obvious remarks may be made: a Boolean algebra is atomless if and only if every maximal chain of it is dense-in-itself; a Boolean algebra is \(\kappa\)-complete if and only if every maximal chain in it is \(\kappa\)-complete; a Boolean algebra is superatomic (see [1]) if and only if no maximal chain in it has a dense-in-itself subchain. Nevertheless, the order types of the maximal chains of a Boolean algebra together with the cardinal number of maximal chains of each order type does not completely determine the structure of the algebra: letting \(\kappa\) be any cardinal that is the limit of a strictly increasing \(\omega\)-sequence of infinite cardinals, so that \(\kappa < \omega^\kappa\), it is easily shown that if \(B\) and \(B'\) are the Boolean algebras of finite and cofinite subsets of sets of cardinalities \(\kappa\) and \(\kappa^\kappa\), respectively, then both \(B\) and \(B'\) will have maximal chains only of type \(\omega + \omega^\kappa\), and both will have exactly \(\kappa^\kappa\) of these.

Example. J. Jakubík, in [3], has constructed Boolean algebras having maximal chains of varying length. A method of construction alternate to that presented there is indicated by the following observation: if \((B_a: a \in A)\) is a set of atomless Boolean algebras, and \(B\) is their Boolean product, and \(C\) is a maximal chain in \(B_a\) for some \(a \in A\), then \(C\) is a maximal chain in \(B\).

References

Reçu par la redaction le 17. 2. 1969

On smooth dendroids

by

J. J. Charatonik and Carl Eberhart (Lexington, Ky.)

§ 1. Introduction. Investigating fans, especially very simple ones, called smooth (see [7], p. 7 and [9]) we have observed that the notion of smoothness of fans can be easily extended to smoothness of dendroids. Smooth dendroids are very close to some partially ordered spaces, called generalized trees, which were studied by Ward (see [16], p. 501). He assumed that the considered space is Hausdorff but not necessarily metrisable, and defined a generalized tree as a hereditarily unicoherent continuum which admits a closed, order-dense partial order with unique minimal element. Koch and Krule in [11], p. 679, have replaced the condition "order-dense" by the weaker one, "monotone", and have proved (op. cit. p. 680) the following

Theorem 1. (Koch and Krule). Let \(X\) be a hereditarily unicoherent continuum, and let \(p \in X\). The following are equivalent:

1. \(\leq_p\) is a monotone, closed partial order on \(X\);
2. there exists a monotone, closed partial order \(\leq_p\) on \(X\) with unique minimal element \(p\);
3. \(X\) is arwise connected, and for every net \((\sigma_p)\) in \(X\) it is true that \(p \leq \sigma_p \leq p \sigma_p \leq \sigma_p\).

If further (1), (2) or (3) holds, then \(X\) is locally connected at \(p\).

The weak cut point order on \(X\) with respect to \(p\), \(\leq_p\), is defined by \(x \leq_p y\) if and only if \(x \leq_p y\), where \(x y\) denotes the intersection of all subcontinua of \(X\) containing \(p\) and \(y\) (see e.g. [11], p. 680). If \(X\) is a dendroid, then \(\leq_p\) is a partial order.

This paper contains investigations of smooth dendroids, i.e. metric generalized trees in sense (3) of above Theorem. Some of our theorems are generalizations of known theorems concerning fans, contained in [7].

§ 2. Definitions and preliminary properties. All continua considered in this paper are metric, provided the opposite is not said. The distance from \(z\) to \(y\) will be denoted by \(d(z, y)\). A dendroid is a hereditarily unicoherent and arwise connected continuum. It follows that it
must be hereditarily decomposable ([41], (47), p. 239), thus 1-dimensional (loc. cit., (48)). If a dendroid has only one ramification point \(t\) (op. cit., p. 239), it is called a fan with the top \(t\) (see [7], p. 6). A fan \(X\) with the top \(t\) is said to be smooth provided that if a sequence of points \(a_n\) of \(X\) tends to a limit point \(a\), then the sequence of arcs \(ta_n\) is convergent and \(\lim n = ta\). Generalizing this notion, admit the following

Definition. A dendroid \(X\) is said to be smooth if there exists a point \(p \in X\), called an initial point of \(X\), such that for every convergent sequence of points \(a_n\) of \(X\) the condition

\[
\lim n = a
\]

implies that

\[
\text{the sequence of arcs } pa_n \text{ is convergent and }
\]

\[
\lim n = pa.
\]

The set of all points \(p\) of \(X\) each of them can be taken as an initial point of \(X\). Further, the notion of generalized tree will be used in the sense of [11], i.e. as a Hausdorff (not necessarily metric) hereditarily unicoherent continuum which admit a monotone, closed partial order with unique minimal element.

The following corollaries can be drawn from the above definitions.

Corollary 1. If the space is metric, then the notion of smooth dendroid and of generalized tree coincide.

In fact, it follows from definitions of smooth dendroid and of generalized tree by Theorem 1.

Corollary 2. Every smooth fan \(X\) is a smooth dendroid.

Namely the top of \(X\) can be taken as an initial point of \(X\).

Corollary 3. No non-smooth fan is a smooth dendroid.

In other words, if a dendroid is smooth and if it is a fan, then it is a smooth fan. Indeed, let \(X\) be a smooth dendroid with an initial point \(t\), and suppose \(X\) to be a fan with the top \(t\). If \(p = t\), then \(X\) is a smooth fan by definition. If \(p \neq t\), then take a convergent sequence of points \(a_n\) of \(X\) for which (2.1) holds. If all points \(a_n\), for sufficiently great \(n\), lie in the same arc starting from \(t\), then \(\lim n = ta\) trivially. If not, we have \(pa_n \neq pt \cup ta_n\), and since (2.3) holds, hence we conclude that \(\lim n = ta\).

Corollary 4. Every dendrite \(X\) is a smooth dendroid. The initial set of \(X\) is equal to the whole \(X\).

For every dendrite is a dendroid (see [4], p. 239). Conditions (2.2) and (2.3) follow from (2.1) for an arbitrary point \(p \in X\) by the local connectedness of \(X\).

Corollary 5. If a dendroid \(X\) is smooth and if the initial set of \(X\) is equal to the whole \(X\), then \(X\) is a dendrite.

For every initial point of \(X\) is a point of the local connectedness of \(X\) by Theorem 1.

Corollary 6. If a dendroid \(X\) is smooth, then every subdendroid of \(X\) is also smooth (the heredity of smoothness for dendroids).

In fact, let a dendroid \(X\) with an initial point \(p\) be smooth, and let \(Y\) be a subcontinuum of \(X\). Thus \(Y\) is a dendroid (see [4], (49), p. 240). If \(p \in Y\), then \(p\) is an initial point of \(Y\) too. If \(p \not\in Y\), then take an arbitrary point \(y \in Y\), since \(X\) is hereditarily unicoherent, \(py \cap Y\) is a continuum, thus it is an arc (or a point) as a subcontinuum of the arcpy. Let \(p'\) be an end point of this arc which is different from \(y\) (if \(py \cap Y\) is a point, we put \(p' = y\)). Let \(\{a_n\}\) be a sequence of points of \(Y\) for which (2.1) holds. Thus we have \(pa_n = pp' \cup pa_n\) for \(n = 1, 2, \ldots\), and \(pa = pp' \cup pa\), whence we conclude that the sequence of arcs \(pa_n\) is convergent and \(\lim n = pa\) by (2.2) and (2.3).

§ 3. The initial set. Let \(N(X)\) be the set of points of \(X\) at which \(X\) is not locally connected.

Theorem 2. If \(X\) is a smooth dendroid with an initial point \(p\), then the constituent of the set \(X \setminus N(X)\) containing \(p\) is the initial set of \(X\).

Proof. Let \(P\) be the initial set of \(X\). Thus \(P \subset X \setminus N(X)\) by Theorem 1. Denote by \(C\) the constituent of the set \(X \setminus N(X)\) which contains \(p\). To prove \(P \subset C\) take a point \(q \in P\) and a point \(a \in Pq\). For an arbitrary convergent sequence of points \(a_n\) satisfying (2.1) we have

\[
\lim n = pa
\]

and

\[
\lim n = qa
\]

since \(p\) and \(q\) are initial points. Further

\[
a_n \subset pa \cup pa_n
\]

whence

\[
a_n \subset pa_n
\]

i.e.

\[
a_n \subset pa
\]

by (3.1). Similarly

\[
a_n \subset qa \cup qa_n
\]
whence
\[L_n a_n C qa \cup L_n p_n \]
i.e.
\[L_\infty a_n C qa \]
by (3.2). Thus we conclude from (3.3) and (3.4) that
\[L_\infty a_n C pa \cap qa \]
i.e.
\[L_\infty a_n = a \]
since \(a \in pq \). It implies that \(X \) is locally arcwise connected at \(a \), which shows \(P \subseteq C \).

To prove \(C \subseteq P \) take a point \(q \in C \) and a convergent sequence of points \(a_n \) with the limit \(a \). Thus (2.2) and (2.3) holds. Define points \(b_n \) and \(b \) by
\[pb_n = pq \cap p a_n \quad \text{and} \quad pb = pq \cap pa . \]
So, we have
\[qa_n = q b_n \cup b_n a_n \quad \text{and} \quad qa = q b \cup ba . \]
Since \(b \in pq \subseteq C \), hence \(b \) is a point of local arcwise connectedness of \(X \). It follows that
\[\lim_{n \to \infty} b_n = b . \]
Indeed, let \(\epsilon \) be a positive number and let \(U \) be an \(\epsilon \)-neighborhood of \(b \) such that every point of \(U \) can be joined with \(b \) by an arc lying entirely in \(U \). Since \(b \in p a_n \), \(b \) can be joined with \(b \) by arcs contained in \(U \), we see that \(b \in C \) by the definition (3.5) of \(b_n \), which proves (3.7). It implies that
\[\lim_{n \to \infty} q b_n = q b . \]

To prove
\[\lim_{n \to \infty} p a_n = ab , \]
observe that \(ab \subseteq L_\infty a_n b_n \subseteq L_\infty a_n b_n \) by Corollary 1 in [7], p. 7; so we should prove
\[L_\infty a_n b_n \subseteq ab . \]

Obviously \(L_\infty a_n b_n \subseteq L_\infty p a_n = pa \cup ba \). But \(pb \cap pq \), whence we conclude that every point \(x \in pb \cap b \) is a point of local arcwise connectedness of \(X \), so a small neighborhood of \(x \) can intersect only a finite number of arcs \(a_n b_n \). Thereby (3.10) follows, which proves (3.9). Equalities (3.8) and (3.9) give immediately
\[\lim_{n \to \infty} qa_n = qa \quad \text{thus} \quad q \in P . \]

Corollary 7. The initial set of a smooth dendroid is arcwise connected.

Corollary 8. If the initial set \(P \) of a smooth dendroid \(X \) is closed, then \(P \) is a dendrite.

Indeed, if \(P \) is closed, then it is a continuum by Corollary 7, thus it is a dendroid as a subcontinuum of \(X \) (see [4], [49], p. 246). But if \(p \in P \), then \(P \) is locally connected at \(p \) by Theorem 1. Hence \(P \) must be locally connected at \(p \), which implies that \(P \) is a dendrite.

Corollary 9. If a fan \(X \) is smooth, then the initial set of \(X \) is equal to the constituent of the set \(X \setminus X \) containing the top of \(X \).

§ 4. The \(T \)-relation on dendroids. We recall here the relation of nonaposyndeticity of F. B. Jones (see [10], p. 404) and use it to characterize the smooth dendroids among all dendroids.

Let \(X \) be a continuum. For points \(x \) and \(y \) of \(X \) define \(xTy \) if and only if every subcontinuum of \(X \) which contains \(y \) in its interior also contains \(x \). Put
\[T_e = \{ y \mid xTy \} . \]

The following theorem is a well-known result (see [8], p. 115).

Theorem 3. The relation \(T \) is closed, and the set \(T_e \) is a continuum for every \(x \in X \).

Recall that a closed quasi order on \(X \) is a transitive, reflexive relation \(\leq \) whose graph is closed in \(X \times X \). If \(\leq \) is a closed quasi order on \(X \) and \(A \) is a subset of \(X \), then the set \(L(A) = \{ x \mid x \leq a \text{ for some } a \in A \} \) is said to be the lower set of \(A \). It is easily seen that the lower set of a closed set is closed, and that \(X \) contains elements which are minimal relative to \(\leq \); that is, there exists an element in \(X \) such that \(x \leq x \), then \(x \leq x \).

The next theorem gives a useful relation between the \(T \)-relation on \(X \) and certain closed quasi-orders on \(X \).

Theorem 4. If \(\leq \) is a closed quasi-order on \(X \) such that
\[\begin{align*}
(4.1) & \quad L(x) \text{ is connected for each } x \in X , \\
(4.2) & \quad \text{and } \quad p \text{ and } q \text{ are minimal elements of } X \text{ implies that } p \leq q \text{ and } q \leq p , \text{ then } x \leq y \text{ for each } x \in X \text{ and each } y \in T_x .
\end{align*} \]

Proof. Suppose \(x \neq y \). Then there exists an open set \(U \) about \(y \) such that for each point \(a \in U \) we have \(x \neq a \). Now \(L(U) \) is a closed set con-
taining y in its interior. Further, $x \in X \setminus L(U)$. To see that $L_i(U)$ is connected, take points a and b in $L(U)$. The sets $L(a)$ and $L(b)$ are connected by (4.1), closed, and they contain minimal elements p and q respectively. Since $p \leq q$ by (4.2) and $L(q)$ is connected by (4.1), we have $L(a) \cup L(q) \cup L(b)$ is a connected set containing a and b and lying in $L(U)$. Thus $L(U)$ is connected. So $y \in X \setminus T_a$ and the proof is finished.

The next theorem contains a partial converse to the previous theorem.

Theorem 5. Let X be a dendroid and $p \in X$. Then p is an initial point of X if and only if

$$p \in T_x = x$$

for all $x \in X$.

Proof. If p is an initial point of X, then $x \leq_p y$ is a closed partial order of X with connected lower sets and unique minimal element. Hence by the previous theorem $x \leq_p y$ for each $y \in T_x$. Thus $p \leq y$ for each $y \in T_x$, therefore condition (4.3) is satisfied.

Conversely, suppose (4.3) holds and $x \leq_p y$ then $y \in X \setminus T_x$ and hence there is a continuum K containing y in its interior which fails to contain x. Let $K' = K \cup y$. Note that K' is a continuum containing y in its interior which fails to contain x. Hence $V = (X \setminus K') \times K$ is an open set in $X \times X$ which contains (x, y). Let $(z, w) \in V$. If $z \leq w$, then $z \leq x \leq_p y \leq w$. Thus $z \leq w$ and hence $z \leq x$. This is a contradiction and we conclude that $x \leq y$ for all $(z, w) \in V$. Hence $x \leq y$, that is, p is an initial point of X.

We remark that there are easily constructed examples of non-closed partial orders on the circle with connected lower sets and unique minimal elements. For locally connected continua the X-relation is trivial ($T_x = x$ for all x) and hence the condition that $x \leq y$ for all $y \in T_x$ is not sufficient to guarantee that $x \leq y$ is closed in general.

Observe that if the equality $T_x = x$ holds for all points x of a continuum X, then X is locally connected. Thus

(4.4) A dendroid X is a dendrite if and only if $T_x = x$ for all $x \in X$.

The next theorem also characterizes smooth dendroids in terms of T_x sets.

Theorem 6. A dendroid X has an initial point (i.e. X is smooth) if and only if

(4.5) for each $x, y \in X$ either $xy \cap T_x = x$ or $xy \cap T_y = y$.

Proof. Firstly suppose the dendroid X has an initial point p. Let x and y be points of X and admit $xy \cap T_x = x$ or $xy \cap T_y = y$. Then T_x is a continuum and X is hereditarily unicoherent, the intersection $xy \cap T_x$ is an arc xy where $x \neq y$. By Theorem 5 we have $p \in T_x = x$. Hence $px \cup xy = x$;

in other words $py = px \cup xy$. By Theorem 5 again, $py \cap T_y = y$ and therefore $xy \cap T_y = y$, thus (4.5) is satisfied.

Secondly suppose (4.5) is true. Let

$$N = \{x \in X : T_x = x\}.$$

Assume $N = \emptyset$, for otherwise X is a dendrite by (4.4) and each point of X is an initial point. Define a relation \leq on X by $x \leq y$ if and only if $xy \cap T_x \neq x$ or $y = x$. We claim that \leq is a partial order on X.

Suppose $x \leq y$ and $y \leq z$. If $x \neq y$, then $x \cap T_x \neq x$ and $xy \cap T_y = y$ which contradicts (4.5). Hence \leq is antisymmetric. Suppose $x \leq y$ and $y \leq z$. Assume $x \neq y$. Then $xy \cap T_x \neq x$ and $yz \cap T_y \neq y$. Since T_y is a continuum and X is hereditarily unicoherent, $yz \cap T_y$ is an arc y where $x \neq y$. Since $xy \cap T_x \neq x$ and (4.5) holds, $xy \cap T_x = x$. Hence $xy \cap T_y = y$; in other words, $xy = x \cup y$. Now $x \cap T_x \neq x$ and $xy \cap T_x \neq x$. Thus $x \leq z$ and \leq is transitive.

Choose a maximal chain C in N. Consider two cases:

Case 1. C has a minimum element p. We claim that p is an initial point of X. Suppose $x \in X$ and $px \cap T_x \neq x$. Then $x \leq p$ and $x \neq p$, which contradicts the maximality of C. Hence $px \cap T_x = x$ for all $x \in X$ and so p is an initial point of X by Theorem 5.

Case 2. C has no minimum element. Then C is a set directed by \leq (i.e. for each x and y in C there is a z in C which is less than both x and y). Let p be a cluster point of the net C. We claim that p is an initial point of X. Choose a sequence of points a_n in C so that $a_{i+1} \leq a_i$ and $p = \lim a_n (-\infty)$. It follows from the proof of transitivity of \leq that $a_{i+1} \cap a_i = a_{i+1}$ for all $i = 1, 2, \ldots$. Thus

$$\alpha_{a_{i+1}} = \alpha_{a_i} \cap a_{i+1}$$

for each n. By a result of Borsuk (see [13], Lemma, p. 18) $\alpha_{a_n} = a_n$, is an arc, and since p is the limit point of a_n, we have that $a_{i+1} \cap a_i = a_i$ for each i. Suppose there exists a point $x \in X$ such that $px \cap T_x \neq x$. If $a_n \cap px \neq p$, then $a_n \cap px \neq p$ for some n. But this is impossible since we would then have $a_n \cap px \cap T_x \neq a_n$ contrary to (4.5). Hence $a_n \cap px = p$ for all n. But then $x \leq a_n$ for each $n \in C$, a contradiction. Thus (4.3) holds and so p is an initial point of X by Theorem 5.

§ 5. Countably generated dendroids and semi-smoothness. A dendroid X is countably generated provided X is irreducible about a countable closed subset A of X. If the set A has n cluster points, where n is either finite or countably infinite, then X is called n-countably generated. For example, a harmonic fan is 1-countably generated, a dendroid composed
of two harmonic fans joined at their tops is 2-countably generated, while a Cantor fan is not countably generated at all.

Let Y be a subcontinuum of a continuum X. Denote by $T_d(Y)$ the set of all points $y \in Y$ such that if K is a subcontinuum of Y containing y in its Y-interior, then $x \in K$.

Lemma 1. Let x and y be points of a dendroid X with $y \in T_d(x)$. There is a 1-countably generated subdivendroid Y of X containing x and y so that $y \in T_d(Y)$.

Proof. Let U_0 be the $(1/n)$-neighbourhood of y and let K_n be the subcontinuum of X irreducible about U_n. Note that $K_n = \bigcup \{y_n \mid n \in \mathbb{N}\}$ and that $x \in K_n$. Hence there is a point $y_n \in U_n$ such that $d(y_n, x) < 1/n$. Let Y be the subcontinuum of X irreducible about the set of points y, y_1, y_2, \ldots. Then $y \in Y$ is 1-countably generated since $\lim_{n \to \infty} y_n = y$. Further $x \in Y$ since $Y = \bigcup_{n=1}^{\infty} y_n$ and $d(y_n, x) < 1/n$. Now suppose that C is a continuum in Y containing y in its Y-interior. Then C contains all but a finite number of the points y_n, hence all but a finite number of arc y_n. We conclude that $x \in C$. Thus $y \in T_d(Y)$.

Theorem 2. A dendroid X is smooth if and only if every 2-countably generated subdivendroid of X is smooth.

Proof. Since smoothness is hereditary one way is clear. Suppose X is not smooth. Then by Theorem 6 there exist two points x and y in X with $xy \cap T_{x+y} x$ and $xy \cap T_{x+y} y$. Choose $x' \in (xy \cap T_{x+y})(x)$ and $y' \in (xy \cap T_{x+y})(y)$. By Lemma 1 there are 1-countably generated subdivendroids Y_1 and Y_2 of X containing x and y, respectively so that $x' \in T_{x+y}(x)$ and $y' \in T_{x+y}(y)$. Put $Y = Y_1 \cup xy \cup Y_2$. So Y is a subdivendroid of X. Denote by A_i, where $i = 1$ or 2, a countable set which generates Y_i (i.e., such that Y_i is irreducible about A_i). Then $A_i \cup \{x_i, y_i, y \} \cup A_i$ generates Y, hence Y is 2-countably generated. If C is a continuum in Y containing $x'y'$ in its Y-interior, then $C \cap Y_i$ is a continuum in Y_i containing x' or y' in its Y_i-interior; hence $x' \in T_{x+y}(x)$. Similarly $y' \in T_{x+y}(y)$. Since points x' and y' lie in the arc xy, we conclude that neither $xy \cap T_{x+y}(x)$ nor $xy \cap T_{x+y}(y)$ is y. Thus Y is not smooth by Theorem 6, which finishes the proof.

On the basis of the last theorem one might be tempted to think that the property of not being smooth is finite in the class of dendroids in the sense that there is a finite set of 2-countably generated dendroids such that a dendroid X is not smooth if and only if it contains a copy of a member of this set. To state this notion more precisely, let A be a class of spaces and let \mathcal{F} be a property. Call \mathcal{F} *finite in the class A* provided there is a finite set \mathcal{F} of members of A such that A has property \mathcal{F} if and only if X contains a homeomorphic copy of some member of \mathcal{F}. For example, a result of Kuratowski (see [12], Theorem 1, p. 278) can be restated as: the property of not being embeddable in the plane is finite in the class of local dendrites.

Theorem 3. The property of not being smooth is not finite in the class of dendroids.

![Fig. 1](image.png)

Proof. Let D_n be the 1-countably generated dendroid illustrated in the figure 1. In general let D_n denote the 1-countably generated dendroid which looks like D_n except that D_n has $n + 1$ arcs erected above it instead of n arcs. We observe that D_n is non-smooth and that each non-smooth subdivendroid of D_n must contain some D_m and

$$
D_m \subset D_n, \text{ then } m \geq n.
$$

Further, we observe that D_n is homeomorphic with D_m if and only if $m = n$.

Now suppose $\mathcal{F} = \{ F_1, F_2, \ldots, F_k \}$ is a set of dendroids such that a dendroid X is non-smooth if and only if X contains a copy of some member of \mathcal{F}.

Take an arbitrary D_n. Since D_n is non-smooth, D_n contains a copy of some member of \mathcal{F}, say F_i.

$$
F_i \subset D_n.
$$

Let \mathcal{F}' be a subset of \mathcal{F} such that $F_i \in \mathcal{F}'$ if and only if there exists a natural number n such that $F_i \subset D_n$. As a subset of \mathcal{F}, \mathcal{F}' is a finite set. Since
every member F'_1 of \mathcal{F}' is a non-smooth subdendroid of some D_n, it must contain some D_m. Let us assign to every F'_1 a natural m_1 defined by

$$m_1 = \inf (m| D_m \subset F'_1).$$

So we have a correspondence from the set \mathcal{F}' to the set of all such naturals m_1. Thus the last mentioned set must be finite.

But it follows from (3.3) in particular, that $D_{m_1} \subset F', \text{ which leads to } m_1 \geq n$ by (3.2) and (3.1). So we conclude that for every natural n there exists some m_n such that $m_1 \geq n$. Hence the set of all such m_1 is infinite, a contradiction.

Define a dendroid X to be semismooth provided there exists in X a point p such that whenever a_n converges to a, then pa_n is an arc. It is readily seen that smooth dendroids are semismooth; it can also be seen that none of the dendroids D_n is semismooth. As an example of non-semismooth fan we can take the non-planar fan constructed by Borsuk in [2].

It is known that every smooth fan can be embeded into the Cantor fan, thus into the plane (it follows from [7], Theorem 9, p. 27 and [9], Corollary 4). So the question can be posed whether every semismooth fan is imbeddable in the plane. The answer is negative: namely take in the plane a Cartesian rectangular coordinate system with a point $p(0, 0)$ as the origin and consider points $a = (-1, 0), b = (1, 0), a_0 = (-1/n, -1/n), b_0 = (1/n, 1/n)$ and $a_n = (1/n, 1/n)$. Thus we have $a = \lim a_n = \lim b_0$ as well as $c = \lim c_0$. Joining a, b, c and a_n, b_n and b_0, a_0 by straight lines we obtain a sequence of polygonal lines p_{a_0} with the limit segment ac. So $X = ac \cup \bigcup_{n=0}^{\infty} p_{a_0}$ is a semismooth planar fan. Observe that the point a is not accessible by an arc, i.e. there exist no arc in the plane which has only the point a in common with X, even if we replace X by an arbitrary its homeomorphic image in the plane. Thus adding an arc ab to X with property $ab \cap X = (a)$ we shall have a non-planar dendroid $ab \cup X$ being a semismooth fan.

The next natural question concerning the possibility of the embedding of some dendroids into the plane is whether every smooth dendroid is imbeddable in the plane. The answer to this question is also negative. To show this, take in the plane a system of polar coordinates r, φ with the pole at a point p, and consider points $a = (2, 0), a_0 = (-2 - \text{arc tan } 1/2), b_0 = (1/2, 0), c_0 = (1/2, 3\pi/2)$. Join points a and p as well as a_0 and b_0 by straight lines and points b_0 and c_0 by arcs consisting of all points (r, φ), where $r = 1/n$ and $0 < \varphi < 2\pi/2$. The dendroid X obtained in such a way, namely

$$Y = pa \cup \bigcup_{n=0}^{\infty} a_n b_n,$$

is smooth and has p as an initial point. As previously, p is not accessible. Thus $pq \cup X$, where pq is an arc such that $pq \cap X = (a)$, is a smooth, non-planar dendroid.

Another example of a smooth, non-planar dendroid can be obtained in the same form $pq \cup Y$ by taking the Cantorian swastika (see [12], p. 4) with the only initial point p_0 as X.

The following figures (see Fig. 2) are some of the simplest possible non-smooth semismooth dendroids.

The question which remains unanswered is whether the property of non-smoothness is finite in the class of semismooth dendroids; in particular does the set \mathcal{F} of the nine dendroids in Fig. 2 demonstrate the finiteness?

We remark that one can also ask whether nonimbeddability in the plane is finite in the class of dendroids (smooth dendroids, semismooth fans or semismooth dendroids).

§ 6. Images of smooth dendroids. In this section we investigate various kinds of mappings on dendroids with the aim of finding out the extent to which smoothness is an invariant of these mappings.

First we prove two known results about monotone mappings.

Proposition 1. If f is a monotone mapping from a hereditarily unicoherent continuum X into a space Y, then the restriction of f to any subcontinuum of X is also monotone.

Indeed, if $f : X \to Y$ is a monotone mapping, then $(f(X))^{\text{co}} = f(X)^{\text{co}}$ is a monotone mapping from a hereditarily unicoherent continuum X into a space Y.

Proposition 2. If f is a monotone mapping from a dendroid X onto a Hausdorff space Y, then f is a dendroid, and if $x, y \in X$, then $f(ax) = f(x)f(y)$.

Proof. Y is a metric continuum since it is the Hausdorff image of a metric continuum. Thus Y is a dendroid (see [2], p. 219). The final assertion is a special case (using Proposition 1) of a theorem (see [4], § 43, II, 3, p. 133) that the monotone image of a continuum irreducible between x and y is a continuum irreducible between $f(x)$ and $f(y)$.

Through out the remainder of the section X and Y are dendroids and f is a continuous mapping from X into Y.

Proposition 3. f is monotone if and only if $f(ax) = f(x)f(y)$.

Proof. One way follows immediately from Proposition 2. Suppose \(f(xy) = f(x)f(y) \) for all \(x, y \in X \). Let \(z \in X \) and \(x, y \in f^{-1}(z) \). Then \(f(xy) = z \). But \(xy \in f^{-1}(f(xy)) = f^{-1}(f(x)f(y)) = f^{-1}(z) \). Hence \(f^{-1}(z) \) is connected and so \(f \) is monotone.

Definition. Let \(p \in X \). A mapping \(f \) will be called order-preserving with respect to \(p \) (or simply \(\leq_p \)-preserving) if and only if \(x \leq_p y \) implies \(f(x) \leq_p f(y) \).

Proposition 4. The following are equivalent:

(i) \(f(pz) = f(p)f(z) \) for each \(x \in X \),

(ii) \(f \) is \(\leq_p \)-preserving,

(iii) \(f(pz) \) is monotone for each \(x \in X \).

Proof. (i) implies (ii). Suppose \(x \leq_p y \). Then \(z \leq_p y \). Hence \(f(x)f(z) = f(p)f(z) \), so \(f(x) \leq_p f(y) \).

(ii) implies (iii). Suppose \(z, w \in X \) with \(z \leq_p w \) and \(f(z) = f(w) \). If \(t \leq_p w \), then \(z \leq_p t \leq_p w \). Hence \(f(z) \leq_p f(t) \leq_p f(w) \). So \(f(z) = f(t) = f(w) \) and \(f(pz) \) is monotone.

(iii) implies (i). It follows from a theorem of Kuratowski, cited above in the proof of Proposition 2.

Note that \(f \) is monotone if and only if \(f \) is \(\leq_p \)-preserving for all \(p \in X \).

Theorem 9. If \(f \) is \(\leq_p \)-preserving mapping of \(X \) onto \(Y \) and \(p \) is an initial point of \(X \), then \(f(p) \) is an initial point of \(Y \).

Proof. Since \(p \) is an initial point of \(X \), we have that the graph of \(\leq_p \) is closed in \(X \times X \). To show that \(f(p) \) is an initial point of \(Y \), it suffices to prove that for each \(q \in Y \) we have \(T_x \cap f^{-1}(q) = \emptyset \) (see Theorem 3). So suppose that \(x \in f^{-1}(q) \) with \(x \neq y \). Then \(x \in X \cap f^{-1}(q) \). Let \(Q = f^{-1}(q) \) and \(Z = f^{-1}(z) \). Note that \(Q \) and \(Z \) are compact subsets of \(X \) with the property that \((Q \times Z) \cap (\text{graph} \leq_p) = \emptyset \) (if \((x, y) \in Q \times Z \) and \(x \leq_p y \), then \(q = f(x) \leq_p f(y) = z \)). Hence there are open sets \(U \) and \(V \) in \(X \) such that \(Q \times Z \subseteq U \times V \) and \((U \times V) \cap (\text{graph} \leq_p) = \emptyset \). Let \(K = \{ x \in X \mid x \leq_p p \} \). \(K \) is easily seen to be a continuum containing \(Z \) in its interior and containing no point of \(Q \). Therefore \(f(K) \) is a continuum containing \(z \) in its interior and such that \(q = Y \setminus f(K) \). Hence \(z \in Y \setminus f(K) \).

Corollary 10. If \(f \) is a monotone mapping of a smooth dendroid \(X \) onto \(Y \), then \(Y \) is a smooth dendroid and \(f(X) \subset Y \), where \(X \) and \(Y \) denote the initial sets of \(X \) and \(Y \) respectively.

Remark. Examples show that "confuent" may not be substituted for "monotone" in Corollary 10. Namely let \((x, y) \) denotes a point with rectangular coordinates in the plane. Join points \((-1,0), (1,0), (1,1/n)\) with the origin \((0,0)\) by straight segments. The continuum
obtained is a smooth fan having \((-1, 0)\) as an initial point. The mapping \(f(x, y) = (|x|, y)\) takes \((-1, 0)\) to \((1, 0)\), a point of non-local connectedness of the image.

However we have no example to show that a confluent image of a smooth dendroid need not be smooth.

Now we show that every smooth dendroid can be obtained as the image of the Cantor fan \(F_C\) under an \(\leq_r\)-preserving map, where \(t\) is the top of \(F_C\).

Recall that a metric \(d\) on a dendroid \(X\) is radially convex with respect to a point \(p \in X\) provided that \(x \neq y\) implies \(d(p, x) < d(p, y)\).

Theorem 10. A dendroid \(X\) is smooth with an initial point \(p\) if and only if \(X\) has a metric which is radially convex with respect to \(p\).

Proof. By Theorem 1, \(\leq_p\) is a closed ordering. Now the result follows one way from the Carruth's Theorem 1 (see [5], p. 229) which says that if \(\leq\) is a closed partial order on the compact metric space \(X\), then there exists an equivalent metric on \(X\) which is radially convex with respect to \(\leq\).

Conversely suppose \(X\) has a metric, radially convex with respect to \(p\). To show that \(p\) is an initial point of \(X\) it suffices to show, according to Theorem 5, that \(\varphi x \cap \Delta_x = x\) for all \(x \in X\). Let \(q <_r x\) with \(q \neq x\). Then \(d(p, q) < d(p, q, x)\), hence \(K = \{x \in X : d(p, x) < d(p, q) + c\}\), where \(c = \frac{d(p, q) - d(p, q)}{2}\) is a continuum containing \(q\) in its interior and not containing \(x\). Hence \(q \in X - \Delta_x\).

Theorem 11. If a dendroid \(X\) has a metric \(d\) which is radially convex with respect to some point \(p \in X\), then there is an \(\leq_r\)-preserving map of \(F_C\) onto \(X\) such that \(f(t) = p\).

Proof. Take in the plane a system of polar coordinates \(r, \varphi\) with the pole at a point \(t\). Consider the Cantor discontinuum \(C\) in the arc \(0 < \varphi \leq 1\) of the circumference \(r = 1\), i.e. the set of points \(c = (1, \varphi)\), where \(\varphi = \sum_{n=0}^{\infty} 2n_1 \cdot 3^n\) and \(n_1 = 0\) or 1. Joining all points \(c \in C\) with \(t\) by straight segments \(cO\) we have the Cantor fan \(F_C\). We see that \(r < 1\) for all points of \(F_C\).

Assume \(d(p, x) \leq 1\) for all \(x \in X\). Denote by \(g\) an arbitrary continuous mapping from \(C\) onto \(X\). Extend \(g\) to \(f: F_C \to X\) as follows. If \((r, \varphi) \in C F_C\), then \(f(r, \varphi)\) is the point \(x \in pg(\varphi)\) such that

\[
\bar{d}(p, x) = d(p, g(\varphi)).
\]

To see that \(f\) is continuous, suppose a sequence of points \((r_n, \varphi_n) \in C F_C\) is convergent to a point \((r, \varphi) \in \Delta F_C\). If \(r \neq 0\), then \(\varphi = \lim \varphi_n\), whence \(c = \lim c_n\) and \(g\) being continuous, \(g(\varphi) = \lim g(\varphi_n)\). Since \(X\)

is smooth with the initial point \(p\), we have \(pg(c) = \lim pg(c_n)\). Hence every cluster point of the sequence of points \((r_n, \varphi_n) \in \Delta F_C\) lies in \(pg(c)\). Let \(y\) be a cluster point of \(x_n\). Then \(d(p, y) = \lim d(p, x_n) = \lim d(p, g(c_n)) = \lim d(p, g(c)) = d(p, g(c))\). Therefore the sequence \((c_n)\) has only one cluster point, namely the point \(c\) in \(pg(c)\) such that \((6.1)\) holds. If \(r = 0\) then \(\lim \varphi_n = 0\), thus \(\lim (r_n, \varphi_n) = (0, 0)\).

By \((6.1)\) \(d(p, x_n) = d(p, g(c_n))\). But \(d(p, g(c_n)) \leq 1\), so \(\lim d(p, x_n) = 0\). Thus \(\lim x_n = p\), whence \(f(t) = p\).

Corollary 11. Let \(X\) be a dendroid. The following are equivalent:

(i) \(X\) is smooth,

(ii) \(X\) admits a radially convex metric,

(iii) \(X\) is image of \(F_C\) under an \(\leq_r\)-preserving map.

Corollary 12. Every smooth dendroid is contractible.

Indeed, \(X\) has a radially convex metric \(d\) with respect to an initial point \(p\), such that \(d(p, x) < 1\) for all \(x \in X\).

So, for \(x \in X\) and \(0 \leq s \leq 1\) put \(h(x, s) = y\), where \(y\) is a point of the arc \(px\) such that

\[
d(p, y) = d(p, x) \cdot (1 - s).
\]

It is easy to see that \(h: X \times [0, 1] \to X\) is continuous and \(h(x, 0) = x\) and as well as \(h(x, 1) = p\) for all \(x \in X\).

The above is not true, as it shows an example of non-smooth contractible fan in [7], p. 31.

A class \(\mathcal{A}\) of continua has a common model \(M\) under continuous mappings if there exists a continuum \(M\) belonging to \(\mathcal{A}\) with property that every member of \(\mathcal{A}\) is a continuous image of \(M\). Corollary 11 says that if \(\mathcal{A}\) denotes the class of smooth dendroids, then there exists a common model for \(\mathcal{A}\), namely the Cantor fan \(F_C\). Since it is a fan, it can be taken as a common model for the class of smooth fans. The latter result is known (see [7], Theorem 10, p. 28 and [9], Corollary 4). The problem whether common models exist in the classes of semismooth fans, of uniformly arcwise connected fans (for the definition see §8 here), of all fans, of semismooth dendroids, of uniformly arcwise connected dendroids or of all dendroids are open.

A class \(\mathcal{A}\) of continua has a universal element \(U\) if there exists a continuum \(U\) belonging to \(\mathcal{A}\) with property that every member of \(\mathcal{A}\) can be homeomorphically embedded into \(U\). It is known that a universal element, namely the Cantor fan, does exist in the class of smooth fans (see [7], Theorem 9, p. 27 and [9], Corollary 4). The problem whether a universal
element exists in the class of smooth dendroids is open. Also the questions concerning the existence of universal element in all classes of the particular kinds of dendroids mentioned above are unanswered.

§ 7. Further characterizations. A necessary and sufficient condition for fans to be smooth was given in [7], Theorem 1, p. 7. A very similar condition characterizes smooth dendroids, and the proof of a corresponding theorem can be made in the same way as for fans. However, this proof is rather long, so we shall give here some other one using the result for fans and Theorem 10. The condition in matter is given by

Theorem 12. A dendroid X is smooth if and only if there exists a point $p \in X$ such that for any two convergent sequences $\{a_n\}$ and $\{b_n\}$ conditions

$$\lim_{n \to \infty} a_n = a, \quad \lim_{n \to \infty} b_n = b$$

and

$$a_n \subseteq pb_n \quad \text{for } n = 1, 2, \ldots$$

imply

$$\lim_{n \to \infty} a_n b_n = ab.$$

Proof. If there is a point p in X such that the above implication holds, then putting $a_n = b_n$ and denoting b_n by a_n as well as b by a we see that (7.3) gives (2.3), so X is smooth by definition.

Conversely let X be smooth and let p be an initial point of X. By Theorem 10, there is a metric d on X radially convex with respect to p. Let $a_n b_n$, a and b be points in X which satisfy (7.7) and (7.2). We wish to show that $L a_n b_n \subseteq L b_n a_n = ab$.

By Corollary 1 in [7], p. 7, we have that

$$a b \subseteq L b a_n.$$

From $a_n b_n \subseteq b a_n$, we obtain

$$L a_n b_n \subseteq L b a_n.$$

Since p is an initial point of X,

$$L p b_n = p b.$$

Let $a \in L a_n b_n$. Then there exists a sequence $\{c_n\}$ depending on a, converging to a. Hence

$$\lim_{n \to \infty} d(c_n, p) = d(a, p).$$

But for each n,

$$d(a_n, p) \leq d(c_n, p),$$

by the radial convexity of d. Now (7.8) implies that

$$d(a, p) \leq d(x, p).$$

So we conclude from (7.5), (7.6) and (7.9) that $x = ab$. Consequently,

$$L a_n b_n \subseteq L a_n b_n.$$

Thus (7.3) follows from (7.10).

It is easy to see that Theorem 12 is very similar to Theorem 1 in [7], p. 7. Remark however, that we cannot replace (7.2) by

$$a_n b_n \subseteq \{p\}$$

as it was done for fans (see loco cit., (3.1)) because (7.11) does not imply (7.2) for smooth dendroids (for fans we can establish (7.2) without loss of generality, having (7.11), see op. cit. (3.3), p. 8). It can be seen by the following example, in which (x, y) denotes a point with rectangular coordinates.

Join points $p = (0, 1)$ with $(0, 0)$ and with points $(1/n, 0)$ by straight segments. The continuum F obtained in this way is a harmonic fan with the top p. Next join the point $q = (0, 1/2)$ with $(0, 0)$ and with points $(-1/n, 0)$ by straight segments. We get another harmonic fan F' with the top q. Put $X = F \cup F'$ and let

$$a_n = (-1/2n - 1, 0) \quad \text{and} \quad b_n = (-1/2n, 0).$$

Thus (7.11) holds, we have neither (7.2) nor $b_n \subseteq pb_n$, (7.1) holds with $a = b = (0, 0)$, hence the arc ab reduces to the point a and $L a_n b_n$ is the straight segment $q a$. Hence (7.3) is false.

As a corollary similar to Corollary 3 in [7], p. 9 we have

Corollary 13. If X is a smooth dendroid with an initial point p, and if for any two sequences conditions (7.1) and (7.2) hold, then

$$a \subseteq pb,$$

thus

$$ab \subseteq \{p\}$$

Indeed, (7.1) and (7.2) imply (7.12) because the partial order \leq_p is closed. But it is not true that (7.1) and (7.11) imply (7.13) for smooth dendroids as they do for smooth fans. As an example consider points
It follows from the triangle axiom that
\[d(p, b_n) < d(p, a_n) + d(a_n, b_n), \]
thus
\[d(p, b_n) < d(p, a_n) + 1/n \]
by (7.18). Hence
\[d(p, a_n) < d(p, c_n) < d(p, a_n) + 1/n, \]
by (7.23), and we see that \(d(a_n, c_n) \) must be arbitrarily small for sufficiently large \(n \), contrary to (7.22).

Secondly, let \(d' \) be a metric for which the condition in matter holds and suppose there is no radially convex metric with respect to \(p \) on \(X \). Thus \(p \) is not an initial point of \(X \) according to Theorem 10. By Theorem 6 there exists a point \(x \) in \(X \) such that
\[px \cap T_x \neq \emptyset. \]

Thus we can find a point \(q \in px \) with \(q \neq x \) and \(q \in T_x \). Take
\[\varepsilon = d'(q, x)/3. \]
So there is an \(n > 0 \) such that for any two points \(a, b \) of \(X \) conditions (7.14) and (7.15) imply (7.16). Take \(n \) such that
\[2/n < \min(n, \varepsilon) \]
and let \(U_a \) be the \(1/n \)-neighbourhood of \(q \). So
\[d'(a, q) < \eta \quad \text{for every} \ a \in U_a. \]

Denote by \(K \) the unique continuum irreducible about \(U_a \). Thus
\[K = \bigcup \{ a \in U_a \}, \]
and \(q \in \text{Int} K \). Since \(q \in T_x \) we have \(x \in K \) according to the definition of \(T_x \).

Further, let \(Y_a \) be the \(1/n \)-neighbourhood of \(x \). The union \(\bigcup \{ a \in U_a \} \) being a set dense in \(K \) by (7.26), for any \(n \) satisfying (7.24) there exists a point \(a_n \in U_n \) such that
\[a_n \cap Y_a \neq \emptyset. \]

It follows that
\[\delta(a_n, q) > \varepsilon. \]

The metric \(d' \) satisfying the condition, we conclude from (7.23) and (7.25) that the negation of (7.13) must hold for points \(g \) and \(a_n \), i.e.
\[\text{either } a_n \cap Y_a \neq \emptyset, \quad \text{or } Y_a \cap a_n \neq \emptyset. \]
Thus the common part of arcs pg and a_p is an arc being a proper subarc of each of them.

Let x_n be a point of $a_n \cap V_n$ which exists by (7.27). So the sequence of points x_n is convergent and

$$\lim_{n \to \infty} x_n = x.$$

It is easy to see that points x_n lies in arcs a_p because otherwise we would have $x \in pg$ if $\delta(x \in pg)$ contrary to the definition of g.

Consider now $\bigcup x_n$ which is obviously a non-empty set. By Corollary 1 in [7], p. 7 it is a continuum and we have

$$\bigcup_{n=1}^{\infty} x_n \subset \bigcup_{n=1}^{\infty} \bigcup_{a_n} \bigcup_{b_n}.$$

Since $\delta(x \in pg)$, thus for any n there is a natural i such that if $k > i$, then

$$\bigcup_{n=1}^{\infty} x_n \cap U_n = \emptyset.$$

Let b_{n+k} be $n+k \cap U_n$. Thus we have

$$\bigcup_{n=1}^{\infty} x_n \cap U_n = \emptyset.$$

(7.30)

So (7.14) is satisfied for a_{n+k} and b_{n+k}. Since points a_{n+k} and b_{n+k} both belong to U_n, we see that

$$\delta(a_{n+k}, b_{n+k}) < \eta$$

by (7.24), thus (7.15) is satisfied. But $a_{n+k+1} \cap b_{n+k}$ by (7.30) and $a_{n+k+1} \cap b_{n+k}$ by definition, whence

$$\delta(a_{n+k+1}, b_{n+k}) > \epsilon$$

contrary to (7.16).

COROLLARY 14. A dendroid X is smooth if and only if there exist a point $p \in X$ and a metric d such that for every number $\epsilon > 0$ there is a number $\eta > 0$ such that for any two points a and b of X conditions $\epsilon \in pb$ and $d(a, b) < \eta$ imply $\delta(ab) < \epsilon$.

§ 8. Uniform arcwise connectedness. Recall that a set X is said to be uniformly arcwise connected (see [5], p. 193 and [7], p. 12) if it is arcwise connected and if for every number $\epsilon > 0$ there is a natural k such that every arc A in X contains points a_1, a_2, \ldots, a_k such that

$$A = \bigcup_{i=1}^{k-1} a_i a_{i+1},$$

and

$$\delta(a_i a_{i+1}) < \epsilon$$

for every $i = 0, 1, \ldots, k-1$.

It is known that every dendroid X is irreducible about the set $E(X)$ of all end points of X (see [15], Theorem 3.5, p. 193). Hence if we take an arbitrary point $x \in X$, then we have

$$X = \bigcup \{x \in E(X)\}.$$

The following theorems give sufficient and necessary conditions under which a dendroid is uniformly arcwise connected.

THEOREM 14. A dendroid $X = \bigcup \{x \in E(X)\}$ is uniformly arcwise connected if and only if for every number $\epsilon > 0$ there is a natural k such that every arc x contains points a_0, a_1, \ldots, a_k such that

$$x = \bigcup_{i=0}^{k-1} a_i a_{i+1},$$

and

$$\delta(a_i a_{i+1}) < \epsilon$$

for every $i = 0, 1, \ldots, k-1$.

Proof. If X is uniformly arcwise connected, then the condition in question is satisfied by the definition of uniform arcwise connectedness. Conversely, take an arbitrary arc $A = ab \subset X$ and let e_1 and e_2 be end points of X such that $a \in e_1$ and $b \in e_2$. Hence $A \subset e_1 \cup e_2$. Thus putting $\epsilon' = 2\epsilon$ and $\epsilon'' = 2\epsilon$ we have a decomposition of the arc A into at most k arcs with diameters less than or equal to ϵ, i.e. less than ϵ', which proves the uniform arcwise connectedness of X.

COROLLARY 15. A dendroid $X = \bigcup \{x \in E(X)\}$ is uniformly arcwise connected if and only if for every number $\epsilon > 0$ there is a natural k such that every arc x contains points a_0, a_1, \ldots, a_j, where $j \leq k$, such that

$$x = \bigcup_{i=0}^{j-1} a_i a_{i+1}$$

and

$$\delta(a_i a_{i+1}) < \epsilon$$

for every $i = 0, 1, \ldots, j-1$.

In the same manner as Theorem 14 we can prove

THEOREM 15. A dendroid $X = \bigcup \{x \in E(X)\}$ is uniformly arcwise connected if and only if the condition from Theorem 14 is satisfied with

$$\delta(a_i a_{i+1}) < \epsilon$$

for every $i = 0, 1, \ldots, k-1$ instead of (8.1).

LEMMA 2. Let a dendroid X be smooth with p as an initial point of X and let e be a positive number. If we take in every arc x such that $ab \subset X$ is connected, points

$$a = a_0, a_1, \ldots, a_{j-1}, a_j = b$$

such that

$$d(a_i, a_{i+1}) = \epsilon$$

for $i = 0, 1, \ldots, j-1$ and $d(a_i, a_{j+1}) = \epsilon$, then there exists a natural k with p for all arc ab.

On smooth dendroids

317
Hence (2.1) and (9.6) imply
\[\lim_{n \to \infty} a_n y_{a_n} = ay' \quad \text{and} \quad \lim_{n \to \infty} a_{a_n} y_{a_{a_n}} = ay'' \]
the arcs \(a_n y_{a_n} \) being straight segments. If \(x \neq y \), then the point \(x \) belongs to the only one generator, namely to \(ay \). Thus segments \(ay \) and \(ay' \) lie in the segment \(xy \) and we have \(y' = y'' = y \) by (9.4), which proves (9.5). If \(a = y \), suppose one of points \(y' \) and \(y'' \) satisfying (9.6) is different from \(y \). Say \(y' \neq y \). Hence for sufficiently great \(k \) we have
\[d(a_{a_k}, X) > \eta \cdot d(a_{a_k}, y_n), \]
by (2.1) and (9.6). Substituting \(a_n \) and \(y_n \) in place of \(a \) and \(y \) respectively in (9.2) we have
\[d(a_{a_k}, X) > \eta d(a_{a_k}, y_n), \]
which leads to the inequality
\[d(a_{a_k}, X) > \eta \cdot d(a_{a_k}, y'), \]
for sufficiently great \(k \). Since \(a = y \), hence \(x \in X \) and we have
\[d(a_{a_k}, a) > \eta d(a_{a_k}, y'), \]
thus by (9.8)
\[d(a_{a_k}, a) > \eta \cdot d(a, y'), \]
which contradicts (2.1). Therefore (9.5) is established.

To prove that \(B(X) \) is smooth we shall show that (2.1) implies (2.2) and (2.3). Observe that for every \(a \) we have
\[p_{a_n} = py_n \cup ya_n. \]

The dendroid \(X \) being smooth by hypothesis, and (2.1) implying (9.5) we see that the sequence of arcs \(py_n \) is convergent and
\[\lim_{n \to \infty} py_n = py. \]

Further, the arcs \(y_n a_n \) being straight segments, we have from (2.1) and (9.5)
\[\lim_{n \to \infty} y_n a_n = ya. \]

Thus (9.10) and (9.11) imply (2.2) by (9.9) and we have
\[\lim_{n \to \infty} a_n = py \cup ya. \]

Since \(py \subset X \) and \(ya \subset X = (y) \) by (9.4), we conclude \(py \cup ya = pa \), so (2.3) holds and the proof of the smoothness of \(B(X) \) is finished.
Moreover, we see that just the point \(p \in X \) was taken as an initial point of \(B(X) \), which implies that the initial set of \(X \) is contained in the initial set of \(B(X) \).

Since every initial point of \(B(X) \) is a point of the local connectedness of \(B(X) \) by Theorem 1, hence Theorem 18 and Corollary 17 imply the following.

Corollary 17. If a dendroid \(X \) is smooth, then the initial set of an arbitrary brush continuum \(B(X) \) is composed of the initial set of \(X \) and of all generators \(xy \) of \(B(X) \) every point of which is a point of the local connectedness of \(B(X) \).

§ 10. Countable smooth combs. Let \(X \) be a dendroid and let \(B(X) \) denote the set of all ramification points of \(X \). If there exists an arc \(ab \in X \) such that \(B(X) \subset ab \), then \(X \) is said to be a comb. A comb \(X \) is called countable if the set \(B(X) \) is countable and if \(\text{Ord}_X \leq \aleph \) for every \(x \in B(X) \). In other words, a comb \(X \) is countable if and only if \(E(X) \), the set of all end-points of \(X \), is countable. For example if we put in rectangular coordinates \(a = (0, 0), b = (1, 0), e = (0, 1), x_n = (\frac{1}{n}, 0), y_n = (\frac{1}{n}, 1), \) then the union of straight segments \(\bigcup_{n=1}^{\infty} \pi_n y_n \) is a countable comb. Obviously it is also smooth.

It follows from the above definition of a comb that if a dendroid has only one ramification point, i.e. if it is a fan, then it is obviously a comb. It is known that every fan \(F \) can be written as the union of arcs in the form
\[
F = \bigcup \{ [t] \mid e \in E(F) \},
\]
where \(t \) is the top of the fan \(F \), and \(e \) is an end-point of it. Similarly every comb \(X \) may be written as the union of some arcs. Let \(ab \) be the arc irreducible about \(B(X) \) and put \(E(X) = a \cup b \cup R(X) \). For every point \(t \in E(X) \) denote by \(F_t \) the union of all arcs \(te \), where \(e \in E(X) \), such that \(te \cap ab = t \). Thus if \(a \not= b \), then \(F_a \) and \(F_b \) are different arcs. Also if \(a \in X \cup Y(X) \) (or \(b \in X \cup Y(X) \)) then \(F_a \) (or \(F_b \)) is an arc (or a point, if \(a \) or \(b \) are in \(E(X) \)). So we have
\[
X = ab \cup \bigcup \{ [t] \mid e \in E(X) \}. \tag{10.1}
\]

Let \(E_t = F_t \cap E(X) \). Thus
\[
F_t = \bigcup \{ [t] \mid e \in E_t \} \tag{10.2}
\]
for every \(t \in E(X) \). Substituting (10.2) into (10.1) we have an expression of a comb \(X \) as the union of arcs:
\[
X = ab \cup \bigcup \{ [t] \mid e \in E_t \} \mid t \in E(X) \}. \tag{10.1}
\]

In the case when a comb \(X \) is countable, we see that \(E(X) \) is countable and \(E_t \) is countable for every \(t \in E(X) \). Thus a countable comb \(X \) can be written in the form
\[
X = ab \cup \bigcup_{t=1}^{\infty} \bigcup \{ t \in E_t \} \mid t \in E(X) \}. \tag{10.1}
\]

Let \(r(X) \) be the degree of the non-local connectedness of \(X \) defined in [5], p. 190. If a comb \(X \) is countable, then \(r(X) \) is a countable ordinal and irreversely. Thus from Theorem 18 in [5], p. 192 we infer the following.

Corollary 18. If a comb \(Y \) is a continuous image of a comb \(X \) and if \(E(Y) \) is countable, then \(E(Y) \) is at most countable.

The following theorem is a generalization of Theorem 5 in [7], p. 15:

Theorem 17. If a dendroid \(X \) is smooth with countable \(E(X) \) and if a smooth dendroid \(Y \) with countable \(E(Y) \) is a continuous image of \(X \), then the set \(E(Y) \) is at most countable.

Proof of this theorem goes letter by letter exactly like the proof of Theorem 5 in [7], p. 18 if we take \(t \) and \(t' \) there as initial points of \(X \) and \(Y \) respectively.

Observe that the countability of \(E(Y) \) is an essential hypothesis in the above Theorem: a dendrite with the set of end points being the Cantor discontinuum is a continuous image of an arc.

Theorem 17 and Corollary 18 imply:

Corollary 19. If a smooth comb \(Y \) is a continuous image of a smooth comb \(X \) and if \(E(Y) \) is countable then \(E(Y) \) is at most countable.

Remark that in the same manner as for fans (see [7], p. 21) one can construct a family of \(n \) (for each \(n = 2, 3, \ldots \)) countable combs incomparable in the sense that none of them is a continuous image of another.

Further, remark that it can be proved also exactly as for fans in [7], p. 30 that there exists neither a common model nor a universal element (for the definitions see the final part of § 6 here) in the class of countable smooth combs. However, in the class of all smooth combs, the question about the existence of a common model has the positive answer (namely the Cantor fan is a common model in this class by Corollary 11, thus also the Cantor comb is), but the question concerning the existence of a universal element in this class is open.

References

Über die Mächtigkeiten und Unabhängigkeitssgrade der Basen freier Algebren, II

von

Peter Burmeister (Bonn)

Einleitung. Im Zusammenhang mit den im ersten Teil behandelten Problemen tauchte auch die Frage auf, ob verschiedene mächtige Basen einer Algebra verschiedene Unabhängigkeitssgrade besitzen können und was man über die Unabhängigkeitsklassen der R-Basen der R-freien erzeugten Algebren einer nichttrivialen primitiven Klasse I aussagen kann. Dabei sei die Unabhängigkeitssklasse — die auch Unabhängigkeitssgrad genannt wird — einer Teilmenge M einer Algebra (A, f) definiert als

$$\text{ind}(A, f, M) := \{ (B, g) : M \text{ ist } (B, g) \text{-freie Teilmenge von } (A, f) \}.$$

2) Zur Erinnerung: M heißt (B, g)-freie (auch: (B, g)-unabhängige) Teilmenge der Algebra (A, f), wenn jede Abbildung $h: M \rightarrow B$ zu einem Homomorphismus β von der von M in (A, f) erzeugten Unteralgebra (C_M, f_{OM}) in (B, g) fortgesetzt werden kann. M heißt (B, g)-Basis von (A, f), wenn M darüber hinaus (A, f) erzeugt.

$$C_M = A;$$

ist dabei $(B, g) = (A, f)$, so heißt M Basis von (A, f).

INSTITUTE OF MATHEMATICS OF THE WROCLAW UNIVERSITY

UNIVERSITY OF KENTUCKY

Reçu par le Bulletin le 23. 5. 1965