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On the topology of curves I

by
A. Lelek (Warszawa)

By a cwrve we mean a 1-dimensional compact connected metric
space. Thus all curves are non-degenerate continua. Although a theory
of curves had Dbeen established at the early stage of set-theoretical
topology by Karl Menger and P. 8. Urysohn, some set-theoretical aspects
of the theory seem to be far from heing explored. Among them are various
cardinality problems concerning topological structure of curves and their
subsets. For non-compact subsets a classification relevant to connectivity
properties had been elaborated by A. D. Taimanov [5]. A countable
ordinal which we call the non-connectivity index of a space (see § 1)
indicates the level on which quasi-components become compouents of
4 given point. Solving a problem raised by P. S. Novikov (see § 3) we
show that there exists a plane G;-set whose non-connectivity indexes
are arbitrarily high. This is done by constructing a subset of a pseudo-are,
and we use a result of Howard Cook [2] to prove that an uncountable.
compact bundle of psendo-ares is embedable in a pseudo-arc itself (see § 2).
On the other hand, it is shown (see § 4) that non-connectivity indexes
of a subset of a rational curve are bounded by a countable ordinal. The
results of the present paper were partially announced in [4].

§ 1. Non-connectivity indexes. Let us recall that the quasi-component
@ (X, z) of a topological space X at a point # ¢ X is the intersection of
all closed-open subsets of X that contain z. We write %X, z) = X, and
we use a transfinite induction to define Q%(X,x) for each ordinal a,
namely
QX 2) = Q(Q"(X, ), o
and

QA(er) = ¢%(X, x)

a<i

for limit 4. The set Q°(X, #) is said to be the guasi-component of order

of the space X at the point #. Observe that Q*(X, ) is a closed subset

of X, and therefore the decreasing transfinite sequence
PX,2)2QX,)D...00%X,2)D ..
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must have a term Q*(X, #) which is equal to the next term QX , g,,)
This means that @*(X, #) is connected, and Q%X ) = Q™X, &) for all
ordinals > a. We call the ordinal

n6(X, #) = Min{a: Q(X, ) = @YX, x)}

the mon-connectivity indew of the space X at the point . Clearly, the
quasi-component of order ne(X,®) of X at @ coincides with the com-
ponent of X to which # belongs. All spaces examined here will be separable
metric, and thus we shall always have n¢(X,; z) < 2 where Q stands for
the least uncountable ordinal. )

Our first deal is to construct some examples of spaces with a given
preseribed non-connectivity index o < 2 at a point. Such examples are
well-known (see [5], p. 369) but we require an additional property: all
of them should be embedable in the pseudo-arc. A curve P is said to be
a pseudo-arc provided P is hereditarily indecomposable and chainable.
A curve C is called chainable provided O admits finite open covers whose
elements have arbitrarily small diameters and whose nerves are ares.
A theorem of R. H. Bing says that pseudo-arcs are homeomorphic to
each other. By a continuwum we mean a compact connected metric space,
and the union of all proper subcontinua of a continnum X which contain
& given point is said to be a composant of X. A composant of a continuum X
is & dense subset of Y. If X is an indecomposable continuum, then X has
uncountably many composants and they are pairwise disjoint. If ¢,, Ciyvee
are closed subsets of a compact metric space X, we write Cy = Lim C;
provided C; converge to €, in the space 2% of closed subsets -of X, the
topology in 2% being generated by the Hausdorff distance (see [3],
P. 214).

L1 If P is a pseudo-arc and P’ is a proper subcontinuwum of P, then
there ewist continua K C P\P such that P’ = Lim K"

Proof. If P'is degenerate, 1.1 trivially holds. We can assume that P’
is non-degenerate. Let U and V be non-empty open subsets of P whose
closures are disjoint. Since each composant of P intersects hoth U and V. ,
we can find an infinite sequence €, C,, ... of subeontinua of P\(TuvT)
such that each C; intersects the boundaries of U and ¥, and for ¢ % j
the continua C; and C; are contained in different composants of P. The
space 2F being compact, this sequence must have a subsequence Oy,
O ... which converges to a continuum ¢,C P\(TU v V). Clearly, 0, also
intersects the boundaries of U and V, whence C, is a non-degenerate
proper subcontinuum of P, Thus there exists a homeomorphism # of P
onto itself such that P’ = h(C,) (see [1], p. T41).

We claim that ¢, can meet only one of the continua Cry. Suppose
on the contrary that ¢, meets both O and Cr; where kg 5= k;. Since P
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is indecomposable, neither ¢, u Cr; nor 0, w Ci; is P. By the same reason,
we then have

P;ﬁ OOU O];'-U Gki
which implies that ¢, and Ci; are contained in one composant of P
contrary to the definition of (;. Hence there exists a positive integer Jo
such that Cr; C P\(, for j> Jo- It follows that the continua

K= MOya) (1=1,2,..)

satisfy thekconditions required in 1.1, and 1.1 is proved.

Let Bj(X) denote the j-th Borel class (§=0,1, ...), countable-ad-
ditive when %= 0, and countable-multiplicative when & = 1, of subsets
of X. Thus, for instance, the elements of BYX) are all F,-sets in X, and
the elements of Bi(X) are all G,-sets in .

1.2. THEOREM. If P i§ a pseudo-arc and » e P, then for each ordinal
a < £ there exists a set Z,C P such that

P €ZacBi(P)~nBYP), nc(Zayp)=a.

Proof. We construct Z, inductively for a < y where y < Q is a fixed
ordinal. Let d,> 0 be a real number for « <y, such that d, < diam P
and ds < do for « < g < y. The F,-Gs-sets Z, C P will contain p and will
satisty the following conditions.

() If @« <y, then Q“(Z., p) = C, is & continuum with diam Coz=d,.

(ii) If <y and p e X C (,, then QX v (ZN\Cw), p) = X.

(iif) If a < § < y, then Z; C Z,, Z\0a C Z\Cp, and (o ~ ZN\C; = 0.

We put Z, = P and suppose that we are given an ordinal § < y such
that Z, are defined for a < f. To define Zp, two cases shotuld be dis-
tinguished.

Case 1: # is not limit. Then there exists an ordinal « such that
B = a+1. Bince 0 < ds < d, < diam O, the eontinuum C, is a pseudo-are
containing p, by (i), and there clearly exists a proper subcontinuum
CsC Co containing p with diam 053> d;. Let K5 C ONC; be continua
such that Cp = LimKj, according to 1.1. We define

Zp = (Z\Ca) v Cp v | | K}
i=1
and we see that Zy is an Fy-Geset because it is obtained from the
FoGsset Z, by subtracting a compact set and then adding another
compact set. If p e X C 05, we have

VX (2N, 2] = Q@(x © [ KF © (200, 3), 9)

= Q(XuiglK;,ﬁ) =X,
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by (ii). In particular, o (Zg, p) = Cy. Moreover, it follows from the de-
finition of Z; that Z; C Z,, Z.\CoC Zp\ Cp, and if { < f, then C.CC,,
by (iii), whence

o Ej= (O n Z\Cp C (Cp n Z\Gs -

Case 2: f is limit. We define

Zy= () Za

a<f

and we see that Z; is a @s-set. In order to prove that Zy is an F,-set,
let us observe that, given an ordinal a < §, we have Z\C.C Z; for each
& < p. Indeed, it follows from (iii) that Z, C Z or Z\C.C Z\Cs provided
E<{a or a<<§, respectively. Thus ZN\C.C Z; for a < f. Condition (iii)
also guarantees that f ¢ <& < g, then C;CZ:CZ, and Z\0.C Z\C:
whence C¢C C,. Thus the continua C, (a < ) form a decreasing sequence
of type p, and therefore

0ﬁ=ﬂ C.

a<f

is a subcontinuum of Z;. Since

ZNCp C ag& (ZN\CD)
it now follows that
Zﬁ = Gﬂ W U (ZE\CQ) )
a<f

whence Zg is an F,-set. If p e X C 0p, we have
P(X v (ZN0), 1) CYP(X © (ZN\C), )
CRX v (ONCp) v (ZN\Ca), p) = X U (0NCy)
for a < g, by (il). Thus we obtain
@~ (ZNG), p) C [ LX< (CNC)] = X v [} (CNCp) = X,
and the inverse inclusion also holds Dbecause
X = Q%X © (Z\Ca), p) CQUX © (ZNCh), p)

for a< ﬁ..In particular, Qﬁ(Z,;, p)= Cs. Moreover, since diamC,> da
> dg, by (i), we get diam Cp > dy, and if a < §, then

0 # (Can Za+1)\0a+1 = [Cun (Zu+1\Ua+1)]\Ca+1 C(Canrn Zﬁ)\aﬁ .
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The sets Z. being defined for « < y, it remains to show that the
non-connectivity index of Z, at p is a. From (i) we get ne(Z., p) < a.
If &< a, then Z\C:C Z.C Zg, by (ili), and

Q(Ze, p) = QT(Ce A Za) © (ZNCe), Pl = O 0 Za,
by (ii). Hence Q(Za, p) # Cx by (ifi), and
Q(Zay 1) # Q(Zes )
by (i). Consequently, Q‘E(Za,p) # QH‘(Za,p), and thus ne(Z,, p) = a.

§ 2. Pseudo-arcs on the plane. A function ¢: {1,...,m}—>{1,..., 2}
is said to be a pattern provided |i—j| <1 implies |p(i)—e(j)| <1 for
4,j=1,..,m. Let h be a positive integer. We shall say that a pattern ¢
is h-constant provided for each integer ¢ = 1, .., m there exists an
integer j < ¢ such that [{—j| <k and ¢(i)=¢@(j+v) for v=1,.., %
A continuum homeomorphic with the 2-simplex is said to be a disk.
By a disk chain we shall mean a finite sequence (Dy, ..., Dn) of disks
D; on the plane such that D; ~ D;s @ if and only if [i—j| <1, and
each intersection D; ~ Dj is either empty or a disk. A simple geomet-
rical argument shows that if (D, ..., D) is a disk chain and &> 0,
then there exists a positive integer » with the following property: for
each %- constant pattern g: {1, ..., m} {1, ..., n} a disk chain (D1, ..., Dpn)
can be constructed such that

D;CIntDyy, diamD;<se

for ¢=1, ..., m. We point out that m here can be arbitrary, but if ¢ is
h-constant, then A < m. )

2.1. THEOREM. If C is a chainable curve, then the product C xT of €
by the Cantor ternary set T s embedable in the plane.

Proof. An embedding will be defined by means of some chains C (k)
and disk chains D (¢, ..., {z) where &= 0 or 2 for ¢=1, ..., k. We ghall
construct these chains and disk chains by induction on k=1,2, ..
Each chain C(k) will be a finite sequence of open sets in ¢ whose union
is C; such chains composed of sets with arbitrarily small diameters exist
by the assumption that € is chainable. For a fixed positive integer %,
all 2% disk chains D(f, ..., %) will consist of the same number of disks,
equal to the number of terms in C(%).

Let C(1)=(¢) and D(0)= (D%, D(2)= (D* where D’ D* are
disjoint disks on the plane with diameters less than 1. Suppose thab
C(k—1) and D(ty, ..., tx—1) are already given where k>2 is a fixed
integer; we are going to construct C(k) and D(%, ..., &). Denoting

Ck—1)= (Cy, ..., On)
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we see that the boundaries of C; and C; are disjoint if [i—j| = 1. It follo

that if h is a positive integer and (€4, ..., Cp) is a chain of open sets ng
WIT}OSG union is € and whose diameters are sufficiently small, then there
exists an h-constant pattern ¢: {1, ..., m} {1, ..., n} sueh that th
closure of (; is contained in Cyy for ¢ =1, oy M. Let us choose % lar .
enough, so that for each disk chain e

Dty .., tema) = (Dy, ..., Dy)

’.cherg exists a disk chain (D, ..., D},) such that D; is contained in th,
interior of Dy and diamD; < 1/k for i=1, ..., m. We define C(k) i)e
the O]li.hin (C1, ..., On) just deseribed with the additional requiremeni
T-hf‘):t diam Gf€<1/k for i=1,..,m We then split the disk chai
(D1, ..., Dy) into two disk chains e

D(zly ey tk‘—lﬁ O) = (-D(lli ey Dgn) 3

Dty ooy ta, 2) = (D3, ..., D)
such that

DivDiCD;, D'nDi—o0

for ¢ j—-‘ = 1, ym Hence D"! C Int.D for ¢ = nd = 2] 18
3 M . * i 14 p1) TOT 4 = 3 ey MoADA W 0, ¢ i
completes the COILStIHCthD of C(I\) and D(tl} ey t};) o ’
J.JOW, we can dEfl'ne an Gn]l')eddinc‘ 0} . . i he
f [0} xT g ] DL
(0: t) e >(17 we wri ad f 0 ane. If

t= (0, tyts...),

where #; = 0 or 2 for 4 =1, 2 Th i i '
here : L3 2, ... The point ¢ belongs to either only one
or two adJ:acent termstkqj of the chain C(k). Let Fy(c, t) be the 1111{011 of
corresponding terms D in the disk chain D(t,, ..., &). Thus diam Frle, t)
< 2[k, and ¢ e 0} C Oy, implies ’

1;
Dil'k c ‘D‘P(?') CFIJ*I((U 1),

:)vfhexﬁee File, 1) CFys(e,t) for k= 2,3, ... We see that the intersection
o %e fe((zmtpaﬁ se:!ts File, t), (Ic’= 1,2,..) is a point which we designate
et ;1) If (¢, 1) and (¢ ,It ) alje two points of ¢ x7 sufficiently close

qu _other, Wwe have t; = ¢; for i =1, ..., k, and there is a term of C(k)
c.ontz‘umn?g both ¢ and ¢'. Therefore the sets File, t) mnd Frle', t') 1 (
& point in common, and thus o ML) Rave

diam[Fy(e, 1)  Fi(o, t')] < 4/k

witlegscet li;he disﬁa,n.ce from f(e,2) to f(¢’,t) is less than 4fk. This
yiel e continuity of f. To see that f is 1-1, let us assume (e, 1)
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(¢, 1), I t1, there exists an index % such that # + tk, and it
follows from
Fule, 1) nFuld', ) C | (DF n D) =0
i

that f(e, t) = (¢, ). If t =1, we have ¢+ ¢/, and since diameters of
the sets O from G(k) are less than 1/k, there exists an index k such that
no adjacent terms of C(k) contain ¢ and ¢’. Hence no adjacent terms
D¥ and D¥ of D(t,,...,t) are contained in Fi(c,?) and Fi(c',1), re-
spectively. It follows that Fi(c, ) ~ Fi(c’, ') = O again.

2.2. If P is a pseudo-arc, then P xT is embedable in P.

Proof. By 2.1, there is an embedding f of P xT into the plane.
Since the components of f(P x7T) are the pseudo-arcs f(P x {t}), the
set f(P xT) is a subset of a pseudo-arc (see [2], p. 17).

§ 3. Componentwise universal sets. Given any collection E of subsets
of a space X, we say that a set U is componentwise wuniversal in E
provided U ¢ E and there exists a closed subset ¥ of X such that UC Y
and for each set F ¢ E there exists a component ¢ of ¥ such that H is
homeomorphic with ¢ ~ U.

3.1. If P is a pseudo-arc, then there exists a componentwise universal
set in each Borel class BE(P) (j > 0). T

Proof. It is known that there exists a set U’ eB;“(P xT') such that
for each set B er(P) there exists a number f e T such that

Bx{f}=(@x{HnT
(see [3], pp. 368-371). Let U=f(U’) and ¥ = f(P xT) where fis an
embedding of P xT into P, by 2.2. Since j> 0, we have U « BY(P).
Moreover, the set f(P x {}) being a component of ¥ for ¢e T, it follows
that U is componentwise universal in B(P).
3.2. If X is a compact metric space containing a pseundo-arc and U is
a componentwise universal set in a Borel class BYX) (j > 0), then

Sup{ne(U,u): ue Ut =20.

Proof. Let ¥ be a closed subset of X such that U C ¥ and the inter-
sections of components of ¥ with U represent elements of BJ(X). Since X
containg a pseudo-arc, it follows from 1.2 that for each ordinal a<
there exists a component O, of ¥ and a point pe e Co~ U such that
ne(Ce ~ U,y po) = a. Then we have

Q(Can U, po) CRUU,p)CCun T
and consequently
QO U, ) CQ™TU, p) CQY(Ca T, p0)
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for i=10,1,.. Hence @(U,p.) = Q“(Can U, p.) where w is the least
infinite ordinal. We conclude that if o < a, then ne(U, pa) = a which
completes the proof of 3.2.

Remark. According to 3.1 and 3.2, the pseudo-arc contains a Gs-set,
as well as an F,-set, which have uncountably many non-connectivity
indexes. Since the pseudo-arc is a plane curve, this answers a question
of P. 8. Novikov (see [5], p. 370).

§ 4. Subsets of rational curves. We are now trying to find conditions
which guarantee that all non-connectivity indexes of a space are less
than a countable ordinal. A curve € is called rational provided € admits
an open basis whose elements have countable boundaries. The pseudo-arc
is an example of a curve which is not rational.

4.1. TurorEM. If X 4s a separable metric space such that
Sup{nc(X, z): 2eX}=20
and A C X is a countable set, then
Sup{nc(Y,s): YCX\4, 0e ¥}=0.

Proof. Let {¢, G,, ...} be a countable open basis in X. Let @, e X
be a point such that e ’ .

ne{X, ma)‘ > a+ta
for a < Q. In what follows we assume that ¢ > 0 whenee a+a > a. Then
Yo= Q" (X, &)

is a closed subset of X and Q%X Ba)\Yeo # @ for a < 0. Consequently,
there exists a positive integer j(a) such that
G N Q(X,2) # 0, Gy Yo=0

for a < 2. We take an integer % such that Jla) =k for a ¢ A where ¥ is
an uncountable set of countable ordinals. Suppose a, f <A and a < f.
Then the set Gy meets Qﬁ(X » @) and Gy iy disjoint with the set Y,. Thus
(,),ﬂ(X,mp) cannot be contained in ¥,. Since a1 < B, it follows that

Yo QX ),

+1 N ’
and Yo Q*"YX, 2) = @ Decause two quasi-components of the same
order are either equal or disjoint. Moreover, we have

Yp= Q"X 25) CQ*"(X, )

whence Y, ~ ¥ = @. We see that {¥Ya: @ €U} is an uncountable
collection of pairwise disjoint subsets of X. Since 4 is countable, there

©
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exists an uncountable set % CQ such that ¥,C X\ 4 for a<A’. Dut
o < y implies
Qv( Yﬂa Ta) = Qa+r(x; )

and therefore ne(Ya, 2.) = ¢ if © < ¢ ¢ W. The set A’ being uncountable,
we infer that the least upper bound of the ordinals me(Y., z.), where
ae, is 0. '

4.2. If C 48 a rational curve and X C C, then

Supfne(X, w): o eX}< 0.

Proof. Since ( is rational, there exists a countable set A C ¢ such
that O\4 is 0-dimensional. Then every non-degenerate set YCcx\4
has ne(Y,y) =1 for y ¢ ¥, and 4.2 follows from 4.1.
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