On a certain property of the derivative
by
S. N. Mukhopadhyay (Burdwan)

1. A very interesting property of the derivative f’ of a real function f
of single variable is that the sets

{w: i) <a} and {a: f'(z)> p}

are either void or of positive measure for arbitrary values of « and B.
Also, a derivative function is of Baire Class 1 and possesses the Darboux
property. These three properties possessed by f' ensure another property
possessed by f' [1], known as the Denjoy~Clarkson property, viz. the set

{@: a<fi(z) < f}

is either void or of positive measure for arbitrary values of a and 8, a < .
Clarkson [1] has pointed out that this property cannot be deduced from
the Darboux property alone. However, he has used the Darboux property
to prove his theorem. Zahorski [8] has obtained a more general result
by using the Darboux property and Lagrange’s mean value theorem
for f*. In the present paper it has been possible to obtain a necessary and
sufficient condition under which a function will satisfy the Denjoy—
Clarkson property. In the proof of the theorem the Darboux property
is not used and so the class of funections considered in this paper is larger
than the class of derivative functions.

Throughout the paper B will denote the set of real numbers and u
will denote the nsual Lebesgue measure, linear or 2-dimensional as the
case may be.

2. We shall introduce fhe following definitions and notations.

DEFINITION. A measurable funetion f: R—R will be said to satisfy
the Denjoy-Clarkson property iff given any two reals a, §, a < p the set

@ e <flz) < B}

is either void or of positive measure.

A measurable set ¥ is said to satisfy the property C iff A ~ E is
either void or of positive measure whenever 4 is an interval.
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A meagurable function f is said to satisfy the property C iff for
arbitrary «, g, a < f, the set

{or a<f(@) < B}

satisfies the property C.

‘We shall write - ‘

B(f; %, a) = {w: f(x) < a),
B(f; B, %)= {o: flw) > B},
B(f; o, )= {w: a<flx)<f}.

THEOREM 1. A necessary amd sufficient condition that a function f of
Baire Glass 1 satisfy the property C is that the sets E(f; %, a) and B(f; 8, %)
for arbitrary o, B satisfy the property C.

Proof. Let f satisfy the property C and let A be any interval. If
A~ B(f; %, ) is non-void, let £ ¢ A ~ H(f; %, a). Then f(£) < a. Choose
such that y < f(§) < a. Bince f satisfies the property C, 4 ~ B(f; y, a) is
of positive measure and hence A ~ E(f; %, a) is of positive measure.
Similar arguments hold for the set B(f; §, %)

Conversely, let the sets E(f; %, «) and E(f; 8, %) for arbitrary o, f
satisfy the property C. Let a < f. If possible, let us assume that the set
B(f; o, B) does not satisfy the property C. So, there is an interval 4 such
that ‘

AnE(f;0,8)#0, plAdnB(f;a,p)]l=0.

We may consider the set 4 to be the domain of f. Let us define

Fo={o: flo)<a}, Fp={o: fla)>p}.

Let @ be any non-degenerate component of F,. Then @ is an interval.
Tet a and b be the end-points of @ where a <b. Now the set [a, 5]~
A B(f; a, %) containg at most two points, namely « and b, and hence
ig of measure zero. So [a, b] ~ E(f; a, %)= 0. Hence f(a) < a, f(b)< o
and, since ¢ is a component, we conclude that ¢ €@, b «@. Thus if @ is
a non-degenerate component of F,, then @ is a closed interval. A similar
argument holds for Fp.

Let {@} be the collection of all non-degenerate components of 7,
and Fy. Let P = ~ v () where @° is the interior of §. Then P is closed.

We shall now show that P CF,~ Fs, where F is the closure of F.
If possible, let x, € P but @, ¢ F,. Then there is an open interval J such
that oy e and J N F, is void. Since u[H(f; a, )] = 0, f(z) > f almost
everywhere in J and hence f(#)> g for all zeJ. So JCH; and con-
sequently J C Q° for some @ ¢ {Q}. So @, ¢ Q°, showing that wo¢P which
is a contradiction. Hence P C F,. Similarly P C F.

-Let @, ¢ P and let I be an interval containing #, in its interior. Then
we shall show that T ~ P n F, and I ~ P ~ Fy are non-void. Sinee z, ¢ P,
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Zy € Fa. So, there is a point & of F, in I. If feP, then EeInPAF,.
Otherwise £ ¢ Q° for some @ ¢ {Q} and @ C F,. Since #, ¢ §°, there is a point 7
which is one of the end-points of @ such that either x, < n<forf<y<z
Then el ~ P F,. Similarly I ~ P ~ F; is also non-void.

Hence

inf f(z)<a, sup fz)= 8.
xeINP zelOP
This shows that f has no point of continuity on P relative to P. This
contradicts the fact that f is of Baire Class 1.

The above theorem can be stated in the following way:

THEOREM 1'. 4 necessary and sufficient condition that a function f of
Baire Class 1 satisfy the property C is that each of the sets E(f; %, a) and
E(f; Bs%) for arbitrary a, B be meirically dense in itself.

CoroLLARY. The finite approximate derivative fap of a function f (f
single variable satisfies the properly C.

Proof. If is known [6] that if f has an approximate derivative fi,p
which is non-negative almost everywhere, then f is non-decreasing. From
this fact we deduce that for arbitrary a and g the sets I ~ B(fop; %, a)
and I~ E(fop; B, %) are either void or of positive measure, where I is
an interval. Also it is known [3] that fi, is of Baire Class 1. Hence, by
Theorem 1, fop satisfies the property C.

The above result has been proved in [4] and [7]. Zahorski [8] refined
the Denjoy Clarkson property for a derived function f’ in the sense that
if zeB(f'; a, ) and if {I,} is a sequence of intervals not containing «
such that {I»} converge to & and u[I, ~ E(f'; a, )] = 0 for all u, then
pllJfd(z, I,) =0 as n-—soo. Weil [7] has shown that this refinement
regarding the set E(f; a, B) for an arbitrary function f of Baire Class 1
possessing the Denjoy—Clarkson property is not possible.

3. We now prove the Denjoy-Clarkson property for approximate
partial derivatives in R

DEFINITION. A measurable function f: B R will be said to satisfy
the Denjoy-Clarkson property iff given any two veals a, 8, a < B, the set

{(@,9): e <flo,y) < B}
iz either void or of positive measure.

Lmama. Let G CR? be a domain. If f: G-—>R is continuous relative
to the second variable y and the approvimate partial derivative with respect

io z, q exists and 1is finite throughout G, then the set
9% ) ap

f@,0: () @n<4

ts either void or of positive measure for arbitrary conmstant .
20*
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Proof. We shall prove the lemma for A= 0; for 1
proof follows by considering f(x,y)—Av instead of f(=,

# 0, the

e{(;?;, 9): (%)@ (@, 1) < o}. Let g(z) = f(2, 7). Then g4, exists for all z for

which (@, 1) € &. S0, by the corollary to Theorem 1, g, satisties the property €
on {z: (, ) e G}. Hence since gop(£) < 0, the set {#: gap(w) < 0; (2, %) € G}
is of positive linear measure. Also since gg(€) < 0, there is a & such that

(f,mel, E<& and f(&,9)>f&,n). Let = {f(&, n)—f(&, n)}2.
Then &> 0. Since f(#,y) is continuous relative to y, corresponding to &
there is a 6 > 0 such that

&= n—e and  fl&, y) <flé,n)+te

whenever [y—z| < & and the rectangle with vertices (&, n—9d), (£, n+9),
(&, n—26) and (&, n-+06) He in G

li, 9): E<e<E; “7‘§<?/<?i+g}
and. let {(m’ ¥ E<e<E y=1F; 7}—5 <k < 77-1—3} be any section of

the above rectangle.
Clearly

s,y > LEDEE ) e g

So, there is at least one point &, & < & < &, such that ga(&,) = 0, where
o(z) = f(z, k). For, if gop(w) > 0 for all o, £ <& < &, then ¢ would be
non-decreasing [3]. Hence the set of points z, & <2< &, for which

.- . . A §
oap(#) < 0 has positive linear measure. Since this is true for all k, =3

<k <17+g,‘ the set

(@ v s<o<ts —f<u<utgnfo v (Z) <o)

is of positive measure. This completes the proof.
THEOREM 2. Let G CR2 be a domain. Let f: G —R be continuous relative

to y and let the approzimate partial derivative wilh respect to ( ) exist
ap
and be finite throughout G. If (%) : G >R sends connected sets into con-
ap

[/ . .
necled sets, then (%) satisfies the Denjoy—Clarkson property.
ap

y). Let (&, )

icm®
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Proof. Let a,f be any two reals such that a < f. Let us write

of - ‘
g = (c—r) and = = (&, y). Let

E ={nzrel; a<qg(x)<p},
E.={z: 2@ (e < a},
Ey={z: zel; o) =B} .
Then the sets E, E, and H; are mutually disjoint and § = E, v F v E;.
If possible, let us suppose that # is non-void but is of plane measure
zero. We shall show that under the condition FC E,~ E; where E,
and F; are the sets of limiting points of E, and Ej respectively. If possible,
SUPPOSe 2, = (&, Y,) € ¥ but 2, ¢ F;. Then there is an open circle S such
that z,¢ 8, SC G and § ~» B, = 0. Since pE =0, p(z) = f almost every-
where on § and hence the set {#: ¢(2) < g}~ 8§ is of measure zero. So,
by the Lemma {z: ¢(2) < g}~ S = 0 But this is a contradiction, since
Ze 8 and ¢(%) < f. Thus ECE;. Similarly BC E;. So, BEC E; ~ Ej.
From this we conclude that EC E. ~ ¥z, where £ is the closure of E.
Let £ = (£, %) ¢ E. Then since EC B, ~ B}, if § is any open circle
containing £, we have
infp(2) <a

B

Sup p(2) > 6 -

We conclude that inf ¢(2) = a

zeSNE

(a, k) ~ @(8) = 0, while (a, k) C

For, if inf @(z)= k > @, then
zeSNE

(inf ¢(2), sup p(2)), which contradicts
zeS zeS

the fact that ¢ sends connected sets to connected sets. Similarly sup ¢(z)
zeSORE
= f. So we conclude that

inf gle) <a,
zeSTE

sup_op(2) = 8.

zeSORE

So, the saltus of p at each point of X relative to F is at least f— a. Hence
the function ¢/ is discontinuous at each point of Z. Now ¢ belongs to
Baire Class 1 [5] and hence the points of discontinnity of ¢ considered
over a closed subset form a set of the first eategory relative to the subset.
Since E is a set of the second category on itself, this gives a contradiction.
This completes the proof.
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One-to-one continuous images of a line
by
F. Burton Jones (Riverside, Calif)

Even if the metric space X is a one-to-one continuous image of
2 line, it still may be rather complieated topologically. However, Lelek
and MeAuley [3] have pointed out that when X is also both locally con-
nected and locally compact, X must be one of five quite simple plane
curves: an open interval, a figure eight, a dumbbell, a theta curve, or
a noose. In fact, I have indicated in [1] that if X is embeddable in the
plane, local compactness is not needed. Consequently one suspects that
in the presence of local compactness, local connectivity is too strong
and that something weaker should suffice. This turns out to be the case.
For if X is aposyndetic and locally compact then X must be one of the
five curves. On the other hand, there are plane continuous one-to-one
images of the line which are aposyndetic but not locally connected and
hence not one of the five curves.

‘While one of the objects of this paper is to extend the Lelek-McAuley
result to the larger class of aposyndetic spaces, it is also one of my pur-
poses to give a more complete argument for the result announced in [1]
since the “indication of proof” given there seems not to have been suf-
ficiently suggestive.

DgerFiniTION. A conneeted topological space X is aposyndetic at the
point  of X provided that if y is a point of X —x there exists a closed
and connected set H which contains x in its interior but does not con-
tain y (i.e., e HHCH C X —y). If X is aposyndetic at each of its points,
then X is said to be aposyndetic [2].

THEOREM 1. If the locally compact, aposyndetic, metric space X is
a one-to-one continuous image of a line, then X is homeomorphic with an
open interval, a figure eight, a dumbbell curve, a thela curve, or & noose
(a figure nine).

Proof. Let f denote & one-to-one continuous function from the real
numbers onto X. Suppose that U is an open subset of X such that (1)
U is compact and (2) there exist a divergent sequence i, <i, <13 <...
of positive numbers and a divergent sequence t-;> 1>t 3> .. of
negative numbers such that for each positive integer #, both f(ta)
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