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1. Introduction. The object of this paper is to define a class of

factors of Euclidean n-space which contain some non-manifolds (i.e.,
Theorems 3.6 and 4.3). These factorizations will be general enough to
include those given by R. H. Bing [4] and John Hemple [5].
. Throughout this paper wé will use the following terminology: (i} Any
subset of a topological space which is homeomorphic to I”, where I = [0,1],
will be called an #-cell. (ii) An n-manifold will be a paracompact Haus-
dorff space in which every point has a neighborhood whose closure is
an n-cell. (iil) If "X is a topological space and .DC X then by intD is
meant the set X —X —D, where X —D is the closure of X—D in X.

2. Separation Theorems. - ]

Lemma 2.1. Let Oy, Cs, ..., Cp e disjoint compact subsels of a Haus-
dorff sjoace X. Let Dy, Dy, ..., Dy be (not necessarily disjoint) n-cells such
that for each i = 1,2, ..., 9, Cs CinbDy. Then for any [a,b]CE and > 0
there exist disjoint (n--1)-cells By, Hy, ..., Bp contained in X X (a—e, bte)
such that for each i=1,2,..,p

(1) O;x[a, b]C int Ey;

(2) ILE,= Ds;
where IT, is the projection of X xE' onto X.

Proof. Let f: [—e&,r+el->la—s, b+e] be the homeomorphism
given by

: atw © it me[—e, 0],

b—a .
={l—|z+a £ @e[0,r
flo) ( - ) + [0, r],
b+x—7 if we[r,r+e].
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Let %: [—e, r+£]>[—¢,2p—1+¢] be the homeomorphism given by

2(pte)—1

k() = 7+ 2¢

(t+e)—e.

For each j=1,2,..,p let k; be a homeomorphism of [—¢, 7]
onto [—e&,2p—1+¢] with the properties:

(1) ks(—¢) = —e and k(t+e) = (2p—1+e),

) %i(0) = 2—2,

(3) Fy(r) = 2j—1. .

Let A= UD¢C X and note that since 4 is a compact Hausdorff

space it is normal. Bdy A = A—int 4 and C; for j=1, ..., p are closed
sets. Thus there exist open sets U; for j=1,2,...,p satisfying

(1) Tid Uy=0if i #],

(Z) C;C U; for all i:]., ey Py

(3) U;CintA.

By the Urysohn Liemma there exists a continuous function g mapping A '

onto [0, 1] such that
(1) g¢( UO_‘)=1’
(2) g(A—L‘J U;)=0.
Construet h: A X[—e, r+&]>4 X[—e, 2p—1}¢] as follows:

(@, 9@ kA +(L—g(@) k(1) tor (@,1) € Uyx[—e,r4e],

h(a;, 3) = -
(2, b(0)  for (@,1) e (A— UTo) x[—e, 146,
For each j=1,2,..,p, h=1idxk on BdyU; x[—e, k+e], hence b is
Well-dehqed. h is continuous since g, k and %; are all continuous. Suppose
By, ) = h(2,,1,) then @, = 4, = 2.
First, if x¢ U; then

9(@)ky(ty) + [1—g (@)1%(0) = g (@) by(ta) +[1—g (w)]jv(tz)
or

() es(t) — Rs(t) ]+ (1 — g () Do () — e (t5)] = © .

But %](im) and 1—g(z) > 0 and both % and k; are order presérving homeo-

morp ST, whenee k;(t,) — kj(t,) and k(t)—k{t;) are both positive, zero

or negative t_ogether. Therefore k(t)—k(ty) = 0 and #, = t,. , ’
Second, if e A— L‘j Us then k(t,) = k(%) and again 1y = 1,.
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_ Thus h is one-to-one and continuous hence a homeomorphism. % can
be extended to a homeomorphism of X X[—e, r+e]>X x[—e, 2p—1+¢]
by defining h(z,t) = (z, k() on X—4.

For each j=1, ..., let B; be the (n-+1)-cells defined by

Bj=D;x[2j—2—1,2—1+4].
Now define for each j=1,2,..,p
By = (i x£)(p7(B)) -
Clearly E;~ By=0 if i #j and I, ;= D;. Moreover
E;Cintd x(a—e, b+ ¢).
If # € Oy X[a, b] then
(id x )" (#) e Cs x [0, 2r—1]

and .
' he(id xf) (@) € O X [26—2, 20—1].
But
0 x[2i—2, 26—1] Cint(D; x[21—2—%, 2i—1+4-1])
‘whence

(id x )1 k- (id X F) @) € (id x )BT Dy X [2i—2—, 20—-1+1])
and # « ;. Thus the By i =1, 2, ..., p satisfy all the claims of the theorem.

Levma 2.2. Suppose B 0 is o compact subset of intI" and C is
a compact subset of I™ disjoint from B. Similarly, suppose D F @ is a com-
pact subset of intI™ and B is a compact subset of I™ disjoint from D. Then
there ewists am (n-+m)-cell G with the following properties:

(1) BxDCintG C G CintI" xintI™, o

(2) @~ {(BxE) v (CxD) v (CxE)}=0.

Proof. Let T CintI" be an n-cell such that T~ (Bw €) =0 and
T is the product of its projections. Such an n-cell exists since C nB=0
and they are each closed. Similarly let B CintI” be an m-cell such that
R~ (D v B)=@ and R is the produet of its projections. Let IT.T = [i;, ti]
for each ¢ =1,2, ..., n and II;R = [r;,r{] for each j=1, 2, ..., m where
II, is the projection onto the ath coordinate.

Let &, = min[distance from B to (BdyI™ v 0), distance from T to
(Bw ¢ u BdyI™]. Let 6, = min[distance from D to (BdyI™ v E), distance
from B to (D v B v BdyI™] Set 6=min(d;, &). Let &y ki ke ooy Fom
be homeomorphisms defined as follows:

(1) %: [0,1]->[0, 1] such that k(0) = 0, k(1) =1 and k[52,1—4/2]
= [1/4'-7 3/4]-

(2) For each i =1, 2, ..., m let ks: [0,1] —[0, 1] such that ki{0) = 0,
ki) =1 and kifri, 7i]= [1/4, 3/4].
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Let U, be an open subset of {(4/2,1— 6/2)" such that BC U, and .
Us ~ € =@, Seb Wy = I"—[5/3,1—6/3]". By the Urysohn Lemma there
exists a continuous function g: I"->[0,1] such that

g(BUBdyI) =1 “and g(I"—(Unw Wa)) =0
Consider the following eollection of maps
B P I"I"xI™,  i=1,2,..,Mm.
For @ eI™ and (Y1, ey Ym) € I
(2 (35 s 9525 0 @ W)L~ 9 @)Eald) D335 5 Y
‘ for (@, (Yuy vy Ym)) € Ua x I™,
(9?7 (915 +wes i1, 9(@)Yit-(L— g (@) (Y); Yitay -y ’!/m))
for (@, (%1, oy Ym)) € Wo x I™,
(ws (?/17 ey 'yi—l; kiy4), Yirry o) "Jm)) .
for (, (41 -+, Ym)) € (I"—-(Wn X Up)) xI™.

Each hg is well-defined since Un A Wu=@, ILik/Bdy U, xI™ = II; for
all j 14 and

hi("”: Yig oees ?/m)) =

Iiy/Bdy Un x I"™ = kiﬂ} )
where again II; is the projection onto the ith coordinate axis. And
I ky/BAy W xI™ = II; for all j # 14,

Iik/Bdy Wa X I™ = kyI1y .

Clearly each i is continuous and onto I" x I™. Suppose for @, o’ ¢ I and
(Yay o3 Ym)y (21, voes 2m) € I™ we have

ht(ma Y1y e ym)) = hf(m': (P zm))

then # =2’ and y;=#; for j #4. Consider the three cases:
(1) @ e U,

(2) ¢ Wy, or~
B) B I"~(Upw W) .
Case (1):

. J@*(Y)+ 1L~ g(@) klys) = g(a)Fo(20) + {1 — g (@) ea(20)
an

9(@) (kg —Te(20) + (1 — g (@) (Ealya)—kelar)) = 0 .

Because 0 < g(x) <1 and k as well as k, preserve order it follows that
Yi== 2.
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Similar arguments show that for Cases (2) and (3), ;= 2;. Thus
for each 4, ks is an injection consequently a homeomorphism.

Define H: I" x I™ —I" x I"™ to be the homeomorp]:usm iy by s By

Set

= [8/2,1—8/2]" x [1/4, 8/4T" C I" x I™.

It (w,y)eBxD then ze U, and H(z,y) eJ. Thus H(B xD)CdJ. Let
(#,9) € (0 x (D v E)) then weI"~U, and there exists & j such that
Ii(y) e I—[rj, 7] 1f ® e Wy then H(w,y)¢J. I o e I"—(Wy X Us) then
IIihy(, y) €« I—[1/4, 3]4] and H (%, y) ¢J. Thus H(GX(D uE)) nd=@.

Note that H/BXI™=id x%* where #*= (K,K,..,K) with m
factors. Thus it follows that IL},H (B x.D) and IT;,H (B x E) are disjoint
compact subset of [1/4, 3/4]" C I™, where IT% is the projection of I®x I™
onto I™. Also

ITLH(B xD) C (1/4, 3/4)™

Let y = min(distance from IT;, H (B xD) to Bdy[1/4, 3/4™, 5/2). Let Un be
an open set in (1/4+ /2, 3/4—y[2)™ such that

I HBXD)CUn and Uno IHH(B x E) =
Let Wi = [1/4, 3/4T"—[1/4+7/3, 3/4—p/3]". There exists a continuous
function f: [1/4, 3/4]" —[0, 1] such that

(1) fUTH{H (B xD) v Bdy[1/4, 34T} =%,

(2) fl1/4, 814T"—(Upn v W) = 0.

Let v, ¥, ..., ¥n be homeomorphisms defined as follows:

(1) v: [82,1—06/21~[6/2,1—48/2] such that p(8/2) = 6/2, »(1—06/2)
=1—3/2 and p[6/2+y[2, 1—8/2—yp/2] = [1/4, 3/4].

(2) For each i=1,2,..,n let y;i: [6/2,1—8/2]—>[6/2,1—6/2] such
that pi(6/2) = 6/2, wi(1—6/2) = 1—6/2 and wi[t;, t;] = [1/4, 3/4]. Consider
the following collection of maps:

B;: I"xI"=I"XI™ i=1,2,.,n.

For (&, @y, .y @) € I and y eI
id  for (@, .., @), y) e (I" X I™)—intd , .
([ s 9100, SO0+ (L —F W) 9il0) 8551 -5 20) )

for (g, ..., ¥n), ¥) € [6/2, 1— 82T x Up
ei((mu weny Bn)y :‘l)—_— ((wu ey $i—17f(y)wf+1 F@) 9@, Tigry ey wﬂ), y)

for ((@y; .. s @), y) €[8/2, 1—8[2T" X W ,
((901, vy Bi1y Pil®3), Bigy o) ‘l’n): y)

on [6/2,1—38/2T" X ([1/4, 3/4™1— (Un ~ Wm)) -
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Bach 0; is well-defined since Wy ~ Un = @. By an argument exactly Like
the one given above for k, each 0; is a homeomorphism. Define § — 0,0
0 fyo.. o by,

Set
T’ = [1]4, 34T X [1/4+ /2, 34— y2]" C J .
If (#,9)e BxD then 6H(z,y)eJ’. Thus 6H(B xD)yCJ'. If (z,y)
\e((GXD)u(OXE’)) then H(w,y)¢d hence 6-H(x,y)q¢dJ". Suppose

{#,9) e BXE ’Gh?n ILLH (%, y) € [1/4, 3/AT"— Uy, and there exists a Jj such
that IIj@) ¢ 14, 4] 1 ILLH (@, y) « W then §-H (s, ) ¢J’ since

11?29'5(50;1/)=17an($: y) and WanlliJ =0.

ifﬂszi(wjy) eIL(])—Wn—Up then ILITLH(z,y)¢[1/4,3/4] and

“H(z,y) ¢J': Therefore §-H{(BXE) U (0 xD) U (C x B i i1
A ‘ ( ) v (C x.E)} is contained
) Deﬁne‘G.z HY67%J"). @ is the (n+m)-cell contained in intI™x

x int I™ satistying properties 1 and 2 of theorem.

Nc;te %ﬁt J" defined in the above proof in the product of cells. Thus

4 proof similar to that of Theorem 2.1 : 1 i
& proof | would " prove the following
) Levuma 2.3. Suppose By, i=1,2,,
;{0 J.utg‘, one of wlml.oh '423 non-empty, and C is a compact subset of I* disjoint
m B = Lz_JBt- Similarly suppose Dy, j =.1, 2, ..., ¢ are disjoint compact

wbis—ea‘ts of intI™, one of which is non-empty, and E is a compact subset of I™
disjoint from U Di= D. Then there eist (n-m)-cells Gy 4=1,2, P
ey D,

1
J=1,2,...,q such that

<y P are disjoint compact subsets

1) G5 nGy=0 if iy or j£s,
(2) B¢ XDjCintG.-jC G”Cint(f"’ le),
(3) L{JijGﬁﬁ{(OXD) U (BXE)u (CxH)}=0.

“7 of E" In this section we shall defi

: ! t efine

:hel&ss of upper seml-cc.u}tmuous decompositions of B™ and prove that

th;} ;,ssocla.teq rilecomposmmn spaces are factors of £"', This class contains
eCOJ’“.?.poslthnS for each of the spaces (a) “doghone space”, (b) “unused

example” and (c) “segment space” ([5])- ’ |

3. A dass of factorizations
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Let a be an arc with property QS and assume that ILA(1) = b and
I,h{0) = @ with @ < b. Define the continuous function f: E*—-E" by

Pul(a) for it<a,
FO=1P't)  for a<t<bh,
PYb) for b<t.

Define the homeomorphism k: E'x B" B xE™ by k(t, %)
= (t,m—f(t)). For any &> 0 let

O, = {7l ze B |z—all <&},
Co={2| 2 E" |k—b] < e},
Oy={2| 2 H a<ILz<b and |lz—IL| < e}

VAN AN

then @, = 0, w Oy Cy is an n-cell containing IT;(a). The n-cell 54(Q.)
will be called an s-radial neighborhood of a.

Remark 3.1. Note that if o is an arc with property QS then for
any &> 0 the e-radial neighborhood of a intersects the planes IIT(f)
— R, = {(t,9)] (t,y) et x B"*} is void, & single point, or an (n—1)-cell.

Remark 3.2. Suppose a is an arc which has property Q8. Since the
homeomorphism used to define radial neighborhood is uniformly eox.ltinu-
ous, it follows that for any &> 0 there exists a 6> 0 and a collection Qf
planes Ry = IT7(t;) With #,=u <1, < .. <tp=> such that the E; cut
the o-radial neighborhood of a into (p+1) m-cells Oy i=10,1,...,p
and diamC; <e. ) - )

Let A4y, A, ... be a sequence of compact n-manifolds (not necessarily
connected) in H" satistying

Pl. A;, Cintd; for all i=1,2,3,...

P2. Each component of A= () 4¢is an arc with property QS.

1

Let I, be the class of upper semi-continuous decompositions of E"”. into
ares Ag and points of E”—A. Further let I'y be the class of associated
decomposition spaces. :

TevMA 3.1. Suppose >0 and A; are as defined above, then there
esists a finite collection of m-cells Ui satisfying:

1. For each Uy there exists an arc a; C A int U; such that the distance
from @ to Bdy U, s less than e for all @ e ai.

9. There exists an integer m such that if A is a component of Am then
A Cint U; for some 4.

Proof. For each arc o€ Ay let N. be the &/2-radial neighborhood
of a. For each N, there exists a neighborhood v, C N, with the property

that if an arc § C A intersects ¥, non-trivially then g C N,. The existence

11
Fundamenta Mathematicae, T. LXVIII
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of such Vs follows from the fact that the decomposition of E" into th,
arcs of A, and the points of E"—A, is an upper semi-continuous de-
composition. The collection of sets {V.| ¢ C A} is an open cover of the
compact set 4.. Thus there is a finite subcollection V5, Vs, ..., ¥, which
covers Ae. Let Ny, N,, ..., N, be the corresponding N,’s. Note that by
the choice of the V,’s we have each arc a C A, contained in the interior
of af least one N;. For each arc o C A, there exists an integer m(a)
such that

1. aC An C Ay where Agyy is the component of A, con-
taining a;

2. AnyCint Ny, for some i =1, 2,...,p.
f_[,‘he .co}lection {int Ajw| @ C A} isan open cover of A,. Therefore there
isa 1‘111}13@ subcover. From this collection of Az’s there is one with largest
su’!)scnpt m(a). m = m(a) is the desired integer. Bach N; is the ¢/2-radial
neighborhood of some a C A.. Therefore the collection U; = N, satisties
the claims of the Lemma.

-LeMMa 3.2. Suppose A;, i=1,2,..., are defined as above and A is
a component of A, for some r. Given &> 0 then there ewist integers y(Q),
?(2); ey y(m41) and sets EyCAXE, i=1,2,..,8 j=1,2,..,m
which satisfy the following conditions: 7

1. For each 1, Ky is an (n-+1)-cell and Ky i 18§01 ]

18 the disjoint union o

(7}-}-1)-06”6‘ Ku];, k= 1,2,...,/&(’5,”; f

2. BpnKop=0 if i # ¢;

3. LIJ Kﬁ C{dyp n A)X[J, 2m+1—7), | Ky C (intdyg  4) x
X (j;2m+1—j§) for each j; !
4. For each i Ky can be wrilien as the umion of (n+1)-cells Dy,

6=10,1,..,m, ..s"uch that Dy ~ Dy = Bdy Dy, ~ BAy.Dy, is an n-cell if
le—vl=1 and is void if [6e—»]> 1;

5. Diameter of ITX
B'x B B

6. Dy~ Dy ~ Kygy, 08 either void or an n-cdll.

Proof. Let the ¢ of Lemma 3.1 be the min (¢, distance from A, ~ A
to de4) hence there exists a finite set of #-cells K
and an integer y(1) satisfying:

% K Cint A for all i4;

b. If 4’ is a component of Ay~ A then A’ CintKl for some 4.

Note that the K;, may not be disjoint. By Remark 2.2 each n-cell K
can be chose1’1 so that there is a finite set of planes Ry, j=1,2 My
which cut K into (my+1) n-eells Di; such that ’ o

Dij D= BdyDj; ~ BdyDj,

D)< e for all i, e, where IT* is the projection

’ .
0y T= 1,2,...,3

icm
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is an (m—1)-cell if [j—v|=1 and is void if |j—u] > 1. Without loss of
generality assume mi = m for all 4.

Similarly apply Lemma 3.1 to each component of 4,4 ~ 4 to obtain
an integer y(2) and sets Ki where K; is the union of n-cells Ky,
k=1,2,..,u1), satisfying:

(i) If 4* is a component of 4,5~ A then

A* Cint K} C Ky, Cint A’ C Ky
for some %k and some component A’ of A,q ~ A.

(i) Kix ¢ By is either void or an (n—1)-cell.

Condition (ii) actually follows from the proof of Lemma 3.1. Continue
this procedure to obtain the integers y(3), ¥(4), ..., (m+1) and sets Kj;
as well as n-cells K, satisfying conditions analogous to (i) and (ii).

For each ¢ and j define Wiy to be the union of the components of
Ayiey ~ A which are contained in Kij but not in Kij for any p <l
Note that Wi are compact and Wi~ Wiz=0 if k1. Let {Win}
and {Ki} be respectively {C;} and {Ds} of Lemma 2.1 and let a—e =0
and b+e=2m+1. Then define K, = F; of Lemma 2.1. By the proof
of Lemma 2.1 we see that Ky can be written as the union of (n4-1)-cells
Dy such that IIfDy= Dj. Further the Dy satisfy condition 4.

In general let {Wy;} and {Ki;} be respectively {Cu} and {Dy} of
Lemma 2.1 and let 6 =1/2, a=j and b=2m41—j. I Kyx= Eu of
Lemma 2.1 and K; = L’g Eu then conditions 1 through 5 are clearly
satisfied and condition 6 follows from (ii) above.

Remark 3.3. Note that if ¢ # » and A’ is a component of Ay ~ A
contained in _qu-g then Ki5+1 N A" X B*= @ since K:j [a) K;j C A—_Ay(j.;_l).
Also Ky ~ Kjyp =@ if they are not in the same n-cell of Kjj_i.

The proof of the next lemma is based on the following known result.

THEOREM. Suppose that A is an n-cell which is the union of two n-cells
A, and A, with the properties that A, ~ A, and Bdy 4, ~ BdyA4, are
(n-+1)-cells and Ay~ A,CBdy 4, ~Bdy4,. If BC A, B is compact and
B~ BdyAC A, then there exists a homeomorplism h of A onto A which
is fiwed on the Bdy A and such that h(B) C A,.

LEMMA 3.3. For ¢ > 0 and A a component of A, (where Agyi=1,2,...,
are defined as above) let y(f), Da, Ky, ond Ky, be as in Lemma 3.2. Then
there ewists @ homeomorphism h: B x B* > B" x B* such that the following hold:

1. h=1d on complement of L‘jKﬂ;
2. h=1id on the complement of

U ((Kn A (Dio v D)) v (Eie ~ (D D)) v wre  (Eim ~ (Dim DM))) ;‘
11*
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3. If A'C Ay~ A and KD A x[§, 2m+1—5] then
B((Dio o - wuDy)n A X([§,j+1]v 2m—], 2m—]—1-j]))

Dy By Dy O b4 .
Kty is contained in Diy v Dy where = min(j, max{e] Kz Dy 9,
i - Kf?/‘z KD 47}
[¢c ——JAO Ky, ) i Kisug Before reading the proof of Lemma 3.3 it may be helpful to look ab
~ K, Pigures 1 and 2..The homeomorphism % will be obtained as the eomposition
= J) of homeomorphisms Ay © hy_s o ... o by Figure 1 illustrates how the ks
A(zpm(,-,w will be constructed. The shaded region of Figure 2 is that part of A x
% [0, 2m~+1] which is not moved by h.
E'9 )
7
6 /
5 :
3 /
2 g /
1
h;
al A A VA A
Fig. 2
( C—=> Proot of Lemma 3.3. Let hy: B* X B*—>E" x B be a homeomorphism
defined as follows:
—) hy=1id on = E"xE'— U(Kuf\(DioUDﬂ))-
hy *
L . TFor each i and 4’ a component of A,y With A’ x[1,2m]C Ky, then
a. HHupn Dip=0 or KuxnDu= @ then :
< @ Iy =1id on K
D b. I Kig Ko Dy # @ then
By =1id on Bdy Ky~ (D v Di) and Bfd’ x[1,2m]~ (Do D)) C Dise

Fig. 1 hy as defined exists since 4’ X[1, 2m] is compact, Kz ~ (Do~ Dis)
is the union of two (n-41)-cells which intersect in an n-cell in their
common boundary and (4’ X[1,2m])~ BAY (K » (Dao v Du) 4C D
and Kijlc [} K,;jz =0 if k# 1.
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Now proceed inductively to define h; for j=2,3,..,m—1. Ag
a notational aid define Lij == (.Dio v -Dil v - U.D,;,') n Kij .
Define h;: E"xE —E"xE as follows:

a. hj: idOnEm XEI'—(hj_l o h:,v_z 0. © hl( ULM')).

For each ¢ and A’ a component of 4,1y ~ 4 with A’ X[, 2m41—j]
C -Kia'k then

b. IfEf\.Dﬁ_l——‘@ oanDij;chen

h;=1id on H = (hj_l ohj_go..o hl(K;;j;a)) H
e. If Hn Dy 3 nDy# @ then let h; be such that
Bilhiz o hjg o . o ha(A” X[, 2m+1—j1~ (Dij—s © D))

is contained in D;;.

h; exists since A’ X[j, 2m+1—j] is compact,

hjs o e o By(Eyjp ~ (D1 w Dyy))

is the union of two (n-1) -cells which intersect in an n-cell in their
common boundary and ) :
Bio1 o o Bg(d" X[§, 2m~41—3T) A Bdyhiy © oo 0 hy(Kiji) ~ (Dgjy v Dy))
is eontained in D;;. :

Bet b= lup—1 © bz o ... o by. Clearly conditions 1 and 2 are satisfied
by k. To see that condition 3 is satisfied let

% e(Aygan ~ A) X ([J, j+1] v [2m—j, 2m4+1—5]) .

There exists some component A’ C 4,441y ~ A such that

o e A’ X ([f, j+1]  [2m—3, 2m+1—4))

and & unique ki, containing . Let y = min(j, max{e] Ky ~ Dy 9,
DD A')). '

Case 1. If p < j then
h(2) =hpz e .o byo... o ly(a) = by o ohy(@)C Dy w Dy o
Case 2. If y=j then

B(@) = By © o o Bigy 0 by o oe 0 hy(@) = hypq 0 By o ... o By(a)
which is a pOiIlt in D,‘j U-Dij'+1~
LEnwa 3.4. Suppose ¢ >0 and A is a component of A, (where A;
i=1,2, ... are defined as above). Then theré emists an integer N and a wuni-

formly continuous homeomorphism h: B" x B —F" x B* which is the identity
on B — (A x B) and such that for each w e E*
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(1) Hpsa(h(4 X)) C [w—2m—1, w+2m-4-17,
(2) diam (ITH(A' X w)) < 4e

where A’ is a component of A, ~ A, IT,, is the projection of B™ x E* onio B,
and IT% is the projection onto E".

N
%
19 § 4

iy

C = N WSO 0N D W

7
Y

5 O 0 8% % U Us
by b5 D B B O G
Fig. 3

Figure 3 shows how to apply Lemma 3.3 to prove Lemma 3.4. In
Figure 3 only one sequence K, Kions ooy K1k containing a component
of Ay ~ A4, is shown. The (n41)-cells in the figure are shown as if they
intersect each of the (n--1)-cells Digy Dity -y D;n. This' may not be the
case; however, an analogous figure is obvious.

Proof. Apply Lemma 2.3 to A x B and integers m and p(m-+1)
and sets Dy, K; and Ky Set N = y(m-+1) for g= 0, -1, 42, ... let

o, = g(2m+2), azy= g+m+1,
Yy =g(@m+2)+2m+1, Y=Yt m+l.
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Note that Dy, Ky, and Kyx C A X[2, Y] bY suitable translations of B’
we geb sets analogous to D, Ku, and K in A X[#, y4] for each g.
Apply Lemma 3.3 to A X[a,,y,] for each g. Define D= Dy and
apply Lemma 3.3 to A x[#7,y7] using Dy in place of Dy. Thus there
exists a homeomorphism which is uniformly continuous. By the choice
of z;, Yy, ¥, and y; and Remark 3.3 there exist integers ¢ and k such that

ITEh(A’ x w) C ITi( Dy, Dipr v Dign—s v D).

for each component 4’ C A ~ Ay and w « B". Note that ¢ and % depend
on A’ and w. Diameter IT}{Dy) < ¢ for all ¢ and . Thus condition (2) is
satistied. For w « B* there exist @y, ¥;, Zy+s and Ygi.s, where § = 0, —1
such that w e [2g, ¥;] N (%15, Ys+s). Thus

a( A" X w) C [@g, Yol < [Bgoy Yool 5
and condition (1) is satisfied.

T@om 3.5. For each component A C A, (where A;, i=1,2, ... are
as defined above) and each & > 0 there exwists an integer N and a uniformly
continwous homeomorphism h: B* X B* >E" x B* such that

1. h=1id in B""'— A x B
2. Myl M(@)]— ()| < 5
3. For each w e B* diameter of each component of An X w is less than e.

~Proof. Let &' = ¢/8 then by Lemma 3.4 there exigts a uniformly
continuous homeomorphism %; and an integer N satisfying

a. hy=1id on B""'—Ax F,
b. |ITur1by(@) — 1T, 1(2)| < 4m+2 for some positive integer m, and

e. diamIl(A' x w) < 4¢" for all w « B* and components A’ in Ay ~ 4. -

Let hy: B" X B*'>E" XE* be the homeomorphism given by
£
hal, 1) = (m, 4"2,‘ 2t).

The homeomorphism k= h; 'k, h, is the desired homeomorphism.

Note that % is isotopic to the identity si .
since the homeomor !
Lemmas 3.3 and 3.4 were. Y homeomorphisms of

1 P - .
TEEOREM 3.6. X, X B' = B if X, € Iy, where I'y is defined above.

Theore: oOws T i
eoren il) ws from T eorem 2.1 a the foll )
. nd oxowing theorem which

TEEOREM. Lot Xy € Iy Further suppose that for each ¢ and &> 0 there

is an integer N and an isotopy n+1 1 ‘ ) !
. . wof B onto B™ such that u, st !
is wniformly continuous and Ho 18 the identity tn

1o p=1d on B™ —(4; x BY);

icm°
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9. |y gt @) — nsa(@)| < &, where 1 is the projection of E™
onto the (n+1)-st coordinate; ‘
3. Tor cach w e B* the diameter of each component of p{AwyXw) 8
less than é.
Then XoxB = B
Remark 3.4. Note that there exists a countable collection of compact
sets R such that
1. AX B = U Ry,
h(R:) C R for all i=1,2, ...,
. hBdyRi=id for all i=1,2,..,
diam T, (R:) < /8, and
. diamh (B¢~ (4An x BY) < ¢[2,
where % is the homeomorphism of Theorem 3.5.

o W

4. The “Dogbone space” squared. is E. In [7] E. W. Kwun showed
that there exist two non-manifolds whose product is B" for n > 6.In this-
gection we shall show that the product of any two spaces belonging to [
and I'y respectively is E"*™. '

Throughout this section let {As} be as defined above and let {Bi} be
a collection of m-manifolds in B™ which are analogous to the As. That
isBi(i=1,2,...)isa collection of compact manifolds in E™ satisfying P1
and P2, where Beo = (D B;.

Levma 4.1. Given A and B components of A, and B, respectively and
e> 0 then there ewists am integer N > max(r, s) end a homeomorphism
b B* xE™ " x E™ such that

1. h=id on E"™™—(AxB) and

2. Diamh(4’ xB') < e for each component A'C Ay~ A and B’
CB NN B.

Proof. By Lemma 3.1 there exist integer J and K, a seb of n-cells
By, ..., By, and a set of m-cells F;, ..., Fy such thab

1. B,CintA for each i=1, 2y ey Dy

2. F; CintB for each j= 1,2, .56

3. For each component 4’ C 4y ~ A there is at least one 4 such that
A’ Cint By;

4. For each component B'C Bx ™
B'C ln'bF '

Tet N = max(J, K) and note that for each component

A’ xB' C(AyxBy) n (4 X B)
is o subset of intH; X intF;-

B there is at least one j such that

there exist integers 4 and j such that A’ xB'
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By Lemma 2.2 there exists a collection of (n+m)-cells @, Gy oy &4
such that

1. For each component A’ XB’ of (Ay XBy) n (4 XB) there exists
-a unique & such that 4" xB' CintGs and A’ xB' ~ Gy = O for all j = &,

2. GxCint By X intF; C A xB for some 7 and j.
Note that even though ¢ # § it may be the case that G; ~ Gy = @. Never-
‘theless there exists an (n+4-m)-cell @; C G; whose diameter is less than &
and such that @i~ Gy=@ for i j. For each component A4’ xB’
‘C{(4y XBy) n (A xB)} there exists an integer 4 and a homeomorphism
byt BV BM™ guch that

1. A’ xB'C @Gy,

2. ky=1id on "™ a4,

3. hy(d’ xB")C ¢y.

Define h="F;ohyo..0oh;. Even though the G’s are not disjoint,
-y is the identity on G; ~ (Ady x By) for j # 4. Thus & satisfies conditions 1
and 2 of the theorem. :

Remark 4.1. Since the homeomorphism % of Lemma 4.1 is the
identity outside a compact set % is uniformly continuous and isotopic
b0 the identity.

TeEOREM 4.2. Let Ay, i=1,2, - By, §=1,2,... be defined as
above, then there ewisis a pseudo-isotopy H: E™ ™ x I ~E™™ gyol, that

a. H(z,0)=x;

1?. If Hyx) = H (2, t) then for all t < 1, Hy s a homeomorphism of H"™
onto itself which is the identity outside a compact set;

¢. Hy maps E*™™ onto itself and maps each component of A X Be
onto a distinet point;

d. If @ e B™™— (A, xBo) then

‘ B Hyw)=w .

Proof. Tet &= diam (4, xB,) and & = () for i — 1,2,..

A sequence of integers 1= N (1), N(2), ... and isotopies,
Hz‘: E11,+m l:i_l 7 n+m
o

for £=1,2,... which satisfy

1. Bz, 0)= s,

i-1f  4—1 i -1 .
2. H* (w,T) = H'(w, T) fori=2,3, ..,
‘ = T ’ 3 7
3. diamH (A XB ’m) < & for each component 4’ x B’ C Aty X
XBxtity),
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4 Hiw,t)= Hi*(m, qi—;.—1—>for % e B"™ (Ao X Bwy)andi=2,3, ...,

i J R e S
5. |H (=, t) —Hz, V)] < &1y, for all z e B*™ and ¢, S[T’i_—i—_l]

are defined inductively as follows. Let 4, and B, of Lemma fl.l be 41
and B, respectively and let ¢ of Lemma 4.1 be g,. Then there exists a uni-

formly continuous isotopy
by BV I B
and an integer N (2) such that
(@, _0) =&,
diamhy(4' xB',1) < ¢ for each component,

A’ xB' C Aygy XByey and hy(z,t) =2 on E"er—(Al X By) .
Define H'(®,t) = hy(z, 2t), 0 << 3. . ) )

Suppose’ H* and Ny, are defined. Since HE is uniformly continuous
there exists a 8 > 0 such that if the diameter of v CcEvtm

k
for w = e
ig less than 6 then the diameter of HEW) is lesg than epy:. Lemma 4.1
implies the existence of an integer Niio and an isotopy such that
hpa(@,0)=w on E™™,
hen(@,t) = on  EV™—(Angn XByw+v) 5
diam(4* xB*, 1) < 6 for each component,

i i tinuous .
A* xB*C Ayginy XBygtn  and  hygq is uniformly con

Define

=
Ly

% % o1
Yo, ) = Hihe (w,(k—|—1)(k+2) (tum)) for o <i<pis

o

Clearly 1 and 2 are satisfied. Now

s <m, %)z HE Bl 1)

atistied. Further hpiq(2,7) = w”for
dition 4 is satistied. hgp (4" XB", 1)
C Angerny X By -
5 ig satisfied.

thus by choice of & condition 3 is s

& e Em+m_ (-A-N(k+1) XBN(k+1)) hence con B

is contained in A’ xB'' for each component A" XB"(

Diam(HE (A" xB")) < & be condition 3, thus condition
Define

' im il 2] g i=1,2,.
H(»,t)= H'(z,t) on E+"‘X[——7’.——,i+1] 0 34

'
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and define H(z,1) = Hy(z) = 13111 H(z,1). Hy(#) is a continuous map

of E™™™ onto B™™ by condition 5. Clearly 1 implies that a is satistieq
by H. Condition 4 along with definition of H* implies b is satisfied by H.
Suppose ¢ >0 and a X8 is a component of A, XBs then there exists
an integer p such that (%)P= &y < &. For all 1> p/(p+41), diamH (4* x
x B*, t) < &, where A* xB* is the component of Ayw) X Brgy, containing
axXp. Thus H(axpB,1) is a point. Let @ e B"™— A4, xB, then there
exists an integer N (g) such that @ e B*™™— (Anq XBuw(p). Thus 4 implies
that H(s, 1) = H(m, %) for all t->%. But H/E"™ x[o,glq‘—l—] is an
isotopy thus Hy ‘(Hy(2)) = and d is satisfied by H. Let o, X 8, and a, X §,
be distinet components of A. XBs then there exists an integer N (j)
such that o, xfC A ' xXB and a,xp,C A" xB"”, where A’ xB’ and
A" xB” are distinct components of Any XBayy. Thus Hi(e, X )
# Hy(ay X ) and ¢ is satistied. Therefore H i the desired pseudo-isotopy.

COROLLARY 4.2. Suppose F' is an upper semi-continuous decomposition
of B™™ consisting of the 2-cells a x B, where a C Ay and B C Be and the
points of EY'™ (4w XBx). If Z is the decomposition space associated
with F then Z is topologically F™™. Moreover, there ewists a umiformly
continuous homeomorphism carrying Z onto B™™,

TueorREM 4.3. Suppose Xy eIy and Xy € I'm then X XX is. topo-
logically B™*™,

Proof. By Corollary 4.2 there exists a pseudo-isotopy H of E™™
onto itself which shrinks éach of the 2-cells a X f for a C Aq and f C Bw.
Let f= H,. The'proof will be' completed by constructing a pseudo-
isotopy K of f(E™™) onto itself which shrinks each of the arcs flaxy),
flzx ) where a is an arc of A, fisan arc of By, #<E" and y « ™

Let

Uy = {Jf(intd,x (E™—By))
and

U= Uf((E"—4) xintBy) .

Note that each arc f(axy)C U, and f(zxB)C U,. Also U, ~ U= @.

T}le pseudo-isotopy K can be constructed by amending the con-
struction of the pseudo-isotopy in [7] as follows.

{1) Replace the compact neighborhoods 7; and T; with A; and B;
respectively. :

(2) In' the proof of the Lemma replace Theorem 1 of [1] with

Theorem 3.6 of this paper. And further replace the R; by R; of
Remark 3.4.

14]
{5]

{61

{7
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