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Remarks on some class of
continuous mappings of i-dendroids

by
J. J. Charatonik

A metric compact continunm is said to be a dendroid if it is heredi-
tarily unicoherent and arcwise connected. It follows that it is hereditarily
decomposable (see [2], (47), p. 239). A hereditarily unicoherent and
hereditarily decomposable continuum is called a A-dendroid. Note that
every subcontinuum of a A-dendroid is also a 2-dendroid.

It is proved in [4], Corollary 2, p. 29 that for every A-dendroid X
there exists a unique decomposition D of X (called the canonical de-
composition):

) X = {8l deA(X)}
sach that

(i) D is upper semicontinuous,

(ii) the elements Sz of D are continua,

(iii} the hyperspace 4(X) of D is a dendroid,

(iv) D is the finest possible decomposition among all decompositions
satisfying (i), (ii) and (iii).

The elements Sz of D are called strata of X. The monotone mapping ¢
of X onto A(X) defined by
2 pHd) = Sa
is ealled canonical.

Let X and Y be A-dendroids, ¢ and y their canonical mappings
onto dendroids 4(X) and, 4(Y) respectively. Continuous mappings of X
into ¥ will be considered in this paper such that they take every stratum
of X into a stratum of ¥. Denote the class of all such mappings by C.
Thus, by- definition, a mapping

fi X%
of X into Y belongs to € if and only if for every point d e 4(X) there
exists a point 4’ ¢ 4(Y) such that

3) Flo~(@) Cy(d) .

for deA(X)
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The following property can be immediately seen from the above
definition: ‘ )

ProvERTY 1. If X, Y and Z are A-dendroids, if fuond fy ave continu-
ous mappings of X into ¥ and ¥ into Z respeciively, f, and f, both being
i C, then f=fof, maps X into Z and feC.

Observe now that the decomposition D of a A-dendroid X into its
strata, or the eanonical mapping ¢ of X onto 4 (&), defines an equivalence
relation on .X: two points of X are in the velation if they belong to the
sa&pe stratum of X, or—in other words—if they are mappefi in the same
point of A(X) under ¢. Thus it follows from Theorem 7.7 in [7], p. 17
and from the definition of the class C of mappings that for every mz@pinn
f: X ¥ in G there exists one and only one mapping ¢ (called the nmvppinz
indnced by f) of A(X) into 4(Y) such that .

() glp@) =yp(f@) forzeX,
Le. that the following diagram commutes:
) S SN, 1

(5) ? l,,,
\

X)) ————A(X)

PROI’EFTY 2. If a continuous mapping f of o A-dendroid X into
a Z—(Z("I‘I(ZT(J'Z{I X belongs to C, then the induced mapping g of A(X) into 4(Y)
8 continuous. .C-’mmerseh s i f 18 continuous and if there exists a mdppmg g
ie'u(fh that the diagram (5) commules, then f belongs to C and g is the mapping
induced by f. o '
- HIn fact, the first part of the property follows from Theorem 4.3
i [7], p. 126. The second one is a consequence of the previously guoted
Theorem 7.7 ([7], p. 17) )

) PrOPERTY 3. If f is @ monotone mapping of @ A-dendroid X onto a con-
tinwum ¥, then Y is a A-dendroid and feC.
Infl%d, the first part of the property is obvious (besices, it is

a particular conclusion from a more general theorem which says that
a confluent image of a 1-dendroid is a A-dendroid (see [3], Theorem XIV,
D- 217 and Theorem V; p. 214). To prove the second part, that feC
obseTv.e tha"t the superposition ¢f is a monotone mapping of X into 4 (Y)7
and it implies that the mapping g of A(X)into A(X¥) exists and satisties (4)
by Theorem 7 in [4], p. 29. Therefore f e C by Property 2.

. .We conclude also from Theorem 7 ([4], p. 29) that g is monotone
if f is. The inverse is not true: g may be monotone and f need not, as it
ean be seen by the following example. ,
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Let X Dbe the closure of the set of all points (z,y) in the plane for
which

(6) Y = sin% and 0 <|z] <1,

i.e. the closure of the graph of the function defined by (6); let X he the
closure of the graph of the same function for 0 < a <1, and f—the
mapping of A onto I defined by

O,y ifa<

0!
zy) Hez0,

: (

j((“”; L’/)) = {(
i.e. for the left half of X the mapping f is the projection parallel to a-axis
onto the straight segment [—1,1] of y-axis, and for the right half of X
f is the identity. The canonical mappings ¢ and p are simply projections
parallel to y-axis and the hyperspaces 4(X) and A (Y) are the segments
[—1,1] and [0,1] of x-axis vespectively. Thus g: AX) - 4(Y) is
"defined by

0,0 if 20

!j((“”, 0)) _ l\ .7 ) : vqﬂ ’

\,0) ifwxo0,

and we see that g is monotone while f is not.
If X is arcwise connected (i.e. a dendroid), then also ¥ is, as a con-
tinuos image of X under f, and the canonical mappings ¢ and y are

identities (see [4], (2.25), p. 22). In this case we may put X = (X)
and ¥ = 4(¥), so that g can be taken simply as f. Therefore Property 2
implies

ProPERTY 4. The class € contains all continuous mappings of dendroids
inlo dendroids. :

The hypothesis on arcwise connectedness of X is essential in the
above property because the projection of the continuum X in the previous
example onto the limit segment, i.e. the mapping defined by

flw,9)=(0,9) for (w,y)eX

is an interior mapping of the irreducible continuum X onto an arc and
does not belong to C.

Recall that a A-dendroid X is said to be monostratiform if it consists
of only one stratum, i.e. if the hyperspace 4(X) of the canonical de-
composition D is just a point (see [6], p. 933; an example of 2 monostrati-
form A-dendroid is given in [5]). It follows immediately from the de-
finitions that if a A-dendroid Y is monostratiform, then an arbitrary
continnous mapping of & A-dendroid into ¥ Dbelongs to C. So we have
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ProPERTY 5. The class C contains all continuous mappings of i-den-
droids into monostratiform ones.

Similarly, if X is a monostratiform 1-dendroid and if a surjection f
from € maps X onto a A-dendroid ¥, then ¥ must be monostratiform,
Hence

PROPERTY 6. Monostratiformity of A-dendroids is am mvariant under
mappings belonging to C. ‘

In particular, we have by Property 3

PROPERTY 7. Monostratiformity of A-dendroids is am inoariant under
MONOLONe Mappings. ’

Dr. J. B. Fugate has asked the following question, an answer to which
is still unknown: is monostratiformity of i-dendroids an in-
variant under confluent or interior mappings?

Recall further, that a A-dendroid X is said to be hereditarily stratitied
if it contains no non-trivial monostratiform subcontinuum, i. e. such that
the only monostratiform 1-dendroids contained in X are points (see [6],
- 933). One can ask if the property of i-dendroids “to be hereditarily
stratified’’ is an invariant under mappings belonging to the class C. The
answer is negative: there exist a hereditarily stratified 1-dendroid Z and
a monotone mapping f of Z onto the monostratiform Z-dendroid X
deseribed in [5]. Namely Z is created from X simply by replacing every
separating point of X by an arc. It can be done in the following manner.
As we know from [5], (37), p. 81, the set § of all separating points of X
is countable. Let {s,} be a sequence of all points of 8. Replace each s, ¢ §
by an arc L, with

limé(Ly) = 0.
Nn—>00

It is easy to see that the continuum Z obtained in this way is

a hereditarily stratified A-dendroid. Define the mapping f of Z onto X by

Fra= i o de=
a point, if zeX\S.
Thus f maps monotonously Z onto X which is monostratiform.
The following lemma generalizes Lemma 2 in [6], p. 932 from
monotone mappings to mappings belonging to €. The proof is very similar
to the proof of that Lemma 2 given in [6].

Levms. For every mapping h e G of & A-dendroid X onto h(X)CX

there exists a stratum of X which containg its image.

Proof. Let X be a A-dendroid, ¢ its canonical mapping onto a den-
droid 4(X), h—a mapping of X belonging to the class C such that
B(X)C X and finally let D = q)(h(X)) C4(X). It follows from Lemma 1
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in [6], p- 932 that @|h(X) is monotone, thus it is in C by Property 3.
Putting

(7) f=(pl(X)n

we see that f e C by Property 1. Since D is a dendroid as a subcontinuum
of the dendroid 4(X) ([2], (49), p. 240), it can be taken as its own de-
composition space of the canonical decomposition, with the identity v as
the canonical mapping. For simplicity, » will be omitted in the fu_}'ther
considerations. Applying Property 2 we see that a continunous mapping g
exists of 4(X) onto .D with

(8) glp@) = flw) for every we X,

i.e. such that the following diagram is cemmutative:

X —tspIx)cx

) ~I L,,lh(X)
~ |
L 4
A(X)———>D C 4(X)

in which all mappings are continuous, onto, and belong to C. .

Since dendroids have fixed point property with respect to. all contu%u—
ous mappings (see [1], Theorem 2, p. 17), henccf, there e:lmts a point
dy e 4(X) such that g(do) = d,. Consider an arbitrary point z of the
stratum Sg, = ¢~ dy). Thus ¢(x) = d, and, b.y (8_), g(dy) = f(x), whence
dy=f(z), i.e. dy= (plh(X)){h(z)) Dy (7). It implies that

hi@) € (gl 7 (X)) 7 (do) = ¢ (do) ~ LX) C g7 (do) = S -

So we have proved h(z) e 8g, and thereby h(8g,)C Sg, which com-
letes the proof. ) -
P Consider now a subclass Gy, of the class C defined as follows: a mapping f
of a A-dendroid X into a A-dendroid Y is in Cp if and.only if f belongs
to C hereditarily. In other words, feCy if and only 1f_ fqr every sub-
continuum K of X the partial mapping flK: K ~>f('K) I,S in G.. o

Since for every subcontinuum K of a }»—dendrmd.i and for every
monotone mapping f of X the partial mappi{lg f!]x is also monptone
(see [6], Lemma 1, p. 932), hence Property 3 implies v

PROPERTY 8. The class Cp, contains all monotone mappings of A-dendroids.

Every subcontinuum' of a dendroid being a dendroid (see [2], (49),
p. 240), Property 4 implies _

ProPERTY 9. The class Cn contains all continuous mappings of den-
droids into dendroids.
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One can ask if it is possible to prove in the same way—using Property 5
instead of Property 4 that Cn contains all continuous mappings of Z~dén-
droids into monostratiform ones. The answer is negative because the
monostratiformity is not a hereditary property. Moreover, every A-den-
droid contains a subeontinuum K which is not monostratiform. Namely
every A-dendroid has two terminal points (see [10], Theorem 3.4, p. 192) ‘
» and ¢, so the unique irreducible continnum from p to ¢ can be taken
as K because strata of K coincide with tranches of K (see [4], (2.24)
p. 22) and K contains infinitely many tranches since it is of type 1 (see [".‘:]7
(1.4), p. 15 and Theorem 1, p. 16). It is easy to find a Gontiuuou;* '
mapping of the monostratiform 4-dendroid X desecribed in [5] onto itselt
which is not in Cp.

TrEOREM. Let X be @ A-dendroid and b « continuous mapping of X
into itself, such that heCy,. If

(9)  every nondegenerated monostratiform A-dendroid M contained in X
such that h(M) = I contains a proper subcontinuum I which goes
into itself under h,

then X has fived point property with respect to the class Cy,.
- Proof. Using Lemma 3 in [6], p. 933 it is sufficient to find a trans-
iinite sequence of continua K, (e« < Q) of X such that

(10) B < o implies K,C K,

(11) it p <« and K is not a point, then K, = K,

(12) hME)CH, for every a< 8.
Put
Ly=X
and assume we have defined continua K, satistying (10), (11) and (12)
for all f < a. Now we shall define K,. ' :

If «=p-+1, consider two cases. If K, is not monostratiform, we
detine K, to be a stratum S of K which contains its image by the Len;mn.
It Ky is monostratiform, then either 4 {X,) is a proper subset of Kp or not.
If 7(Kpy) £ K; then we put

K, = h(Ky) .

If h(Kj) = Kj then either it is a point—thus a fixed point, or it is
nondegenerated. Taking Kj as M in (9) we define

K,= K.

Tt is readily seen that in all these cases K, satisfies (10)—(12).
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Finally, let « Le a limit ordinal, o= Lim f. Putting
f<a

K,= (w K

f<a

we see that (10) and (11) ave fulfilled by definition. To prove the inclusion

in (12) let us observe that
h(Ka) = h(() Kg) C ) W(Ep).
f<a p<a
Since k(L) C Kz for f < o by the induction hypothesis, we have
S N ME) C ) Ey= Ea,
B<a B<a

whenee (12) follows. So K, are well-defined for all ordinals « << £ and
the proof is finished.

Observe that (9) trivially holds in a particular case when X contains
no nondegenerated monostratiform A-dendroid, i.e. when X is hereditarily
stratified. Thus the theorem implies

COROLLARY 1. Hwery hereditarily strotified A-dendroid has fized point
property with respect to the class Cp.

Further, it follows from the above corollary and from Property 8
that (see [6], Theorem, p. 934).

COROLLARY 2. Hvery hereditarily stratified A-dendroid has fimed point
property with respect to monotone mappings.

The theorem and Corollary 1 partially generalize some other fixed
point theorems proved by several authors—see [1], [8] and [9], especially
by Ward, [11], and Young, [12] and [13].
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A fixed point theorem for continua
which are hereditarily divisible by points

by .
L. Mohler * (Warszawa)

1. Introduction. Tt has been conjectured (1) that a continuum which
is hereditarily divisible by points (that is, a continuum each of whose
non-degenerate subcontinua has a cutpoint) has the fixed point prop-
erty. The main result of this paper (?) is a special case of this con-
jecture. Specifically, it will be shown that if H is a continuum which is
hereditarily divisible by points and (H) 5 oo, then H hag the fixed.point
property. By v(H) we denote the degree of non-local connectedness of H
defined by Charatonik in [1](®). This result generalizes the well known
theorem (see [5] and others) that trees have the fixed point property,
since (as is observed below) a continuum H is a tree if and only if H
is hereditarily divisible by points and z(H) = 0. In the course of
proving the main theorem we also prove a fixed point theorem (*)
which is the generalization to the non-metric setting of a theorem of
Young [7].

2. Preliminaries. This section is devoted to a number of prelim-
inary results which will be needed in the proof of the fixed point
theorem mentioned in the introduction. The main theorems of the section
are generalizations of theorems due to. Charatonik [1] and Young [7].

2.1. Degree of non-local connectedness. In [1] Charatonik defines the
degree of non-local conmectedness 7(H) of a hereditarily unicoherent
metric continnum H and proves a number of properties of v(H). All
of the main results of his paper generalize to the non-metric setting

* The research constitutes a part of the authors doctoral dissertation at the
University of Oregon. The author wishes to express his sincere gratitude to Professor
L. E. Ward, Jr. for his advice and guidance thronghout the period during which this
research .was conducted.

(*) The conjecture is due to Knaster.

' (3 Theorem 3.27 below.

(*) Numbers in square brackets refer to the bibliography at the end of the paper.

(*) Theorem 2.2.18.

24*
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