P^*[S^2 \cup V] \) and \(P^*[C \cup V] \).

Since each point of \(S^3[G^*] \) has arbitrarily small neighborhoods bounded by 2-spheres, \(S^3[G^*] \) has dimension at most 3. Since \(S^3[G^*] \) contains a 3-cell (about \(\infty \)), \(S^3[G^*] \) has dimension 3.

If \(S^3[G^*] \) were homeomorphic to \(S^3 \), it would follow that \(E^3[G^*] \) is homeomorphic to \(E^3 \). This would contradict the results of [1]. Thus \(S^3[G^*] \) is not a sphere.

In fact, \(S^3[G^*] \) is not a 3-manifold. If it were a 3-manifold, then by Corollary 1 of [3], \(S^3[G^*] \) would be homeomorphic to \(S^3 \).
Lattice modules over semi-local Noether lattices

by

E. W. Johnson (Iowa City, la.) and J. A. Johnson (Houston, Tex.)

§ 1. Introduction. For Noetherian lattice modules, the concept of the α-adic pseudometric has been introduced and studied in [2] and [3]. Recently the nature of completion of a local Noether lattice was related to the completeness of a local ring in its natural topology ([1]). The purpose of this paper is to establish some properties of Noetherian lattice modules over semi-local Noether lattices and their completions.

The basic concepts are introduced in § 2, and some preliminary results are obtained. Let L be a multiplicative lattice and let M be a Noetherian L-module. In § 3 an interesting property concerning certain sequences in M is established (Theorem 3.2). If L is a Noether lattice and m is the Jacobson radical of L, then it is shown (Corollary 3.4) that the m-adic pseudometric on M is a metric ([2], § 3). § 4 contains some results on dimensions. If L is semilocal, it is shown in § 5 that $[m^d, A]$ is finite dimensional, for all A in M (Theorem 5.1), L^* is a Noether lattice, and M^* is a Noetherian L^*-module (Theorem 5.9), where L^* and M^* are the m-adic completions of L and M, respectively ([2], § 6). In § 6 it is established that L^* is a semi-local Noether lattice whose maximal elements are extensions ([2], § 5) of the maximal elements of L.

§ 2. Preliminary remarks. By a multiplicative lattice we shall mean a complete lattice on which there is defined a commutative, associative, join distributive multiplication such that the unit element of the lattice is an identity for the multiplication. Let L be a multiplicative lattice and let M be a complete lattice. We shall denote elements of L by a, b, c, \ldots, with the exception that the null element and unit element of L will be denoted by 0 and 1, respectively. We shall denote elements of M by A, B, C, \ldots, with the exception that the null element and unit element of M will be denoted by 0_M and 1_M, respectively. When no confusion is possible, 0 will also be used in place of 0_M. Recall that M is an L-module ([2], Definition 2.3) in case there is a multiplication between elements of L and M, denoted by aA for a in L and A in M, which satisfies:

(i) $(ab)A = a(bA)$,
(ii) $(\bigvee a_i)(\bigvee B_j) = \bigvee a_iB_j$;
(iii) $1A = A$;
(iv) $0A = 0_M$ for all a, a_i, b in L and for all A, B_j in M.

References