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.Topological Galois spaces

by
P. Fletcher and R. L. Snider (Blacksburg, Va.)

L Introduction. In this paper we apply techniques like those of
classical Galois theory to relate a topological space and its group of
homeomorphisms. These techniques apply to a class of topological spaces
which includes all manifolds (without boundary) and all 0-dimensional
non-discrete homogeneous spaces.

Tf X is a topological space, we denote by H(X) the group of all
homeomorphisms from X onto itself. In [4], J. Whittaker has proved
that if, X and Y are compact, locally Euclidean manifelds, with or
without boundary, and H(X) is isomorphic to H(Y), then X is homeo-
morphic to ¥. The techniques in [4] are complex and depend heavily
upon the structure of compact locaily Euclidean manifolds, but it is
natural to hope that Whittaker’s result could be extended to a larger
class .of topological .spaces.

The purpose of this paper is to investigate a class of topological
spaces called topological Galois spaces. Though there is only the scant
evidence provided by Theorem 1 that Whittaker’s result might hold
in this class of topological spaces, topological Galois spaces are of interest
in their own right sinee methods similar to those of classical Galois theory
can be used in the study of these spaces. Indeed there is a simple prop-
osition about topological Galois spaces which is analogous o the Funda-
mental Theorem of Galois Theory.

Tn section 2 we study the general topological properties of Galois
spaces and in section 3 we study the relation between a Galois space and
its group of homeomorphisms.

2. Galois spaces. We let H(X) denote the group all homeomor-
phisms from a space X onto itgelf and let i denote the identity of H(X).
It ACX then A4’ = {h: heH(X),hld =i]d}; and it @ is a subgroup
of H(X) then & ={n: weX,gx)=2 for each ge@}. We will often
write A’ for (4’) and @' for {}. :

DerINITION. A space X is a Galois space if for each closed set C and
each p « X—C there is h e 0" such that h(p) # P.
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ProposITioN 1. 4 space X is a Galois space if and only if for each
closed set C, C= O". .

With mild separation axioms we can prove stronger results.

Propostrion 2. Let X be a Hausdorff Galois space and let A C X,
Then A 4s closed if and only if A = A",

ProPOSITION 3. Let X be a regular space. If X has a basis of Qalois
spaces then X is a Galois space.

Proof. Let & be a basis of Galois subspaces of X. Let C be a closed
subset of X and let p ¢ X— (. There is BeB such that p e BC X—(,
Since X is regular there is an open set V such that p ¢ V C ¥ C B. Since B
is & Galois space there is e H(B) such that h(p) = p and A[(B—V)
=14|(B~V). Then R|CL{V) wi|(X—V) is the desired element of H (X)

The converse of Proposition 3 is implied by

ProrosITION 4. Hvery non-empty open subset of a Galois space 1is
a Galois space. )

Proof. Let (X, B) be a Galois space and let U « B. Let V be an open
subset of U. Then V ¢ G. Let p ¢ V. There is h « (X~V)' such that h(p) = p.
Clearly bV e (U-VY.

Derinirion. Let X be a space and & be a subgroup of H(X). Let
p<X. Then G(p)={g(p)| g <G} .

ProrosiTioN 5. Let (X, 6) be a Galois space. Let A « € and let ¢ A,
Then (X —A)(a) is a homogeneous non-degenerate Galois space.

Proof. Clearly a ¢ (X —4)'(a). If (X—A)(a) = {a}, then a < (X —4)"
=X—A. But ac A. Hence (X —A4)'(a) is non-degenerate. Let V be an

open subset of (X—A4)(a).” Then there is U %G such that V
=T ny((X—A)’(a,)). Let geV. Then ged and there is a funetion
he(X—4)o (X~T)) such that h(g) # g. Since h|(X—A)(a)e
€H((X—A4)(a)), by Proposition 1, (X—A4)(a) is a Galois space. It is
easy to verify that (X —4)(a) is a homogeneous space.

‘ If X is a space with an isolated point, then X is not a Galois space.
In particular any non-degenerate discrete space is a homogeneous space
which is not a Galois space.

) EMLE 1. A homogeneous space X which has no isolated points and
which is not a Galois space.

Let X be the plane. For each point p = (a, b) let

D=} v {(@:9): y #b and Ye=aP+ (5—o < ).

Lt‘at B={Dpy:peX,e>0
with this topology X is a ho
space. Let 4= (0, 0). Then

}. Then B is a base for a topology B and
mogeneous space. Suppose (X, ) is a Galois
8ince D,y is an open subset of (X,98), by

©
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Proposition 4, D1 is also a Galois space. For each real number o let L,
be the diameter of De,;y with slope a. Notice that for each a the relative
topology of L, with respect to B is the relative topology of this line
segment in the usual topology. Hence Dy, is connected. Now H (X) (=)
= {&}, since # 18 the only cut point of Dy,sy. Thus Dis,yy is not a Galois space.

In spite of Example 1 there is an obvious connection between Galois
spaces and strong local homogeneity.

DEFINITION. [1] A space X is strongly locally homogeneous if for every
neighborhood of any point w, there exists a subneighborhood U(x) such
that for any z e U(z) there exists a homeomorphism ¢ with g(z) =  and
with ¢ equal to the identity on the complement of U(z).

Every strongly locally homogeneous space without isolated points is
a Galois space. Thus it follows from Theorems 4.2 and 4.3 of [1] that if X
is a space without isolated points and X is either locally Euclidean and
Hausdorff or homogeneous and 0-dimensional, then X iy a Galois space.

3. Homeomorphism groups. In this section all spaces considered will be
non-degenerate Hausdorff spaces.

DeriNiTioN. If X is a Galois space and ¢ is a subgroup of H(X),
then @ is closed provided @ = G".

- Given a space X we let C(X) denote the collection of all closed sets

of X and C(H (X)) denote the collection of all closed subgroups of H(X).
We now give a list of observations which will be of use subsequently.

PROPOSITION 6. Let X be a Galois space.

1) Ifboth A, B € C(X) or both A, B e C(H (X)) and A C B, then B'C A'.

2) If ACX or A is a subgroup of H(X), A" = A’

3) H e C(H(X)) if and only if there is a set A such that H = A".

4) 0 <C(X) if and only if there is a subgrowp H of H (X) such
that = H'.

5) A is a dense subset of X if and only of {8} = {a’| @A}

6) If A,B are subsets of X, then (Av B) = A’ nB’.
7) If A, B are subgroups of H(X), then (AVB) = A’ A B’

8) If A, B ¢C(X), then A'VB C(4 ~B).

9) If A, B <G(H(X)), then A’ B = (4~ B).

10) If A,B «C(H(X)), then A ~ B eC[H(X)). -

DerFINTIION. Let A be a subset of a topological space X. Then 4 is
stable provided, if a'c A and h e H(X) then h(a)<A.

LeMmMA. Let X be a space. If f e H(X) and H is a subgroup of H(X),
then (FHf™) = f(H').
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Proof. Let @ e (fHf ). Then, if h ¢ H, fif (#) = & so that Hf (@)

=fY@). Therefore f'(z)¢H' and wef(H). Thus (fHf™) Cf(H'),
Similarly f(H') C (FHf ).

Proposrrion 7. Let X be o Galois space. The function f: C(X)>C(H (X))
defined by f(A) = A’ for each 4 € C(X) 4s a one-to-one function from CX)
onto C(H(X)). If € e C(X), f(C) is a normal subgroup of H(X) if and only
if 0 is a stable subset of X.

Proof. Let 4,B¢cC. If f(4)=7F(B), then A'=B" and A= A"
= B" = B. Therefore f is a one-to-one function. Let H ¢ C(H(X)).
Then H = H'. By Proposition 6.4, H' «C(X). Since f(H') = H' = H,
f maps €(X) onto’ C(H (X)) .

Let A be a stable subset of X and let # ¢ A. Let % « H(X) and let
ged’. Then h7'(z)c 4 so that gh™(2) = h™*(x) and hgh™Y(z) = L™ ()
= #. Therefore hgh™* ¢ A’ and A’ is a normal subgroup of H(X).

Let N be a closed normal subgroup of H(X) and let heH (X).
Since ¥ is mormal (ANA')'= N'. By the lemma, (ANA ™) = h(N").
Therefore N" = h(N') and N' is a stable set. Morpover f(N') = N = N.

Asin classical Galois theory, we can use the one-to-one correspondence
between closed sets and closed subgroups established in Proposition 7
to relate the topological structure of X to the group structure of H(X).
However in classical Galois theory the groups are finite and the cor-
respondence between intermediate fields and subgroups is a bijection,
while we will now prove that in our case the groups are infinite and the
one-to-one correspondence is never a bijection.

First a Galois space must be infinite since a discrete space is never
a Galois space. Let X Dbe a Galois space. For each » eX, {#} = 2" is not
a stable set. Thus by Proposition 7, H(X) has infinitely many non-normal
subgroups and is infinite.

I every subgroup of H(X) is closed, then the lattice of subgroups
of H(X) is distributive, which implies that H(X)is abelian ([3], Theorem 4).

TEROREM 1. Let X and Y be Galois spaces. Then X is homeomorphic
to X if and only if there is an isomorphism ¢: H(X)->H(Y) such that
CH(Y)) = {p(0)] € cCH(X)).

Proof. Suppose first that there is a homeomorphism #: X -7Y.
Let ¢: H(X)>H(Y) be defined by ¢(f) = hfa™" for each feH(X). Let
¢ eC(H (X)). It follows immediately from the definitions that for any
closed subset 4 of X, RA'R ™ = h(4Y. Thus if 0= 0, then ¢(0) = h(C")
80 that ¢(C)" = p(0). By Symmetry if ¢(C)’ = ¢(0), then ¢ = "

Now suppose X and Y are Galois Spaces and there iy an isomorphism
@ H(X)>H(Y) such that CH(Y)) = {p(0)] CeCH(X))). As partially
ordered by inelusion the sets C(X) and C(H (X)) are dually isomorphic.
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Since ¢ preserves inclusion, ¢ induces an isomorphism ¢* G(X)->C(Y)
of partially ordered sets; and as any 7, topological space 8 is debermined
by the lattice C(S), the isomorphism ¢* provides a homeomorphism
h: XY given by the equation h(z)= p(z')'.

In light of Theorem 1, the authors pose the following question:
If X and Y are Galois spaces and H (X)) is isomorphic to H(¥) is X homeo-
morphic to Y? If we modify the definition of closed subgroups
by calling a group @ closed provided there is a closed set A such thab
G = A’, then the proof of Theorem 1 extends to 7; Galois spaces without
change.

ExsmpLE 2. Let X be the real line, let U be the usual topology on X
and let U be the subcollection of U containing only @, X, and sets whose
complements are bounded. Then Vis a topology on X such that H(X, W)
= H(X, ) ([2], Theorem 3).

The above example shows that without the assumption that X and ¥
are Hausdorff the answer to our question is negative even if H(X)
= H(Y). This fact is surprising since in a Hausdorff Galois space the
functions ¢: F(X) T (X) defined by ¢(4) = A’ is the Kuratowski closure
operation. Thus .it is impossible for two Hausdorff Galois spaces
with the same underlying [set to have the same group of homeo-
morphisms. ) )

Recall that a group G is complete provided & is centerless and every
agutomorphism of G is inner. The following slight improvement on Theo-
rem 1 might be useful in answering the question.

THEOREM 2. Let X be a Galois space and suppose thai every aut{)-
morphism of H(X) is inner. Then H(X) is complete. Furthermore if ¥ is
a Qalois space and if @ is an isomorphism from H(X) onto H ( Y) thfz.n X 8
homeomorphic to X if and only if ¢: C(H(X))~C(H(Y)) is a bijection.

Proof. Let f e H(X). If f # 4, there exists s ¢ X such that f() + ».
There is ¢ « H(X) such that g(#) =« and g(f(2)) # f(#). Then fy 5 ¢f.
Hence H(X) is complete.

cI‘n refnazns to shlc))w that if X is homeomorphic to ¥ then ¢: C(H (X))

~>G(H (Y)) is a bijection. By Theorem 1, since, X is homeomorphic t,o. Y,
there is a bijection p: G(H (X)) ~C(H(X)). Since y~* ¢ is an automorphism
of H(X), there iy g ¢ H(X)such that w“lgv(f)1= gfg™" for each f€_1ﬂ(§3'
Now let F < CH(X)). Then y 'o(F)=gFg" eCH(X)). So yy o)(F)
= ¢(F) e C(H(Y)). If ¢(Fy)= p(F,) certainly 11'3:1 F,. Let & <C(H(T)).
Then ¢™ (@) e G(H(X)). Otherwise (w‘lq;)qa(G);«p‘ & ¢e(H(X)}-

Whittaker has shown that if X is a manifold then H (X)» is complete
(4], Theorem 4). Thus at least one large class of Galois spaces has
complete groups.
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Bimeasurable maps*

by
John G. Michaels (Pittsburgh, Pa.)

1. Introduction. All spaces considered in this paper are assumed

‘to be metrizable and % will denote an infinite cardinal. We further

assume the generalized continuum hypothesis.

A map f between two absolute Borel (metric) spaces is bimeasurable
if both f and f~* preserve absolute Borel sets. R. Purves [6] has shown
the following: '

TaroreM 1.1. If f is a bimeasurable map between two separable ab-
solute Borel metric spaces, then F7(y) is countable except for at most countably
many points in the range of f. : v

The purpose of this paper is to obtain generalizations of this theorem
for non-separable spaces. In place of countability we are led to con-
siderations of the cardinality and o-discreteness of the sets f'(¥)-
Summarizing Theorems 4.3, 4.4, 5.1, and 5.2, we obtain the following
(definitions are given in Section 2):

TeEoREM. Let f be an a-bimeasurable map defined on an absolute
Borel space X of weight k. Let

B = {y f(X): () not o-discreie}
and ‘let :
' B* = {y e f(X): card f(y)> %}

Then ‘
(i) cardB <k,
(ii) card B* <k,

(ili) 4f B is absolutely s,-analytic, then B is o-discrete,

(iv) if B* is absolutely w,-analytic, then B* is a-discrete.

Each of the four conclusions in this theorem reduces to the theorem
of Purves if the spaces in question are separable, ie. if k= %.

* This paper is a revised portion of.a doctoral dissertation written under the
direction of Professor A. H. Stone at the University of Rochester.
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