L. Mohler

References

- J. J. Charatonik, Two invariants under continuity and the incomparability of fans, Fund. Math. 53 (1964), pp. 187-204.
- [2] J. K. Harris, University of Oregon Thesis, 1962.
- [3] S. Mardešić, On the Hahn-Mazurkiewicz theorem in non-metric spaces, Proc. Amer. Math. Soc. 11 (1960), pp. 929-937.
- [4] L. E. Ward, Jr., Fixed point theorems for pseudo monotone mappings, Proc. Amer. Math. Soc. 13 (1962), pp. 13-16.
- [5] Mobs, trees, and fixed points, Proc. Amer. Math. Soc. 8 (1957), pp. 798-804.
- [6] G. T. Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications Vol. 28, 1942.
- [7] G. S. Young, The introduction of local connectivity by a change of topology, Amer.
 J. Math. 68 (1946), pp. 479-494.

UNIVERSITY OF OREGON INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 2.12.1968

On the topology of curves I

by

A. Lelek (Warszawa)

By a curve we mean a 1-dimensional compact connected metric space. Thus all curves are non-degenerate continua. Although a theory of curves had been established at the early stage of set-theoretical topology by Karl Menger and P. S. Urysohn, some set-theoretical aspects of the theory seem to be far from being explored. Among them are various cardinality problems concerning topological structure of curves and their subsets. For non-compact subsets a classification relevant to connectivity properties had been elaborated by A. D. Taimanov [5]. A countable ordinal which we call the non-connectivity index of a space (see § 1) indicates the level on which quasi-components become components of a given point. Solving a problem raised by P. S. Novikov (see § 3) we show that there exists a plane G_{δ} -set whose non-connectivity indexes are arbitrarily high. This is done by constructing a subset of a pseudo-arc, and we use a result of Howard Cook [2] to prove that an uncountable compact bundle of pseudo-arcs is embedable in a pseudo-arc itself (see § 2). On the other hand, it is shown (see § 4) that non-connectivity indexes of a subset of a rational curve are bounded by a countable ordinal. The results of the present paper were partially announced in [4].

§ 1. Non-connectivity indexes. Let us recall that the quasi-component Q(X,x) of a topological space X at a point $x \in X$ is the intersection of all closed-open subsets of X that contain x. We write $Q^0(X,x)=X$, and we use a transfinite induction to define $Q^a(X,x)$ for each ordinal a, namely

 $Q^{a+1}(X,x) = Q(Q^a(X,x),x)$

and

$$Q^{\lambda}(X,x) = \bigcap_{\alpha \leq \lambda} Q^{\alpha}(X,x)$$

for limit λ . The set $Q^a(X, x)$ is said to be the *quasi-component of order* α of the space X at the point x. Observe that $Q^a(X, x)$ is a closed subset of X, and therefore the decreasing transfinite sequence

$$Q^0(X, x) \supset Q^1(X, x) \supset \dots \supset Q^n(X, x) \supset \dots$$

Fundamenta Mathematicae, T. LXVII

must have a term $Q^a(X, x)$ which is equal to the next term $Q^{a+1}(X, x)$. This means that $Q^a(X, x)$ is connected, and $Q^a(X, x) = Q^{\beta}(X, x)$ for all ordinals $\beta > \alpha$. We call the ordinal

$$nc(X, x) = Min\{\alpha: Q^{\alpha}(X, x) = Q^{\alpha+1}(X, x)\}$$

the non-connectivity index of the space X at the point x. Clearly, the quasi-component of order nc(X,x) of X at x coincides with the component of X to which x belongs. All spaces examined here will be separable metric, and thus we shall always have $nc(X,x)<\Omega$ where Ω stands for the least uncountable ordinal.

Our first deal is to construct some examples of spaces with a given prescribed non-connectivity index $\alpha < \Omega$ at a point. Such examples are well-known (see [5], p. 369) but we require an additional property: all of them should be embedable in the pseudo-arc. A curve P is said to be a vseudo-arc provided P is hereditarily indecomposable and chainable. A curve C is called *chainable* provided C admits finite open covers whose elements have arbitrarily small diameters and whose nerves are ares. A theorem of R. H. Bing says that pseudo-arcs are homeomorphic to each other. By a continuum we mean a compact connected metric space, and the union of all proper subcontinua of a continuum X which contain a given point is said to be a composant of X. A composant of a continuum Xis a dense subset of X. If X is an indecomposable continuum, then X has uncountably many composants and they are pairwise disjoint. If $C_0, C_1, ...$ are closed subsets of a compact metric space X, we write $C_0 = \operatorname{Lim} C_i$ provided C_i converge to C_0 in the space 2^X of closed subsets of X, the topology in 2" being generated by the Hausdorff distance (see [3], p. 214).

1.1. If P is a pseudo-arc and P' is a proper subcontinuum of P, then there exist continua $K^i \subset P \setminus P'$ such that $P' = \text{Lim } K^i$.

Proof. If P' is degenerate, 1.1 trivially holds. We can assume that P' is non-degenerate. Let U and V be non-empty open subsets of P whose closures are disjoint. Since each composant of P intersects both U and V, we can find an infinite sequence C_1, C_2, \ldots of subcontinua of $P \setminus (U \cup V)$ such that each C_i intersects the boundaries of U and V, and for $i \neq j$ the continua C_i and C_j are contained in different composants of P. The space 2^P being compact, this sequence must have a subsequence C_{k_1}, C_{k_2}, \ldots which converges to a continuum $C_0 \subset P \setminus (U \cup V)$. Clearly, C_0 also intersects the boundaries of U and V, whence C_0 is a non-degenerate proper subcontinuum of P. Thus there exists a homeomorphism h of P onto itself such that $P' = h(C_0)$ (see [1], p. 741).

We claim that C_0 can meet only one of the continua C_{k_i} . Suppose on the contrary that C_0 meets both C_{k_i} and C_{k_j} where $k_i \neq k_j$. Since P

is indecomposable, neither $C_0 \cup C_{k_i}$ nor $C_0 \cup C_{k_j}$ is P. By the same reason, we then have

$$P \neq C_0 \cup C_{k_i} \cup C_{k_i}$$

which implies that C_{k_i} and C_{k_j} are contained in one composant of P contrary to the definition of C_i . Hence there exists a positive integer j_0 such that $C_{k_j} \subset P \setminus C_0$ for $j > j_0$. It follows that the continua

$$K^i = h(C_{k_{j_0+i}})$$
 $(i = 1, 2, ...)$

satisfy the conditions required in 1.1, and 1.1 is proved.

Let $B_j^k(X)$ denote the j-th Borel class (j=0,1,...), countable-additive when k=0, and countable-multiplicative when k=1, of subsets of X. Thus, for instance, the elements of $B_1^0(X)$ are all F_{σ} -sets in X, and the elements of $B_1^1(X)$ are all G_{δ} -sets in X.

1.2. THEOREM. If P is a pseudo-arc and $p \in P$, then for each ordinal $a < \Omega$ there exists a set $Z_a \subset P$ such that

$$p \in Z_a \in B_1^0(P) \cap B_1^1(P)$$
, $nc(Z_a, p) = a$.

Proof. We construct Z_a inductively for $\alpha < \gamma$ where $\gamma < \Omega$ is a fixed ordinal. Let $d_a > 0$ be a real number for $\alpha < \gamma$, such that $d_a \leqslant \operatorname{diam} P$ and $d_{\beta} < d_a$ for $\alpha < \beta < \gamma$. The F_{σ} - G_{δ} -sets $Z_{\alpha} \subset P$ will contain p and will satisfy the following conditions.

- (i) If $a < \gamma$, then $Q^a(Z_a, p) = C_a$ is a continuum with diam $C_a \geqslant d_a$.
- (ii) If $a < \gamma$ and $p \in X \subset C_a$, then $Q^a(X \cup (Z_a \setminus C_a), p) = X$.
- (iii) If $\alpha < \beta < \gamma$, then $Z_{\beta} \subset Z_{\alpha}$, $Z_{\alpha} \setminus C_{\alpha} \subset Z_{\beta} \setminus C_{\beta}$, and $(C_{\alpha} \cap Z_{\beta}) \setminus C_{\beta} \neq \emptyset$.

We put $Z_0 = P$ and suppose that we are given an ordinal $\beta < \gamma$ such that Z_α are defined for $\alpha < \beta$. To define Z_β , two cases should be distinguished.

Case 1: β is not limit. Then there exists an ordinal α such that $\beta = \alpha + 1$. Since $0 < d_{\beta} < d_{\alpha} \leqslant \operatorname{diam} G_{\alpha}$, the continuum C_{α} is a pseudo-arc containing p, by (i), and there clearly exists a proper subcontinuum $C_{\beta} \subset C_{\alpha}$ containing p with diam $C_{\beta} \geqslant d_{\beta}$. Let $K_{\beta}^{i} \subset C_{\alpha} \setminus C_{\beta}$ be continua such that $C_{\beta} = \operatorname{Lim} K_{\beta}^{i}$, according to 1.1. We define

$$Z_eta = (Z_aackslash C_a) \cup C_eta \cup igcup_{i=1}^\infty K_eta^i$$

and we see that Z_{β} is an F_{σ} - G_{δ} -set because it is obtained from the F_{σ} - G_{δ} -set Z_{a} by subtracting a compact set and then adding another compact set. If $p \in X \subset C_{\beta}$, we have

$$egin{aligned} Q^etaig(X \cup (Z_eta ackslash C_eta),\, pig) &= Qig(Q^aig(X \cup igcup_{i=1}^\infty K^i_eta \cup (Z_a ackslash C_a),\, pig),\, pig) \ &= Q(X \cup igcup_{i=1}^\infty K^i_eta,\, p) = X\,, \end{aligned}$$

by (ii). In particular, $Q^{\beta}(Z_{\beta}, p) = C_{\beta}$. Moreover, it follows from the definition of Z_{β} that $Z_{\beta} \subset Z_{a}$, $Z_{a} \setminus C_{a} \subset Z_{\beta} \setminus C_{\beta}$, and if $\zeta < \beta$, then $C_{a} \subset C_{\zeta}$, by (iii), whence

$$\emptyset
eq \bigcup_{i=1}^{\infty} K_{eta}^i = (C_{a} \cap Z_{eta}) \backslash C_{eta} \subset (C_{\zeta} \cap Z_{eta}) \backslash C_{eta}.$$

Case 2: β is limit. We define

$$Z_{eta} = \bigcap_{a \leq \beta} Z_a$$

and we see that Z_{β} is a G_{δ} -set. In order to prove that Z_{β} is an F_{σ} -set, let us observe that, given an ordinal $\alpha < \beta$, we have $Z_{\alpha} \setminus C_{\alpha} \subset Z_{\xi}$ for each $\xi < \beta$. Indeed, it follows from (iii) that $Z_{\alpha} \subset Z_{\xi}$ or $Z_{\alpha} \setminus C_{\alpha} \subset Z_{\xi} \setminus C_{\xi}$ provided $\xi \leqslant \alpha$ or $\alpha < \xi$, respectively. Thus $Z_{\alpha} \setminus C_{\alpha} \subset Z_{\beta}$ for $\alpha < \beta$. Condition (iii) also guarantees that f $\alpha < \xi < \beta$, then $C_{\xi} \subset Z_{\xi} \subset Z_{\alpha}$ and $Z_{\alpha} \setminus C_{\alpha} \subset Z_{\alpha} \setminus C_{\xi}$ whence $C_{\xi} \subset C_{\alpha}$. Thus the continua C_{α} ($\alpha < \beta$) form a decreasing sequence of type β , and therefore

$$C_{\beta} = \bigcap_{\alpha < \beta} C_{\alpha}$$

is a subcontinuum of Z_{β} . Since

$$Z_{\beta}\backslash C_{\beta}\subset\bigcup_{\alpha<\beta}\left(Z_{\alpha}\backslash C_{\alpha}\right)$$
,

it now follows that

$$Z_{eta} = \mathit{C}_{eta} \cup \bigcup_{lpha < eta} (Z_{lpha} ackslash \mathit{C}_{a}) \; ,$$

whence Z_{β} is an F_{σ} -set. If $p \in X \subset C_{\beta}$, we have

$$Q^{eta}ig(X \cup (Z_{eta} ackslash C_{eta}), \, pig) \subset Q^{eta}ig(X \cup (Z_{a} ackslash C_{eta}), \, pig) \ \subset Q^{a}ig(X \cup (C_{a} ackslash C_{eta}) \cup (Z_{a} ackslash C_{a}), \, pig) = X \cup (C_{a} ackslash C_{eta})$$

for $a < \beta$, by (ii). Thus we obtain

$$Q^{eta}ig(X \cup (Z_{eta} ackslash C_{eta}), \, pig) \subset \bigcap_{a < eta} [X \cup (C_a ackslash C_{eta})] = X \cup \bigcap_{a < eta} (C_a ackslash C_{eta}) = X$$
 ,

and the inverse inclusion also holds because

$$X = Q^{a}(X \cup (Z_{a} \setminus C_{a}), p) \subset Q^{a}(X \cup (Z_{\beta} \setminus C_{\beta}), p)$$

for $\alpha < \beta$. In particular, $Q^{\beta}(Z_{\beta}, p) = C_{\beta}$. Moreover, since diam $C_{\alpha} \ge d_{\alpha}$ $> d_{\beta}$, by (i), we get diam $C_{\beta} \ge d_{\beta}$, and if $\alpha < \beta$, then

$$\emptyset \neq (C_{\alpha} \cap Z_{\alpha+1}) \setminus C_{\alpha+1} = [C_{\alpha} \cap (Z_{\alpha+1} \setminus C_{\alpha+1})] \setminus C_{\alpha+1} \subset (C_{\alpha} \cap Z_{\beta}) \setminus C_{\beta}.$$

The sets Z_a being defined for $a < \gamma$, it remains to show that the non-connectivity index of Z_a at p is a. From (i) we get $nc(Z_a, p) \leq a$. If $\xi < a$, then $Z_{\xi} \setminus C_{\xi} \subset Z_a \subset Z_{\xi}$, by (iii), and

$$Q^{\xi}(Z_{\alpha}, p) = Q^{\xi}[(C_{\xi} \cap Z_{\alpha}) \cup (Z_{\xi} \setminus C_{\xi}), p] = C_{\xi} \cap Z_{\alpha},$$

by (ii). Hence $Q^{\xi}(Z_a, p) \neq C_a$, by (iii), and

$$\mathit{Q}^{\xi}(Z_{a},\,p)
eq \mathit{Q}^{a}(Z_{a},\,p)\;,$$

by (i). Consequently, $Q^{\xi}(Z_a, p) \neq Q^{\xi+1}(Z_a, p)$, and thus $nc(Z_a, p) \geqslant \alpha$.

§ 2. Pseudo-arcs on the plane. A function $\varphi \colon \{1, \dots, m\} \to \{1, \dots, n\}$ is said to be a pattern provided $|i-j| \leqslant 1$ implies $|\varphi(i) - \varphi(j)| \leqslant 1$ for $i, j = 1, \dots, m$. Let h be a positive integer. We shall say that a pattern φ is h-constant provided for each integer $i = 1, \dots, m$ there exists an integer $j \leqslant i$ such that $|i-j| \leqslant h$ and $\varphi(i) = \varphi(j+v)$ for $v = 1, \dots, h$. A continuum homeomorphic with the 2-simplex is said to be a disk. By a disk chain we shall mean a finite sequence (D_1, \dots, D_n) of disks D_i on the plane such that $D_i \cap D_j \neq \emptyset$ if and only if $|i-j| \leqslant 1$, and each intersection $D_i \cap D_j$ is either empty or a disk. A simple geometrical argument shows that if (D_1, \dots, D_n) is a disk chain and $\varepsilon > 0$, then there exists a positive integer h with the following property: for each h-constant pattern $\varphi \colon \{1, \dots, m\} \to \{1, \dots, n\}$ a disk chain (D_1, \dots, D_m) can be constructed such that

$$D_i' \subset \operatorname{Int} D_{g(i)}$$
, diam $D_i' < \varepsilon$

for $i=1,\ldots,m$. We point out that m here can be arbitrary, but if φ is h-constant, then $h\leqslant m$.

2.1. Theorem. If C is a chainable curve, then the product $C \times T$ of C by the Cantor ternary set T is embedable in the plane.

Proof. An embedding will be defined by means of some chains C(k) and disk chains $D(t_1, ..., t_k)$ where $t_i = 0$ or 2 for i = 1, ..., k. We shall construct these chains and disk chains by induction on k = 1, 2, ... Each chain C(k) will be a finite sequence of open sets in C(k) whose union is C(k); such chains composed of sets with arbitrarily small diameters exist by the assumption that C(k) is chainable. For a fixed positive integer C(k), all C(k) disk chains C(k), ..., C(k) will consist of the same number of disks, equal to the number of terms in C(k).

Let C(1) = (C) and $D(0) = (D^0)$, $D(2) = (D^2)$ where D^0 , D^2 are disjoint disks on the plane with diameters less than 1. Suppose that C(k-1) and $D(t_1, \ldots, t_{k-1})$ are already given where $k \ge 2$ is a fixed integer; we are going to construct C(k) and $D(t_1, \ldots, t_k)$. Denoting

$$C(k-1) = (C_1, ..., C_n)$$

we see that the boundaries of C_i and C_j are disjoint if |i-j|=1. It follows that if h is a positive integer and $(C_1', ..., C_m')$ is a chain of open sets in C whose union is C and whose diameters are sufficiently small, then there exists an h-constant pattern $\varphi \colon \{1, ..., m\} \to \{1, ..., n\}$ such that the closure of C_i' is contained in $C_{\varphi(i)}$ for i=1, ..., m. Let us choose h large enough, so that for each disk chain

$$D(t_1, ..., t_{k-1}) = (D_1, ..., D_n)$$

there exists a disk chain (D_1',\ldots,D_m') such that D_i' is contained in the interior of $D_{q(i)}$ and $\operatorname{diam} D_i' < 1/k$ for $i=1,\ldots,m$. We define C(k) be the chain (C_1',\ldots,C_m') just described with the additional requirement that $\operatorname{diam} C_i' < 1/k$ for $i=1,\ldots,m$. We then split the disk chain (D_1',\ldots,D_m') into two disk chains

$$D(t_1, ..., t_{k-1}, 0) = (D_1^0, ..., D_m^0),$$

$$D(t_1, ..., t_{k-1}, 2) = (D_1^2, ..., D_m^2)$$

such that

$$D_i^0 \cup D_i^2 \subset D_i'$$
, $D_i^0 \cap D_i^2 = \emptyset$

for i, j = 1, ..., m. Hence $D_i^u \subset \operatorname{Int} D_{q(i)}$ for i = 1, ..., m and u = 0, 2. This completes the construction of C(k) and $D(t_1, ..., t_k)$.

Now, we can define an embedding f of $C \times T$ into the plane. If $(c, t) \in C \times T$, we write

$$t = (0, t_1 t_2 ...)_3$$

where $t_i=0$ or 2 for i=1,2,... The point c belongs to either only one or two adjacent terms O'_j of the chain C(k). Let $F_k(c,t)$ be the union of corresponding terms $D_j^{t_k}$ in the disk chain $D(t_1,...,t_k)$. Thus diam $F_k(c,t)$ < 2/k, and $c \in C'_j \subset C_{q(j)}$ implies

$$D_j^{t_k} \subset D_{\varphi(j)} \subset F_{k-1}(c,t)$$
,

whence $F_k(c,t) \subset F_{k-1}(c,t)$ for k=2,3,... We see that the intersection of all compact sets $F_k(c,t)$ (k=1,2,...) is a point which we designate to be f(c,t). If (c,t) and (c',t') are two points of $C \times T$ sufficiently close to each other, we have $t_i = t'_i$ for i=1,...,k, and there is a term of C(k) containing both c and c'. Therefore the sets $F_k(c,t)$ and $F_k(c',t')$ have a point in common, and thus

$$\operatorname{diam}\left[F_k(c,t) \cup F_k(c',t')\right] < 4/k$$

whence the distance from f(e,t) to f(e',t') is less than 4/k. This yields the continuity of f. To see that f is 1-1, let us assume (e,t)

 \neq (o', t'). If $t \neq t'$, there exists an index k such that $t_k \neq t'_k$, and it follows from

$$F_k(c,t) \cap F_k(c',t') \subset \bigcup_{i,j} (D_i^{t_k} \cap D_j^{t_k'}) = \emptyset$$

that $f(c,t) \neq f(c',t')$. If t=t', we have $c \neq c'$, and since diameters of the sets C_i' from C(k) are less than 1/k, there exists an index k such that no adjacent terms of C(k) contain c and c'. Hence no adjacent terms $D_i^{t_k}$ and $D_i^{t_k}$ of $D(t_1, \ldots, t_k)$ are contained in $F_k(c,t)$ and $F_k(c',t)$, respectively. It follows that $F_k(c,t) \cap F_k(c',t') = \emptyset$ again.

2.2. If P is a pseudo-arc, then $P \times T$ is embedable in P.

Proof. By 2.1, there is an embedding f of $P \times T$ into the plane. Since the components of $f(P \times T)$ are the pseudo-arcs $f(P \times \{t\})$, the set $f(P \times T)$ is a subset of a pseudo-arc (see [2], p. 17).

§ 3. Componentwise universal sets. Given any collection E of subsets of a space X, we say that a set U is componentwise universal in E provided $U \in E$ and there exists a closed subset Y of X such that $U \subset Y$ and for each set $E \in E$ there exists a component C of Y such that E is homeomorphic with $C \cap U$.

3.1. If P is a pseudo-arc, then there exists a componentwise universal set in each Borel class $B_j^k(P)$ (j > 0).

Proof. It is known that there exists a set $U' \in B_j^k(P \times T)$ such that for each set $B \in B_j^k(P)$ there exists a number $t \in T$ such that

$$B \times \{t\} = (P \times \{t\}) \cap U'$$

(see [3], pp. 368–371). Let U=f(U') and $Y=f(P\times T)$ where f is an embedding of $P\times T$ into P, by 2.2. Since j>0, we have $U\in \pmb{B}_{i}^{k}(P)$. Moreover, the set $f(P\times\{t\})$ being a component of Y for $t\in T$, it follows that U is componentwise universal in $\pmb{B}_{i}^{k}(P)$.

3.2. If X is a compact metric space containing a pseudo-arc and U is a componentwise universal set in a Borel class $\boldsymbol{B}_{j}^{k}(X)$ (j>0), then

Sup
$$\{nc(U, u): u \in U\} = \Omega$$
.

Proof. Let Y be a closed subset of X such that $U \subset Y$ and the intersections of components of Y with U represent elements of $B_i^k(X)$. Since X contains a pseudo-arc, it follows from 1.2 that for each ordinal $\alpha < \Omega$ there exists a component C_a of Y and a point $p_a \in C_a \cap U$ such that $nc(C_a \cap U, p_a) = a$. Then we have

$$Q(C_{\alpha} \cap U, p_{\alpha}) \subset Q(U, p_{\alpha}) \subset C_{\alpha} \cap U$$

and consequently

$$Q^{i+1}(C_a \cap U, p_a) \subset Q^{i+1}(U, p_a) \subset Q^i(C_a \cap U, p_a)$$

for i=0,1,... Hence $Q^{\omega}(U,p_{a})=Q^{\omega}(C_{a}\cap U,p_{a})$ where ω is the least infinite ordinal. We conclude that if $\omega<\alpha$, then $nc(U,p_{a})=\alpha$ which completes the proof of 3.2.

Remark. According to 3.1 and 3.2, the pseudo-arc contains a G_{δ} -set, as well as an F_{σ} -set, which have uncountably many non-connectivity indexes. Since the pseudo-arc is a plane curve, this answers a question of P. S. Novikov (see [5], p. 370).

- § 4. Subsets of rational curves. We are now trying to find conditions which guarantee that all non-connectivity indexes of a space are less than a countable ordinal. A curve $\mathcal C$ is called $\mathit{rational}$ provided $\mathcal C$ admits an open basis whose elements have countable boundaries. The pseudo-arc is an example of a curve which is not rational.
 - 4.1. Theorem. If X is a separable metric space such that

$$\sup\{nc(X,x)\colon x\in X\}=\varOmega$$

and $A \subset X$ is a countable set, then

$$\sup \{ nc(Y, x) \colon Y \subset X \setminus A, x \in Y \} = \Omega.$$

Proof. Let $\{G_1,\,G_2,\,\ldots\}$ be a countable open basis in X. Let $x_a\in X$ be a point such that

$$nc(X, x_a) \geqslant a + a$$

for $a < \Omega$. In what follows we assume that a > 0 whence a + a > a. Then

$$Y_a = Q^{a+1}(X, x_a)$$

is a closed subset of X and $Q^{a}(X, x_{a}) \setminus Y_{a} \neq \emptyset$ for $a < \Omega$. Consequently, there exists a positive integer j(a) such that

$$G_{i(a)} \cap Q^a(X, x_a) \neq \emptyset$$
, $G_{i(a)} \cap Y_a = \emptyset$

for $\alpha < \Omega$. We take an integer k such that $j(\alpha) = k$ for $\alpha \in \mathfrak{A}$ where \mathfrak{A} is an uncountable set of countable ordinals. Suppose $\alpha, \beta \in \mathfrak{A}$ and $\alpha < \beta$. Then the set G_k meets $Q^{\beta}(X, x_{\beta})$ and G_k is disjoint with the set Y_a . Thus $Q^{\beta}(X, x_{\beta})$ cannot be contained in Y_a . Since $\alpha + 1 \leq \beta$, it follows that

$$Y_{\alpha} \neq Q^{\alpha+1}(X, x_{\beta})$$
,

and $Y_a \cap Q^{a+1}(X, x_{\beta}) = \emptyset$ because two quasi-components of the same order are either equal or disjoint. Moreover, we have

$$Y_{\beta} = Q^{\beta+1}(X, x_{\beta}) \subset Q^{\alpha+1}(X, x_{\beta})$$

whence $Y_{\alpha} \cap Y_{\beta} = \emptyset$. We see that $\{Y_{\alpha} : \alpha \in \mathfrak{A}\}$ is an uncountable collection of pairwise disjoint subsets of X. Since A is countable, there

exists an uncountable set $\mathfrak{A}' \subset \mathfrak{A}$ such that $Y_{\alpha} \subset X \setminus A$ for $\alpha \in \mathfrak{A}'$. But $\omega \leq \gamma$ implies

$$Q^{\gamma}(X_a, x_a) = Q^{a+\gamma}(X, x_a),$$

and therefore $nc(Y_a, x_a) \geqslant a$ if $\omega \leqslant a \in \mathfrak{A}'$. The set \mathfrak{A}' being uncountable, we infer that the least upper bound of the ordinals $nc(Y_a, x_a)$, where $a \in \mathfrak{A}'$, is Ω .

4.2. If C is a rational curve and $X \subset C$, then

$$\sup \{ nc(X, x) \colon x \in X \} < \Omega.$$

Proof. Since C is rational, there exists a countable set $A \subset C$ such that $C \setminus A$ is 0-dimensional. Then every non-degenerate set $Y \subset X \setminus A$ has nc(Y, y) = 1 for $y \in Y$, and 4.2 follows from 4.1.

References

- R. H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J. 15 (1948), pp. 729-742.
- [2] H. Cook, On the most general plane closed point set through which it is possible to pass a pseudo-arc, Fund. Math. 55 (1964), pp. 11-22.
- [3] K. Kuratowski, Topology, vol. I, New York 1966.
- [4] A. Lelek, On quasi-components, Proc. Prague Topological Symp. 2 (1966), pp. 239-240.
- [5] А. Д. Тайманов, О квазикомпонентах песвязных мноэкеств, Mat. Sb. 25 (1949), pp. 367-386.

Reçu par la Rédaction le 16. 12. 1968