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If furthermore any of these conditions holds, the mapping ¢ of (ii)
and (iv) s wunique.
4 .Pr(.)of. .vaiously, (ii) implies (i). By Lemma 11 and Definition 14
(i) implies (m) By. Theorem 8, (iii) is equivalent to (iv). It remains to’
show that (iii) implies (ii). By Lemma 11, F' C F implies that Hy is reduced
to f for any feF. Since (R,-) is a union of groups, we have

R = H,= H = =

MLJE ¢ EEEL-J—II‘ e fLe%‘Hf (“%J_Fﬂe) v F —aelL'LJ—F(He ¥ rp(e))

and this is obviously an F'-disjoint union of subdivision rings of R, which
completes the proof. ’
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An example of a meonostratiform i-dendroid

by
J. J. Charatonik (Lexington, Ky.)

A metrie compact continuum is said to be a dendroid if it is heredi-
tarily unieoherent and arcwise connected. It follows that it is heredi-
tarily decomposable (see [21, (47), p. 239). A hereditarily unicoherent
and hereditarily decomposable continuum is called a A-dendroid. Note
that every subcontinuum of a 1-dendroid ig also a A-dendroid.

Tt is proved in [3]. Corollary 2, p. 29, that for every A-dendroid X
there exists a unique decomposition D of X (called the canonical de-
composition): :

X = {8z dedX)}
such that
(i) D is upper semicontinuous,

(ii) the elements Sq of D are continua,

(iti) the hyperspace 4(X) of D is a dendroid,

(iv) D is the finest possible decomposition among all decompositions
satisfying (i), (i) and (iii).

The elements Sz of D are called strate of X. The question arises
whether there exists a A-dendroid X with trivial eanonical decompo-
sition, i.e. such that X has only one stratum.

The purpose of this paper is to give the affirmative answer to the
above question.

Call a A-dendroid to be monostratiform if it consists of only one
strabum. Thus the hyperspace of the canonical decomposition of a mono-
stratiform A-dendroid is a point. It follows from [3], Theorem 7, p. 29
that:

(1) A A-dendroid X is monostratiform if and only if every monotone
mapping onto a dendroid is trivial, i.e. the whole X goes onto a point.

(See also [4], Corollaries 1 and 2, p. 933).

Construction. The decription of the example is based upon the
description of Lelek’s example of a dendroid with 1-dimenional set of
end points (see [9], § 9, p. 314).
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To describe the monostratiform A-dendroid X which wevare going
to construct, the following geometrical procedure is needed:

By an oriented triangle T we mean a triangle (i.e. a 2-cell) in which .

an ordering <g of vertices is distinguished. If a, b, ¢ are vertices of T
and this ovdering is just e <<b<e, then we write T = T(abe).

Let T'(abe) be a fixed oriented triangle lying in an Buclidean plané
with the ordinary metrie g, and let a;, where i =1, 2, ...y be points such
that for all £=1,2, ...

(2) Gop—reac  and  das ebe
(3) 0@, a1) = o(a, 0)/2k  and (b, au) = o(b, ¢)/2k .

_ Denote the centre of the straight segment @iG:11 DY by, where
i= 1, ?:, .. and let for every k= 1,2, ... points df, dé”, ¥, d¥ be centres
f)i straight segments dap—1bar—1, bog—1 Gor, Gopber ANA bop Gopry correspond-
ingly. Thus, for eve}ry natu}fa-l %, points dF and d% lie in the side oz —3 Ooy,
as well as points d5y and df lie in the side Gonory Of the triangle with
vertices Qop_q, oz and @epyy. Divi e raig” ;
e dc;;:dllc" 2tk (w @op41. Divide caehﬁ of pwo straight segments
(1 dy ‘n > ds into three equal parts and define POINGS Cipmsy Cap—sy Cap—y, o
of this division as follows:

C-s € didi  and (oo, &) =  o(dk,db)3, -
o(dF, a3,
s o(ds, d5)[3,
o edid;  and  olew, dF) = o(dk,dlys.

Cyps € dgkdf and 0(Cap—z, df)

I

k gk g
ep-rededy  and  p(Cag-y, dY)

Now, for every k=1, 2, ..., take four oriented triangles
Tip-s = T(aop1bop—1011_3) ,
Tin-2 = T(02ibop—1Cap-s) ,
T = T (aonbog Car—1) ’
Ts = T(@Gopsibores)

(4)

lying inside the triangle with vertices Qo1 Qo ANA Bopyr.

. We denote by B(abc) the sequence {T';};1s,.. of oriented triangles
defined above (see Fig. 1). Therefore for any two triangles 7', T'; ¢ G (abe)
we have T
(5) Tgi__l [ Tg,; = b,‘ and Tij [a} T2{+1 = Giy1 for ¢ = 1, 2, vee
by (4), and

(6) TinTy=0  for li—j|>1.
Let 6(8) denote the diameter of a set 8. Now we shall prove that
(M 8(T1) < §6(T(abe)) for i=1,2,..
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With this in view let us denote by ¢ the centre of the segment ab
and consider two trapezia: 4 with vertices @, ay; by, ¢ and B with vertices
b, as, by, g. The diameter of 4 is the maximum of the six numbers: four
of them are lengths of the sides of 4, the other two are lengths of its

diagonals. Put

(8) 8(T (abe)) = & .
To estimate 5(4) let us observe that we have following inequalities

for the sides of A.

elaya) = fola, ¢) <4y,

‘ o{ay, by) = folt, a) = fola, b) < § 0,
o(by, @) = ey, ¢) = Fele, @) < 1do,
olg; 6) = fola, b) <16,

For the diagonals of 4 we obtain’
elay, ) = o(b, ¢) < $do s

ola, b)) < o(a, @)+ olay, b) < 10,16 = $0 -
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Therefore 8(4) < £6,. In the same manner we can prove that
3(B) < £4,. Further, note by construction that for i=1,2, ... we have
either T:C 4 or T:C B, which leads to 8(T:) < £4,, and (7) is proved
by (8).
If # is a family of sets, let £* denote the union of all members of A
So we see that '
o0
C*abe) = |\ Ty,
i=1
which is a connected set by (5). By construction
(9) . Ls Ti= ab= B*(abo)\G"(abc)
100
whence we conclude that
(10) ab w B*(abe) is a continuum.

) A pOil-lt p of a connected set A is said to be a separating point of 4
if A\(p) is not connected. So we see by (5) and (6) that

(11) every point a; for 4> 1 as well as every point b; is a separating
point of fhe continuum ab v B*(abe).

Now we shall define for every n =1, 2,... a countable family §, of

straight line segments and a countable family B, of oriented triangles.
Namely we put -

(12) 8, = {ab}, T, = Blabe)

and

(13) Sni1= 8 U {a'V'|T(a'b'¢') e Gy},
(14) Cua1= U {B(a'b'¢")|T(a'b'c’) € Cu} .

We also agree that B, = {T'(abe)}.

Observe that for an arbitrary se C i i
; quence of oriented tr i
we have by (7) and (14) ranges Skt

(15) if T € 6,, then lim §(T™) = 0.

n—>00

. The following properties of the above families S, and G, are read-
ily seen:

(16) 8% is a continuum,

(17) 8 v B} is a continuum,

(18) St u B, CSEU T,
The 2-dendroid X is defined by the formula

(19) X= (i(s: ).

* ©
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T4 is & continuum as the common part of the decreasing sequence
of continua by (17) and (18).

Properties. It follows from (19) by construction that every triangle
T e B, for any natural n contains a homeomorphic image of X:

(20) if T e 6, for some n, then X n T' is homeomorphic to X.
Further, we see—also by construction — that

(21) for every point # of X and for every neighbourhood U of x there
is a natural n, sufficiently great, such that U contains some
triangle T € Ga.

Note that if a continuum K is the common part of a decreasing
sequence of continua K, then every separating point of any K, is
a separating point of K. Since the common vertex of every two succesive
triangles Ty, Tir1 €Ty 18 2 separating point of the continuum 8t U Bt
— ab u B*(abe) by (11), hence it is a separating point of X. Thus (20)
implies that

(22) if a point s is a common vertex of two triangles T', T ¢ Ga
(n=1,2,..), then s is a separating point of X.

Tet § denote the set of all such points s. This means that s is in 8 if
and only if s is a common vertex of some two triangles T" and 1"’ belong-
ing to B, for any natural #. Hence

(23) every point of § is a separating point of X
by (22), and we conclude from (2_0) and (21) that § is dense in X:
(24) §=Xx.

The families G, being countable for each m, the set § is countable.
We shall show below that no point of X\ separates X, ie. that S con-
sists of all separating points of X.

Tt follows from definitions (12)-(14) of the families S, and Ba and
from (19) that 8% is in X for every n. Thereby

(25) \JSiCX.
n=1
According to (12) and (13) the union U 8% consists of the side ab
fi=1

of T(abc) and of the sides a'd’ of oriented triangles T'(a’b’¢’) € T,
n=1,2,.. Since a common vertex of any two oriented - triangles
T = T(a'b'¢’) and T = T(a'b"'¢”) both belonging to the same By is
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just the common end. point of the sides «'d’ and a”b" of these triangles,
hence, by definition of §, we have

(26) sc (st

=1

which implies by (24) and (25) that

27) x=Jst.
n=1

Note that in every triangle 7'(a'b'c’) € G, its side a'b’ is a continuum
of convergence of the sequence of sides a”b” of triangles T(a'b"e")
€ B(a’'b"'¢"") C Bypr by (9) and (20). So, no interior point of the side a'd’
separates X. Thus

(28) if a separating point of X is in US,L, it is n 8.

n=1
Now pub
(29) B=salst
N1 n=1
ie. by (27)
o0
(30) B= X\ U 85 .

Let ¢ be a point of B. Thus ¢ is a common point of some decreasing
sequence of triangles T such that 7" e B, and teIntT" for every n:

Tn.

1

B

(81) 1=

7

i

Now let # 7 ¢ be a point of X, and let ¢ be a positive number, less
than the distance from « to ¢. Therefore by (15) there is a natural m such
that t e Int 7™, © ¢ X\T" and 6(I™) < . The sequence of triangles T
to which ¢ belongs being decreasing, we have e T C 7™ and 7™
€ Bnt1. S0 T™ must be a term of the sequence G(a'd’¢’) of triangles,
where T" = T(a'b'¢’). Let TP (i=1,2,..) denote the ith term of
this sequence, where indices ¢ are placed in the same manner like it was
done by (4) for the sequence G(abe). If j denote the index of 7™*' in the
sequence G(a'd’¢’), i.e. it

Tnh 1 _TmTl

’

then the common vertex s of T7'*" and T7%%' is a separating point of X
according to (22) because both these triangles belong to B41. We see
that s separates X into two sets M and N such that x e M and feN:

X\(s)= Mo N.
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But N u(s)C CJ TP CI™, whence 6(N) < e It shows that ¢ is
an end point of X li_ri the sense of Menger-Urysohn, i.e. that
(32) ord; X =1
(see. e.g. [8], § 46, I, p. 200), whence we conclude that
(83) X is locally connected at ¢
by [8], § 46, IV, 1, p. 209. Obviously X is not locally connected at any

point of the union | J 85, whence

n=1
(84) F is the set of all points at which X is locally connected.

Further, it is readily seen that no point of X\ ¥ is an end point of X.
So by (32) we have

(35) E is the set of all end points of X,
whence
(36) dimB =0
by [8], § 46, V, 2, p. 217.

It is immediately seen by (20) that every triangle T ¢ B, for some n
containg a point of F. Thus (21) implies that E is dense in X.

Remark that (30) gives

E= ﬂ (X\8%) ,

n=1
whence we see by (16) that E is a Gs-setb.
Let us come back now to separating points of X. Since no end point
of a continuum is & separating point (see [8], § 46, V, 1, p. 217), hence
the set of all separating points of X and the set B are disjoint by (35).

It implies by (30) that all separating points of X are in the union [ )8}
n=1

therefore by (23) and (28) the set of all separating points of X is just S.
So we have the following statement concerning separating points
of X:

(37) The set of all separating points of X is dense and countable. It
consists of common vertices of any two triangles 7", T'/, both being
in the same Bn, where n=1,2, ..

T'o prove the hereditary decomposability of X consider two different
points # and y of X. Since they are different, hence the sequence of
triangles

T(abe) = T° D T*DT2D..DT"D ...

Fundamenta Mathematicae, T. LXVIL -6
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such that 4 and y are both in each T™ and T" e T, for n= 1,2, ... hag
the last element, say I™". Observe that there is no irreducible continuum
from # o y which intersects the complementary of T™: every such a con-
tinuum must lie entirely in 7™ The set X ~ T™ being homeomorphic
to X by (20), we may assume without loss of generality that m — 0,
i.e. that no triangle of the sequence G(abe¢) contains both # and 9.

If # and y are both in ab, then the unique irreducible continuum
from % to ¥ is an arc.

If # is in ab and y is not, then v belongs to some triangle Tj e G(abe)
and we have countably many points, eommon vertices of every two
succesive triangles T';, T's1q1 of B(abe) for ¢ > &, which separate  from y,
Thus an irreducible continuum joining & and y is separated by these
points.

Finally if neither # nor y is in ab, then they are in different triangles
of B(abe). Let © ¢ Ty, y ¢ T where Ty, T ¢ G(abe). We may assume j < &
(the opposite case, j > k, is quite similar). Thus every common vertex
of two succesive triangles T and T, where ¢=j,j41, ..., k-1, is
a separating point of X and separates @ from vy, whence an irreducible
continuum from # to y must be separated by such a point.

Therefore we conclude that every irreducible subcontinunum of X is

separated by a point, whence the hereditary decomposability of X follows

(see [8], § 43, V, 1, p. 145).

Before proving the hereditary unicoherence of X, firstly we recall
some known notions and a theorem concerning continua lying in the
plane E?, and secondly, we observe some properties of the construction
in 7'(abc). ) )

A continnum € C E® is said to cut (or to be a cuiting of) E* between
points a and b provided that a, b« BA\C and every continuum which
contains a and b intersects . It is called an irreducible cutting of B
between a and b provided that it is a cutting of E? between « and b and
no proper its subcontinuum cuts E* between these points. A continuum
O C I is said to eut (or to be a cutting of) E* if there exist two points such
that € cuts E* between them.

The following theorem is known:

(38) A hereditarily decomposable plane continuum is hereditarily uni-
coherent if and only if it does not cut the plane.

Indeed, every cutting of B between two points containg an irreducible
cutiting between these points (a theorem due to S. Mazurkiewicz; see [7],
Theorem I, p. 133). So if we suppose that a hereditarily decomposable
and hereditarily unicoherent continuum K cuts B? between @ and b,
then we conclude that K must contain an irreducible ‘cutting L of B
between a and b which is decomposable and unicoherent. Therefore for
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an arbitrary decomposition of L into two its proper rabcontinua I, and L,
we see that neither L, nor L, cuts E? between a and b, and that I, n L,
iy a continuum; hence the union I; v L, = L cannot cut E* between a
and b according to a theorem due to Z. Janiszewski ([6], Theorem A,
p. 48; see also [7], (i), p. 136), and we get a contradiction.

Invertedly, if a hereditarily decomposable plane continuum K is not
hereditarily unicoherent, then it contains a subcontinuum M that can
be decomposed into two subcontinua M; and M, the intersection of which
is not a continuum. Thus M, v M, = M is a cutting of E* (see [6], Theo-
rem B, p. 53; also [7], (iii), p. 136), and so is K because K is 1-dimensional.

Observe now the following two properties of the construction in
the triangle T'(abe).

(39) For every point z, e T(abc)\B*(abc) there exists an arc #,p, such
that py € ac w be and z,p, C T (abe)\G*(abe).

In fact, if %, € T(aj—1a;2;41) C T'(abe), then we take as p, an arbitrary
point of @—18;4:\(4j—1)\(@j41) (see the figure) and we see that such an
arcz,p, does exist.

Similarly, if T(a'b’¢’) e B(abc), then

(40) For every point p;e(a’¢’ v b'¢’NX there exists an arc p,p, such
that py € ac v be and pp\(p1) C T (abe)\G*(abo).

Indeed, if pea’e’ v b'c’ CT(a'b'¢’)C T(aj-1650,+1), then we take
as P, an arbitrary point of @;_;a;41\(@j—1)\(j+1) a3nd we can easy find such
an arc p,p, lying entirely in T(@;—10;0:11).

Now, in order to prove the hereditary unicoherence of the con-
tinuum X, it is sufficient to prove, according to (38), that X does not
cut the plane, i.e. that for any two points #; and =z, in EA\X there is
a continuum joining #;, and @, and having no common point with X. Let y
be a point of E*\T(abc). Observe that if K, and K, are continua such
that @; ¢ Ky, y e Ky and Ky~ X =@ for =1 and 2, then their union
K, v K, is a continuum K with properties #y,#, e X and K~ X = 0.
Therefore it is enough to show that a point & ¢ B\ X can be joined with y
by a continuum which does not intersect X. The existence of such a con-
tinuum iy obvious if & € B\T (abe). In the opposite case, if # € T'(abe\X,

we see that @ is not in Cj 8% by (25), whence, the sequence of sets G
=1

being decreasing by (14), we conclude by (19) that there exists a natural m
with property

(41) @ € BE\Ch1 -
Consider the finite sequence of triangles 7™ e B, such that
(42) zeT™CI™'C...CT CT = T(abo) .

6%
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Putting T™ = T(uvw) we have B(uvw)C Bpmy1, whence B (wvw)
C B%4s. Thus

(43) ' @ € T (uvw)\G*(uvw)

by (42) and (41). The intersection X ~ T™ being homeomorphic to X
by (20), we have similarly to (9)

(44) w0 = THwvw)\G*(uow) .

Since 7™ e B, hence we conclude from (13) that uw C S%+1, thus
uv C X by (25). But the point # is not in X, so it is not in wv, thereby (43)
and (44) give

% ¢ T(uvw)\B*(uow) .

Applying (39) to the friangle T(uvw) in place of T(abe), which is
possible by virtue of (20), we deduce that there exists an arcap,, such
that p, lies in the boundary of 7™ and #p, ~ X = @. Using (20) and
applying (40) to triangles 7™, T™ %, ..., T° we infer that there is a finite
sequence Of arcs PmPm—1; Pm—-1Pmz, .., P19y every of which is .disjoint
with X and such that p: belongs to the boundary of 7" for ¢ = 0,1, e
m—1. S0 the union #Pm U PmPm—z v ... U pip, i 2 continuum which lies
in T(abe)\X and which joins the point  with the point p, € ac w be. Thus
if we join p, with 4 by an arc p,y such that p.y ~ T(abe) = (py), we
obtain a eontinuum

BPm U PruPm—1 Y v v PP Doy CENX

and therefore the proof of the hereditary unicoherence of X is finished.
Being hereditarily decomposable and hereditarily unicoherent, X is
a A-dendroid. .
Now we shall prove the main property of the A-dendroid X, that X
is monostratiform. Let

¢: X >A4(X)

be the canonical mapping of X onto the dendroid A (X), i.e. such a mapp-
ing that

¢ d) =8z for ded(X),

where §; are the elements of the canonical decomposition D (see [3],
D- 25). We shall show that 4(X) reduces to a point. To establish this
it is sufticient to verify that 8% goes to a point under ¢foreach n =1,2, ..
In fact, if it is so, each S% must go onto the same point, because the
sequence of continua 8%, n =1, 2, ..., is increasing by (13). It implies

that the union )8} is mapped onto the point, thus X is by (27).
n=1
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So, we should demonstrate that
(45) ¢(8%) is a point for each n=1,2, ...

Recall that if a continuum € is a franche (in the sense of Kuratow-
ski, see [8], §43, IV, p.139) of an irreducible subcontinuum of an
arbitrary A-dendroid and if f is a monotone mapping of this A-dendroid
onto a dendroid, then f(C) is a point (see [3], Theorem 5, p. 26).

Firstly, observe that 8f = ab is a tranche of the irreducible conti-
puum 83, Thus ¢(8f) is a point by the above reason. Denote this point by d:

H(8T) = d.

Secondly, assume that
(486) P& =d
for some fixed n. The family G,-, of oriented triangles being obviously
countable, let

T, 1%, ..., 7%, ..., where T% ¢ Gy

be an arbitrary sequence of all its elements. Thus
< K
(47) Gy = kL:Jl“@(T )

by (14) with » instead of n-+1, Where,?S'(T",) means the same as G(pgr)
it 7% = T(pgr). Denote_ by Rz the family of all straight segments a’d’
such that T(a'b’¢’) ¢ B(TF). Therefore (47) implies that

{@'b’] T(a'b'¢’) e Cu} =kL:j15{k .
whence ' -
(48) Sha=s8iv Rt

by (13). Consider now oriented triangles T'i‘, terms of the sequence ‘G(T"),
where indices i are defined in the same way as it was done by (4) for
triangles 7; of the sequence G(abc). Let A, denote the side o”’b"’ of the
oriented triangle T% = T'(a"'b"’¢'"). Hence by definition of Rx we have

(49) Ri=LJ4;.
i=1

Applying (5) to the sequence B(T*) we see that
(50) A; and Aipq have an end point in common.

Observe that every segment Ay, is a tranche of an irreducible contin-
uwum. Namely the set

Ao U {un] T(uvw) e B(TH} C Shie
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is an irreducible continuum, homeomorphic to -the closure of the graph
of the funetion y = sin(1/s) for 0 < & < 1, and it has 4 as the only tranche
different from a point. By the above argument ¢(4,) is a point. Call it @}

Plds) =d;.

If ¢(4dits) = @141, then di= dj11 by (50), and we may omit the
indices ¢ and write
p(d)=d" fori=1,2,..
Thus by (49)

PRE) = ' .
But 5{—;‘2_ is & continuum as well as 8} is, and we have
8; m J—.{.ﬁ =pq,

where T'(pqr) = T*, which implies by (46) that d and 4’ coincide. So we
-conclude that

$(Shea) = d
by (48). Therefore (45) is established.

Remarks. Some modifications of the above construction lead to
various kinds of monostratiform 2-dendroids, e.g. to an esample of
a monostratiform 1-dendroid without separating points. Since X is
a plane continuum no subcontinuum of which separates the plane, it
ig tree-like (see [1], the definition on p. 653 and Theorem 6, p. 656). But
H. Cook has recently proved, [5], that every 2-dendroid, not necessarily
embeddable in the plane, is tree-like. It can be seen from Corollary 1
in [11], p. 379, that X has the fixed point property. It is not known if
all A-dendroids have this property. For a partial solution see, e.g., [4],
where a list of references is given.
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