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One-to-one continuous images of a line
by
F. Burton Jones (Riverside, Calif)

Even if the metric space X is a one-to-one continuous image of
a line, it still may be rather complieated topologically. However, Lelek
and MeAuley [3] have pointed out that when X is also both locally con-
nected and locally compact, X must be one of five quite simple plane
curves: an open interval, a figure eight, a dumbbell, a theta curve, or
a noose. In fact, I have indicated in [1] that if X is embeddable in the
plane, local compactness is not needed. Consequently one suspects that
in the presence of local compactness, local connectivity is too strong
and that something weaker should suffice. This turns out to be the case.
For if X is aposyndetic and locally compact then X must be one of the
five curves. On the other hand, there are plane continuous one-to-one
images of the line which are aposyndetic but not locally connected and
hence not one of the five curves.

‘While one of the objects of this paper is to extend the Lelek-McAuley
result to the larger class of aposyndetic spaces, it is also one of my pur-
poses to give a more complete argument for the result announced in [1]
since the “indication of proof” given there seems not to have been suf-
ficiently suggestive.

DgerFinITION. A conneeted topological space X is aposyndetic at the
point  of X provided that if y is a point of X —x there exists a closed
and connected set H which contains x in its interior but does not con-
tain y (i.e., e HHCH C X —y). If X is aposyndetic at each of its points,
then X is said to be aposyndetic [2].

THEOREM 1. If the locally compact, aposyndetic, metric space X is
a one-to-one continuous image of a line, then X is homeomorphic with an
open interval, a figure eight, a dumbbell curve, a thela curve, or @ noose
(a figure nine).

Proof. Let f denote & one-to-one continuous function from the real
numbers onto X. Suppose that U is an open subset of X such that (1)
U is compact and (2) there exist a divergent sequence i, <i, <13 <...
of positive numbers and a divergent sequence t—;> 1>t 53> .. of
negative numbers such that for each positive integer #, both f(ta)
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and f(i—n) belong to X—TU. Using Sierpiniski’s theorem as in [3], each
nondegenerate component ¢ of U must (for some integer ) be a subset
of f([tn, t-n]). Since f([ts, t—4]) is an'arc, it can contain at most countably
many such components. Consequently the collection & of all nondegenerate
components of U is countable. Let & be a positive number such that for
no g in G is e the maximum distance from the boundary of U to & point
of g but some element of & contains a point whose distance from the
boundary of U is more than e. The subcollection @, of & of those elements,
each of which eontains a point of U at a distance of at least ¢ from the
boundary of U, is an upper semi-continuous collection whose quotient
space is compact. Hence at least one element of @, fails to contain a limit
point of the union of the others. Let T denote such an element. It is
clear that T (which is an arc) contains an “open” interval which is
open in X.

Let @ be a point of some such open interval and let A be the union
of all open number intervals I° such that f(I°) is open in X and contains a.
Let B = f(4).

Case 1. Suppose that 4 is an open interval of nurabers. Then A is
maximal with respect to the property of being an open number interval
whose image B in X is open in X. Suppose that one can find an open
subset R of X which contains one end, say b, of B (but whose closure
does not contain the other end) such that B v R is an open set V having
the properties: (1) B is compact (hence ¥ is also compact) and (2) there
exist a divergent increasing sequence {t;} of positive numbers and a di-
vergent decreasing sequence {i{—;} of negative numbers such that for
each positive integer n both f(tx) and f({.n) belong to X —V. Since this
duplicates the conditions imposed on U in the above paragraph it follows
that every nondegenerate component of ¥ is an arc. Hence the com-
ponent ¢ of ¥ which contains b is an arc containing b ag a non-endpoint.
Furthermore, since A was chosen to be maximal in the above sense, b is
the sequential limit point of a sequence {b;} of points of R— ¢ no two
terms of which belong to the same. component of ¥. For each 4, let (;
denote the component of ¥ containing b;. Some subsequence of {C;} must
converge. So we shall agsume that {03} itself converges to some subarc Q
of C. Clearly @ cannot contain a point of B, but does intersect the boundary
of V. Let ¢ be a point of Q between b and the boundary of V.

Since X is aposyndetic there must exist a closed and connected
set H which contains b in its interior but does not contain ¢. Let TV denote
an open set containing ¢ such that W CV —H. Let n denote a positive
integer such that by, belongs to H but such that no subcontinuum of 7 — W
contains both b, and a point of the boundary of V. Hence V—1W is the
union of two disjoint closed sets containing b, and the boundary of V
respectively. Hence X W is the union of disjoint closed sets doing the
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same, But H lies in the union of these disjoint closed sets and intersects
both of them. This is impossible.

So if at neither end of B can R be found with properties (1) and (2),
then each of the sets {1} clf({f: ¢ > n}) and ,“‘1 clf({t: t < —n}) consists

n=1 n=1

of only one point. Hence it is clear as in Lelek and McAuley’s argument
that X is either a theta curve or a dumbbell curve.

Case 2. Suppose that 4 is an-open ray of numbers whose image B
in X has end point b. If the “unbounded end of B had two limit points,
X would not be aposyndetic. If an open set R can be found which con-
tains b and has properties (1) and (2) of Case 1, then the argument for
Case 1 applies. If no smch R exists, then let A’ be generated by some
point o’ belonging to the ecomplement of B. If for no such a’ does this
result in Case 1, then X is a figure eight curve or a noose.

Case 3. Suppose that A is the set of all real numbers. Then clearly X
is homeomorphic to an open interval.

The argument is completed by observing that in any open set U,
an open subset U of the type postulated at the beginning of the proof
must exist. For if T, U, and T; are all open subsets of U, whose closures
are disjoint and compact, then at least one of them enjoys the properties
required of U.

ExamprE, Let S De the points of

y=(1—a)sin(zfr) (0<z<1)

together with the points of

+yr=1 (~l<os<1land y>=0)

in the xy-plane. As a subspace of the plane, § is aposyndetic and a one-
to-one continuous image of a line, but § is not homeomorphic to one of
the above five curves.

If the metric space X in Theorem 1 is not required to he locally
compact but is merely aposyndetic, then even though X is embeddable
in the plane it need not be one of the five plane curves. (The space S of
the above example demonstrates this fact.) However when aposyndesis
is strengthened to loeal connectivity, the embeddability in the plane
produces the desired result.

Plane Images. In the proof of the following lemma use is made
of the notion that in B* (or §%) an arc has two sides. It may be sufficient
for the reader to know that if 4;, 4, and B are three arcs in B? such that
A; (i=1,2) has only one point in B (and this point is an endpoint of 4,
and & non-endpoint of B), and 4,—B and 4,— B are disjoint, then (1)
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A 1s said to abut on B and (2) 4, and 4, are said to abut on B from the
same or different sides according as I(4;—B) and h(4,—B) lie on the
same or different sides of the z-axis where % is a homeomorphism of &
onto itself sueh that #(B) is a subset of the z-axis and h(d, —B) v h(4,—B)
contains no point of the x-axis. (In §* one would need to use the equator
instead of the #-axis.) The elementary and intuitive theorems about
abutting arcs (e.g., if each of three disjoint arcs abut on an arc B then
two of them must abut on B from the same side) may Dbe established
with the help of well-known theorems in plane topology. For more details
the reader is referred to [4].

This theory may be extended in a rather obvious way when certain
connected sets replace 4,— B and 4,— B. Suppose that ¢ is a connected
subset of B*— B such that C ~ B is a subset of an arc 3 in the interior
of § Then if both endpoints of B lie in the same component of F*—
—(Cv M), Cis said to abut on B. If ¢, and ¢, are connected sets each
of which abuts on B and (0,—B) ~ (J,— B) are disjoint, then ¢, and c,
would abut on B from different sides if there exists a homeomorphism h
of B? onto itself such that h(B) is a subset of the »-axis and h(C;) and
h(0;) are on different sides of the z-axis. Equivalently, 0, and C, abut
on B from different sides if B is a subset of a simple closed curve J such
that C; and C, lie in different components of E*—.J. Similarly, in a fashion
analogous to the theory for arcs, one may define the phrase “C; and C,
abut on B from the same side” and proceed to establish the elementary
theorems.

LemmiA. Suppose that the locally connected metric space X is & one-
to-one continuous image of the real numbers. Then if X is embeddable in
the 2-sphere &, X is locally compact.

Proof. Let X De a subset of §% and let f be a one-to-one continu-
ous mapping of the real numbers onto X. If F is a bounded set of numbers,
fIF i3 a homeomorphism, And if V is a relatively open subset of X, f~(V)
is an open set of numbers all of whoge components except possibly two
are ‘open intervals. In general, the topology to be used in this argument
(except when referring to number sets) is the topology of the embedding
space S% unless  otherwige specified. We shall choose some limit point g
of X not belonging to X (if there is no such point, X is closed and hence
compact) to be used as “the point at infinity.” (The reader may find
some of the work in Chapter IIT of [4] nseful in following this argument,
Since we are using an extension of the theory of abutting arcs derived
from the work of that chapter and the next.)

Suppose that D is a simple domain in & which intersects X bub
W.hose closure does not contain ¢. Let ¥ denote a component of D ~ X.
Since X is Iocally connected, V is open relative to X.
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Case I. Suppose that there exists an increasing sequence ¥, ¥y,
%as - Of real numbers such that (1) for each 4, f(ye) e 8—D, (2) {f(y:)}
converges to g and (3) f({t: ¢ < yp}) C & —D. Tt follows from (2) and (3)
that f7(¥) is the union of countably many disjoint open number intervals.
Let {T;} denote the set of all images in X of these intervals. Hence
T = { T¢ such that for each i, f (T is an open number interval and T
is an arc with endpoints in the boundary of D.

It is no loss in generality to assume that f~ (V) is not hounded. For
if F7Y(¥) were bounded, ¥ would be compact relative to X. Hence {3}
is infinite. Since 177 is connected, each T; must contain a limit point of
the nnion of the others.

We shall first show that for some T, V—T; has limit points in T;
from Dboth sides, i.e., there exist connected open sets @, and @, of V—1T;
which have closures lying in D and which abut on 7T'; from different sides.

Suppose without loss that f([y,, . ]2 Ty v T v Ty v T, v T,. There
exist connected open subsets @y, ..., @5 of V—f([¥y, y1]) whose closures
are disjoint and lie in D such that @, ..., @; abut on f([¥,, #:]) and on
Ty, ..., T; respectively. At least three of them abut on f([%,,¥,]) from
the same side. For simplicity let us suppose that these are Ty, T, and T,
and that f7YT) < T <f N Ts). We shall say that @, Q, and @,
abut on T, T, and T, from the same side and call this side the bottom
side. (It may help the reader to picture the situation after B* has been
transformed by a homeomorphism onto itself which moves f([y,, 9,] into
the w-axis and @; (i=1, 2, 3) into the lower half plane.)

Now let D, be a simple domain such that D, ~ f([y,, 4.]) is a con-
nected subset of T, containing a point of @, as a non-endpoint, D, C D,
and D, is a subset of D—f([y,, ¥:]) which abuts on f([y,, ¥,]) from the
bottom side. Some component ¥V, of D, ~n 7 abuts on f([y,, ¥;]) from the
bottom side. Suppose that v, is the first of g, < y; < ... such that f([y., %))
intersects ¥,. Let D, be a simple domain such that D; ~ f([y,, %.]) is
a connected subset of 7, containing a point of ¢, as a non-endpoint,
D,CD—D,, and D, is a subset of D—f{[¥,, ¥,]) which abuts on Tvo, %2)
from the bottom side. Some component V; of D; ~V abuts on f([¥,, ¥.])
from the bottom side. Let W, denote the union of ¥, with all of its com-
plementary domains which lie in D,;. Clearly W, is a continuum which
does not separate S§*. Let y, De the first of y; <<y, < ... such that f([y,, ¥5])
intersects V;. Let @ and b be numbers (¥, < a < v, and 9, < b < y;) such
that f([a, y,]) is irreducible from W, to f(y,) and f([,, b]) is irreducible
from f(y;) to W,. Let D; denote a simple domain such that Dy n ([, ¥5])
is a connected subset of T containing a point of @ as a non-endpoint,
Dy CD—(D, v D), and. Dy is a subset of D—f([9,, ¥,]) which abuts on
F([¥as ¥5)) from the bottom side. Some eomponent. ¥V, of Dy AV abuts
on f([¥e, ¥s]) from the bottom side.


GUEST


290 ¥. B. Jones

Now there exists a simple domain D, whose boundary lies in
f([#1, b]) © budy D, such that D, is a subset of Dy —£([y1, b]) which abuts
on T, from the bottom side and D, ~ fla,y]) = Dy~ fla, v.7). Some
component ¥V, of ¥V, ~D, abuts on 7T, from the hottom side and hag
a limit point s in f([4,, b]). There exists an sufficiently large such that
J([Yss ¥n]) intersects both V, and W, and hence some subare T of it ig
irreducible from 7, to W,. One of the complementary domains I of
f([a, b]) v W, contains D, v D, u (T=Wy). In Ivf{a,bl) v W, the
point set W; w I' v D separates T, from s. Hence some subcontinuum K
of T'~ D, separates D, ~ T, from s in D,. Consequently in D,—K there
are connected open subsets of V,—K which abut on K from different
sides. But for some number i, K C T;. Hence there are connected open
subsets of ¥'—T'; which abut on T, from different sides.

Sinee f([ys, y:+1]) (i > 3) covers ¥, let o denote a simple well-ordering
of all those ares A such that A intersects Vs and is the closure of a com-
ponent of I ~ f([ys, y,]) for some %> 3 such that both end points of
4 belong to W;. Clearly I—A has'two components, one on the bottom
side of 4 and the other on the other side of 4.

Since D, has all of the properties postulated for D, there is a term
of a which has connected open subsets of Vs abutting on it from different,
sides; hence there are terms of a on Dhoth sides of it. Sinece f™Y(V,) has
countably many components, let £ be a simple well-ordering of the images
in X of these components. Let A, denote the first term of o which hag
connected open subsets of V, abutting on it from different sides and
let I, denote the component of I—A4, which does not contain f([e, b))
in its boundary. Let I, be the first term of f in J o and let A4, be the first
term of « lying in I,— I, which has connected open subsets of ¥V, abutting
on it from both sides. Let I, denote the component of I,— A, whose
closure does not contain L,. Now let L, denote the first term of £ lying
in T, and let 4, be the first term of a lying in I, — I, which has connected
open subsets of V, abutting on it from both sides. Let I, denote the
component of I, —4, whose closure does not contain L,. Continue this
process. The compact continuum D, v (I, ~ I, ~ I, A ..) v W, contains
10 point of ¥, ~ f([a, b]) and yet does not intersect V4 which is a contra-
diction. This completes the proof of Case I.

Now let us examine where we stand. If P is a point of X and a simple
domain D can be found satisfying conditions (1), (2) and (3) of Case I,
then the component V of D ~ X which contains p will have a compact
closure relative to X. While conditions (1) and (2) may always be satisfied
(one may need to interehange the positive and negative numbers to
get {ys} increasing), p could belong to H™ = ﬁ clf({t: t< —n}) and

n=1
eondition (3) ‘would hold for no choice of D. However, if p were the only
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point in H™, then the argument for Case I can he made to apply with
almost no change. So let us assume this to be part of Case I.

Case II. Assume that () elf({f: { < —n}) contains a point of ¥
n=1

and a point of $*—D. More specifically (in addition to the sequence
Yoy Y15 Yz, ---)y We shall assume that (3') there exists a divergentlsequencg
Yo > Y—1> Y2 > Y- > ... of real numbers such that for eajc.h n}teger i,
f(y:) belongs to 8*—D. Now the argument for Case I applies with only
slight changes where {I';} will now be the collection of all sets T such
that for some positive integer n, T is a component of ¥ ~ f([y_n, ¥a])
and in cerfain other places [¥-n, 4x] Will be substituted for [¥,, yal.

Since, when X is not locally compact either Case I or Case IT would
apply, the proof of the lemma is complete.

TeEOREM 2. If the locally commected meiric space X is a one-to-one
continuous plane image of a line, then X is homeomorplic to an open interval,
a figure eight, a dumbbell curve, a theta curve, or a mnoose.

Theorem 2 follows from the above lemma and Theorem 1 of [3] or
Theorem 1 above.

Examples in [1] and [3] show that if X is assumed to be embedded
in Euclidean 3-space instead of the plane, the conclusion of Theorem 2
need not follow.

=1 | 5]

\ J

Fig. 1

It is clear that Theorem 2 still holds true if a monotone map is sub-
stituted for the one-to-one map. However, finite-to-one maps (or even
maps whose point inverses contain no more than two numbers) are not
sufficient (see the example in [1]). )

‘It has been pointed out that in Theorem 2 aposyndesis may not
be substituted for local connectedness. Since (in the absence of loeal
compactness) semi-local-connectedness is stronger than aposyndesis, one
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may ask is 4% strong enough. The answer ig “no”. The figure above indicates
how to construct a one-to-one continuous plane image of a line which
is semi-locally-connected but not one of the desired curves.

Question: Can 2-aposyndesis be substituted for local connectivity
in Theorem 2% That is, if the one-to-one continuous s-l-c plane image X of
a line has the property that for # in X and y and z in X —u2, there exigty
a closed (rel. X) and connected subset of X —(y-+#) which contains z in
its interior (rel. X), then is X both locally connected and locally compact?
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Maximal chains in atomic Boolean algebras

by
George W. Day (Laramie, Wyoming) *

J. Jakubik [3] has given an example of a Boolean algebra with atoms,
which also has a maximal dense-in-itself chain of elements. The prinecipal
result of this note is a necessary and sufficient condition that a chain
be isomorphic to a maximal chain of an s—-complete atomic Boolean
algebra. (A Boolean algebra is said to be N-complete if it is ~'-complete

“whenever ¥ < 8.) In addition, several examples pertinent to related

questions on Boolean algebras are given. Our notation will follow that
of Dwinger [2].

TEeOREM. In order that the chain C be isomorphic to a maximal chain
in an N"-complete atomic Boolean algebra, it is necessary and sufficient
that O is N"-complete, has a maximal and a minimal element, and has no
complete dense-in-itself interval.

Proof. We need only establish that these conditions are sufficient.
Let B be the Boolean algebra of finite unions of half-open intervals,
[a, b), of C. Then {[0, ¢): ¢ e C} is a maximal chain in B, which we here-
after identify with C. Let S(B) be the Stone space of B, that is, the set
of prime ideals of B with the usual topology. Let P be any set of prime
ideals of B such that

(1) f [a, b] is & dense-in-itself interval of C, then there is an element I
of P such that a+b eI, and

(ii) if I eP, then C ~I has no mawimal elemeni and C—1I has no
minimal element.

Note that since ¢ generates B, no two elements of P have the same
intersection with . Next, let F' be the field of sets generated by finite
subsets of P and open-and-closed sets in §(B). For each weB, let O(x)
be the corresponding open-and-closed set in S(B); that is, let O(#)
={I: I <8(B) and @¢I}. Denoting symmetric difference by @, it is
readily shown that 7 = {S@®O(z): § is & finite subset of P and « e B}.

LevwA. F is atomic.

* Supported by a University of Wyoming Faculty Summer Research Fellowship.
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